Low voltage 1Ω max single SPDT switch with break-before-make feature

Features

- High speed:
$-\mathrm{t}_{\mathrm{PD}}=1.5 \mathrm{~ns}$ (Typ.) at $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$
$-t_{P D}=1.5 \mathrm{~ns}$ (Typ.) at $\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$
- Ultra low power dissipation:
$-\mathrm{I}_{\mathrm{CC}}=0.2 \mu \mathrm{~A}$ (Max.) at $\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C}$
■ Low "ON" resistance:
$-\mathrm{R}_{\mathrm{ON}}=1.0 \Omega\left(\mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$ at $\mathrm{V}_{\mathrm{CC}}=4.3 \mathrm{~V}$
$-\mathrm{R}_{\mathrm{ON}}=1.1 \Omega\left(\mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$ at $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$
$-\mathrm{R}_{\mathrm{ON}}=1.7 \Omega\left(\mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$ at $\mathrm{V}_{\mathrm{CC}}=1.8 \mathrm{~V}$
- Wide operating voltage range:
$-\mathrm{V}_{\mathrm{CC}}(\mathrm{OPR})=1.65 \mathrm{~V}$ to 4.5 V single supply
■ 4.5V Tolerant and 1.8 V compatible threshold on digital control input at $\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ to 3.0 V
■ Latch-up performance exceeds 100 mA per JESD 78, Class II
■ ESD Performance tested per JESD22
- 2000V Human-body model (A114-B, Class II)
- 200V Machine model (A115-A)
- 1000V Charged-device model (C101)

Description

The STG3159 is a high-speed CMOS low voltage single analog S.P.D.T. (Single Pole Dual Throw) switch or 2:1 Multiplexer /Demultiplexer switch fabricated in silicon gate $\mathrm{C}^{2} \mathrm{MOS}$ technology. It is designed to operate from 1.65 V to 4.3 V , making this device ideal for portable applications.

The device offers very low ON-Resistance (1 Ω) at $\mathrm{V}_{\mathrm{CC}}=4.3 \mathrm{~V}$. The SEL inputs are provided to control the switch. The switch S1 is ON (they are connected to common Ports Dn) when the SEL input is held high and OFF (high impedance state exists between the two ports) when SEL is held low; the switch S 2 is ON (it is connected to common Port D) when the SEL input is held low and OFF (high impedance state exists between the two ports) when SEL is held high.

Additional key features are fast switching speed, break-before-make delay time and Ultra Low Power Consumption. All inputs and outputs are equipped with protection circuits against static discharge, giving them ESD immunity and transient excess voltage.

Order codes

Part number	Package	Packaging
STG3159DTR	DFN6L $(1.2 \mathrm{~mm} \times 1 \mathrm{~mm})$	Tape and Reel

Contents

1 Pin connections and functions 3
2 Electrical ratings 4
3 Electrical characteristics 5
3.1 DC electrical characteristics 5
3.2 AC electrical characteristics 7
3.3 Analog switch characteristics 8
4 Test circuits 9
5 Package mechanical data 12
6 Revision history 17

1

Pin connections and functions

Figure 1. Pin connections (top through view)

DFN6L

Table 1. Truth table

Sel	Switch S1	Switch S2
H	ON	OFF $^{(1)}$
L	OFF $^{(1)}$	ON

1. High impedance

Table 2. Pin descriptions

Pin №	Symbol	Name and function
6,4	S1, S2	Independent channels
3	D	Common channels
1	SEL	Control
2	$\mathrm{~V}_{\text {CC }}$	Positive supply voltage
5	GND	Ground (OV)

Figure 2. Input equivalent circuit

2 Electrical ratings

Stressing the device above the rating listed in the "Absolute Maximum Ratings" table may cause permanent damage to the device. These are stress ratings only and operation of the device at these or any other conditions above those indicated in the Operating sections of this specification is not implied. Exposure to Absolute Maximum Rating conditions for extended periods may affect device reliability. Refer also to the STMicroelectronics SURE Program and other relevant quality documents.

Table 3. Absolute maximum ratings

Symbol	Parameter	Value	Unit
V_{CC}	Supply voltage	-0.5 to 5.5	V
$\mathrm{~V}_{\mathrm{I}}$	DC Input voltage	-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5$	V
$\mathrm{~V}_{\mathrm{IC}}$	DC Control input voltage	-0.5 to 5.5	V
$\mathrm{~V}_{\mathrm{O}}$	DC Output voltage	-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5$	V
$\mathrm{I}_{\mathrm{IKC}}$	DC Input diode current on control pin $\left(\mathrm{V}_{\mathrm{SEL}}<0 \mathrm{~V}\right)$	-50	mA
I_{IK}	DC Input diode current $\left(\mathrm{V}_{\mathrm{SEL}}<0 \mathrm{~V}\right)$	± 50	mA
I_{OK}	DC Output diode current	± 20	mA
I_{O}	DC Output current	± 200	mA
I_{OP}	DC Output current peak (pulse at 1ms, 10% duty cycle)	± 400	mA
I_{CC} or $\mathrm{I}_{\mathrm{GND}}$	DC V_{CC} or ground current	± 100	mA
P_{D}	Power dissipation at $\mathrm{T}_{\mathrm{A}}=70^{\circ} \mathrm{O}^{(1)}$	1120	mW
$\mathrm{~T}_{\text {stg }}$	Storage temperature	-65 to 150	${ }^{\circ} \mathrm{C}$
T_{L}	Lead temperature (10 sec)	300	${ }^{\circ} \mathrm{C}$

1. Derate above $70^{\circ} \mathrm{C}$ by $18.5 \mathrm{~mW} / \mathrm{C}$

Table 4. Recommended operating conditions

Symbol	Parameter		Value	Unit
V_{CC}	Supply voltage ${ }^{(1)}$		1.65 to 4.5	V
V_{1}	Input voltage		0 to V_{CC}	V
$V_{\text {IC }}$	Control input voltage		0 to 4.5	V
V_{O}	Output voltage		0 to V_{CC}	V
T_{op}	Operating temperature		-55 to 125	${ }^{\circ} \mathrm{C}$
dt/dv	Input rise and fall time control input	$\begin{gathered} \mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V} \text { to } \\ 2.7 \mathrm{~V} \end{gathered}$	0 to 20	ns / V
		$\mathrm{V}_{C C}=3.0$ to 4.5 V	0 to 10	

1. Truth table guaranteed: 1.2 V to 4.5 V

3 Electrical characteristics

3.1 DC electrical characteristics

Table 5. DC specifications

Symbol	Parameter	Test conditions		Value							Unit
		Vcc (V)		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			-40 to $85^{\circ} \mathrm{C}$		-55 to $125^{\circ} \mathrm{C}$		
				Min.	Typ.	Max.	Min.	Max.	Min.	Max.	
V_{IH}	High level input voltage	1.65-1.95		$0.65 \mathrm{~V}_{\text {CC }}$			$0.65 \mathrm{~V}_{\text {CC }}$		$0.65 \mathrm{~V}_{\text {cc }}$		V
		2.3-2.5		1.2			1.2		1.2		
		2.7-3.0		1.3			1.3		1.3		
		3.3-3.6		1.4			1.4		1.4		
		4.3		1.6			1.6		1.6		
$\mathrm{V}_{\text {IL }}$	Low level input voltage	1.65-1.95				0.40		0.40		0.40	V
		2.3-2.5				0.60		0.60		0.60	
		2.7-3.0				0.60		0.60		0.60	
		3.3-3.6				0.60		0.60		0.60	
		4.3				0.80		0.80		0.80	
$\mathrm{R}_{\text {PEAK }}$	Switch ON peak resistance	1.8	$\left\{\begin{array}{c} V_{S}=0 V \text { to } \\ V_{C C} \\ I_{S}=100 \mathrm{~mA} \end{array}\right.$		2.2	3.0		3.5			Ω
		2.7			1.3	1.6		1.8			
		3.0			1.2	1.5		1.7			
		4.3			1.1	1.2		1.4			
R_{ON}	Switch On resistance	1.8	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}=0.9 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{S}}=100 \mathrm{~mA} \end{aligned}$		1.7	2.3		2.7			Ω
		2.7	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}=1.3 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{S}}=100 \mathrm{~mA} \end{aligned}$		1.2	1.5		1.7			
		3.0	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}=1.5 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{S}}=100 \mathrm{~mA} \end{aligned}$		1.1	1.2		1.6			
		4.3	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}=2.5 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{S}}=100 \mathrm{~mA} \end{aligned}$		1.0	1.1		1.3			
$\Delta \mathrm{R}_{\text {ON }}$	ON resistance match between channels ${ }^{(1)}$	1.8	$\begin{gathered} \mathrm{V}_{\mathrm{S}} @ \mathrm{R}_{\mathrm{ON}} \\ \mathrm{Max} \\ \mathrm{I}_{\mathrm{S}}=100 \mathrm{~mA} \end{gathered}$		0.06						Ω
		2.7			0.05						
		3.0			0.05						
		4.3			0.05						
$\mathrm{R}_{\text {FLAT }}$	ON resistance flatness ${ }^{(2)}$	1.8	$\left\{\begin{array}{l} V_{S}=0 V \text { to } \\ V_{C C} \\ I_{S}=100 \mathrm{~mA} \end{array}\right.$		1.0	1.5		1.5			Ω
		2.7			0.45	0.60		0.70			
		3.0			0.40	0.50		0.60			
		4.3			0.37	0.50		0.60			

Table 5. DC specifications (continued)

Symbol	Parameter	Test conditions		Value							Unit
		Vcc (V)		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			-40 to $85^{\circ} \mathrm{C}$		-55 to $125^{\circ} \mathrm{C}$		
				Min.	Typ.	Max.	Min.	Max.	Min.	Max.	
IOFF	OFF state leakage current (SN), (D)	4.3	$\begin{gathered} \mathrm{V}_{\mathrm{S}}=0.3 \mathrm{or} \\ 4 \mathrm{~V} \end{gathered}$			± 20		± 100			nA
I_{N}	Input leakage current	0-4.3	$\begin{gathered} \mathrm{V}_{\mathrm{SEL}}=0 \text { to } \\ 4.3 \mathrm{~V} \end{gathered}$			± 0.1		± 1			$\mu \mathrm{A}$
I_{cc}	Quiescent supply current	1.65-4.3	$\mathrm{V}_{\text {SEL }}=$ V_{CC} or GND			± 0.05		± 0.2		± 1	$\mu \mathrm{A}$
I CCLV	Quiescent supply current low voltage driving	4.3	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{SEL}}= \\ & 1.65 \mathrm{~V} \end{aligned}$		± 17	± 35		± 70			$\mu \mathrm{A}$
		4.3	$\begin{gathered} \mathrm{V}_{\mathrm{SEL}}= \\ 1.80 \mathrm{~V} \end{gathered}$		± 15	± 30		± 60			
		4.3	$\begin{aligned} & \mathrm{V}_{\mathrm{SEL}}= \\ & 2.60 \mathrm{~V} \end{aligned}$		± 5	± 10		± 20			

1. $\Delta \mathrm{R}_{\mathrm{ON}}=\mathrm{R}_{\mathrm{ON}(\text { Max })}-\mathrm{R}_{\mathrm{ON}(\text { Min })}$
2. Flatness is defined as the difference between the maximum and minimum value of ON-resistance as measured over the specified analog signal ranges.

3.2 AC electrical characteristics

Table 6. AC Electrical characteristics $\left(C_{L}=35 p F, R_{L}=50 \Omega, t_{r}=t_{f} S 5 n s\right)$

Symbol	Parameter	Test conditions		Value							Unit
		Vcc (V)		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			-40 to $85^{\circ} \mathrm{C}$		-55 to $125^{\circ} \mathrm{C}$		
				Min.	Typ.	Max.	Min.	Max.	Min.	Max.	
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}}, \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay	1.65-1.95	$\mathrm{V}_{\text {S }}=$ OPEN		0.15						ns
		2.3-2.7			0.14						
		3.0-3.3			0.13						
		3.6-4.3			0.13						
${ }_{\text {ton }}$	Turn-ON time	1.65-1.95	$\mathrm{V}_{\mathrm{S}}=0.8 \mathrm{~V}$		36						ns
		2.3-2.7	$\mathrm{V}_{\mathrm{S}}=1.5 \mathrm{~V}$		22	32		42			
		3.0-3.3			16	26		36			
		3.6-4.3			13	23		33			
$\mathrm{t}_{\text {OFF }}$	Turn-OFF time	1.65-1.95	$\mathrm{V}_{\mathrm{S}}=0.8$		29						ns
		2.3-2.7	$\mathrm{V}_{\mathrm{S}}=1.5 \mathrm{~V}$		17	27		37			
		3.0-3.3			12	23		33			
		3.6-4.3			11	21		31			
${ }^{\text {D }}$	Break before make time delay	1.65-1.95	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega \\ & \mathrm{~V}_{\mathrm{S}}=1.5 \mathrm{~V} \end{aligned}$		15						ns
		2.3-2.7			10						
		3.0-3.3			8						
		3.6-4.3			6						
Q	Charge injection	1.65	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{GEN}}=0 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{GEN}}=0 \Omega \end{aligned}$		16						pC
		2.3			22						
		3			26						
		4.3			33						

3.3 Analog switch characteristics

Table 7. Analog switch characteristics $\left(C_{L}=5 p F, R_{L}=50 \Omega, T_{A}=25^{\circ} \mathrm{C}\right)$

Symbol	Parameter	Test conditions		Value							Unit
		Vcc (V)		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			-40 to $85^{\circ} \mathrm{C}$		-55 to $125^{\circ} \mathrm{C}$		
				Min.	Typ.	Max.	Min.	Max.	Min.	Max.	
OIRR	Off Isolation (1)	1.65-4.3	$\begin{aligned} & V_{S}=1 V_{R M S} \\ & f=100 \mathrm{kHz} \end{aligned}$		-80						dB
Xtalk	Crosstalk	1.6-4.3	$\begin{aligned} & V_{S}=1 V_{R M S} \\ & f=100 \mathrm{kHz} \end{aligned}$		-80						dB
THD	Total harmonic distortion	2.3-4.3	$\begin{gathered} \mathrm{R}_{\mathrm{L}}=600 \Omega \\ \mathrm{~V}_{\mathrm{S}}=2 \mathrm{~V}_{\mathrm{PP}} \\ \mathrm{f}=20 \mathrm{~Hz} \text { to } 20 \\ \mathrm{kHz} \end{gathered}$		0.03						\%
BW	-3dB bandwidth	1.65-4.3	$\mathrm{R}_{\mathrm{L}}=50 \Omega$		150						MHz
$\mathrm{C}_{\text {IN }}$	Control pin input capacitance				6						
C_{ON}	Sn port capacitance when switch is enabled	3.3	$\mathrm{f}=1 \mathrm{MHz}$		52						
$\mathrm{C}_{\text {OFF }}$	Sn port capacitance when switch is disabled	3.3	$\mathrm{f}=1 \mathrm{MHz}$		25						pF
$C_{\text {D }}$	D Port Capacitance when Switch is Enabled	3.3	$\mathrm{f}=1 \mathrm{MHz}$		50						

1. OFF Isolation $=20 \log _{10}\left(\mathrm{~V}_{\mathrm{D}} / \mathrm{V}_{\mathrm{S}}\right), \mathrm{V}_{\mathrm{D}}=$ output. $\mathrm{V}_{\mathrm{S}}=$ input to OFF switch.

4 Test circuits

Figure 3. ON-Resistance

Figure 5. OFF Leakage

Figure 4. Bandwidth

Figure 6. Channel to channel crosstalk

Figure 7. OFF Isolation

Figure 8. Test circuit

Note: $\quad C_{L}=5 / 35 \mathrm{pF}$ or equivalent: (includes jig capacitance)
$R_{L}=50 \Omega$ or equivalent
$R_{T}=\mathrm{Z}_{\text {OUT }}$ of pulse generator (typically 50Ω)

Figure 9. Break-before-make time delay

Figure 10. Switching time and charge injection

$$
\left(\mathrm{V}_{\mathrm{GEN}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{GEN}}=0 \Omega \mathrm{R}_{\mathrm{L}}=1 \mathrm{M} \Omega, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}\right)
$$

(

Figure 11. Turn ON, turn OFF delay time

5 Package mechanical data

In order to meet environmental requirements, ST offers these devices in ECOPACK® packages. These packages have a Lead-free second level interconnect. The category of second level interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an ST trademark. ECOPACK specifications are available at: www.st.com

Table 8. DFN6 (1.2mm $\times 1 \mathrm{~mm}$) Mechanical data

Dim.	mm.			inch		
	Typ.	Min.	Max.	Typ.	Min.	Max.
A	0.50	0.45	0.55	0.019	0.017	0.021
A1	0.02	0	0.05	0.001	0	0.002
A3	0.127			0.005		
b	0.20	0.15	0.25	0.007	0.006	0.010
D	1.20	1.10	1.30	0.047	0.043	0.051
E	1	0.90	1.10	0.039	0.035	0.043
e	0.40			0.015		
L	0.35	0.30	0.40	0.013	0.011	0.015
L1	0.45	0.40	0.50	0.017	0.015	0.019

Figure 12. Package dimensions

Table 9. DFN6 Foot print recommendation

Table 10. DFN6L Tape information

Dim	mm.	inch
D	$1.50+0.1 / 0$	$0.059+0.004 / 0$
E	1.75 ± 0.1	0.069 ± 0.004
Po	4.00 ± 0.1	0.157 ± 0.004
T max.	0.40	0.016
D1 min.	1	0.039
F	3.5 ± 0.05	0.138 ± 0.002
K max.	2.40	0.094
P2	2.00 ± 0.05	0.079 ± 0.002
R	25	0.984
W	8.00 ± 0.30	0.315 ± 0.012
P1	4.00	0.157
Ao, Bo, Ko	0.05 min to 0.50 max.	0.002 min to 0.020 max.

Figure 13. DFN6L Tape information

Table 11. DFN6L Reel information

Dim	$\mathbf{m m}$.	inch
Tape size	8.0 ± 0.30	0.315 ± 0.012
A max.	180.0	7.086
B min.	1.5	0.059
C	13.0 ± 0.20	0.512 ± 0.008
D min.	20.2	0.795
N min.	60	2.362
G	$8.4+2 /-0$	$0.319+0.079 /-0$
T max.	14.4	0.567

Figure 14. DFN6L Reel information

6 Revision history

Table 12. Revision history

Date	Revision	Changes
06-Dec-2006	1	First release

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.
Information in this document supersedes and replaces all information previously supplied.
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
© 2006 STMicroelectronics - All rights reserved

STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

