FAIRCHILD

SEMICONDUCTOR

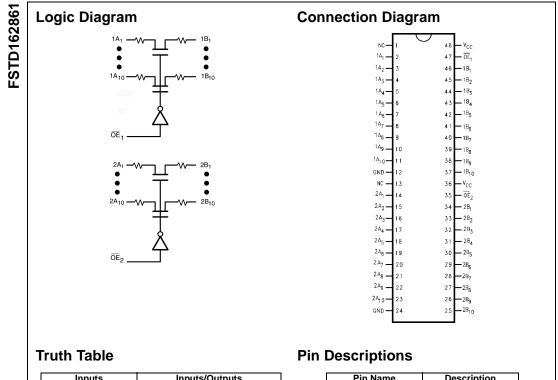
FSTD162861 20-Bit Bus Switch with Level Shifting and 25Ω Series Resistors in Outputs (Preliminary)

General Description

The Fairchild Switch FSTD162861 provides 20-bits of high-speed CMOS TTL-compatible bus switching. The low On Resistance of the switch allows inputs to be connected to outputs without adding propagation delay or generating additional ground bounce noise. A diode to V_{CC} has been integrated into the circuit to allow for level shifting between 5V inputs and 3.3V outputs.

The device is organized as a 10-bit or 20-bit bus switch. When \overline{OE}_1 is LOW, the switch is ON and Port 1A is connected to Port 1B. When \overline{OE}_2 is LOW, Port 2A is connected to Port 2B. When \overline{OE}_X is HIGH, a high impedance state exists between the A and B Ports. The FSTD162861 has equivalent 25Ω series resistors to reduce signal-reflection noise, eliminating the need for external terminating resistors.

Features


- **25**Ω switch connection between two ports
- Minimal propagation delay through the switch
- Low I_{CC}
- Zero bounce in flow-through mode
- Control inputs compatible with TTL level
- TruTranslation[™] voltage translation from 5.0V inputs to 3.3V outputs

Ordering Code:

Order Number	Package Number	Package Description			
FSTD162861MTD MTD48 48-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 6.1mm Wide					
Devices also available in Tana and Boal. Specify by appending the suffix latter "V" to the ordering code					

TruTranslation™ is a trademark of Fairchild Semiconductor Corporation.

June 2001 Revised June 2001

Inp	uts	Inputs/Outputs			
OE ₁	OE ₂	1A, 1B	2A, 2B		
L	L	1A = 1B	2A = 2B		
L	Н	1A = 1B	Z		
Н	L	Z	2A = 2B		
Н	Н	Z	Z		

Pin Name	Description		
$\overline{OE}_1, \overline{OE}_2$	Bus Switch Enables		
1A, 2A	Bus A		
1B, 2B	Bus B		

FSTD162861

Absolute Maximum Ratings(Note 1)

Supply Voltage (V _{CC})	-0.5V to +7.0V
DC Switch Voltage (V _S) (Note 2)	-0.5V to +7.0V
DC Input Voltage (VIN) (Note 3)	-0.5V to +7.0V
DC Input Diode Current (I _{IK}) $V_{IN} < 0V$	–50 mA
DC Output (I _{OUT}) Current	128 mA
DC V _{CC} /GND Current (I _{CC} /I _{GND})	±100 mA
Storage Temperature Range (T _{STG})	–65°C to +150 $^\circ\text{C}$

Recommended Operating Conditions (Note 4)

Power Supply Operating (V_{CC})	4.5V to 5.5V
Input Voltage (V _{IN})	0V to 5.5V
Output Voltage (V _{OUT})	0V to 5.5V
Input Rise and Fall Time (t_r, t_f)	
Switch Control Input	0 ns/V to 5 ns/V
Switch I/O	0 ns/V to DC
Free Air Operating Temperature (T _A)	-40 °C to +85 °C

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum rating. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Note 2: V_S is the voltage observed/applied at either the A or B Port across the switch.

Note 3: The input and output negative voltage ratings may be exceeded if the input and output diode current ratings are observed.

Note 4: Unused control inputs must be held HIGH or LOW. They may not float.

DC Electrical Characteristics

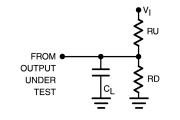
	Parameter	V _{CC} (V)	$T_A = -40 \ ^\circ C \ to \ +85 \ ^\circ C$				
Symbol			Min	Typ (Note 5)	Max	Units	Conditions
V _{IK}	Clamp Diode Voltage	4.5			-1.2	V	$I_{IN} = -18 \text{ mA}$
V _{IH}	HIGH Level Input Voltage	4.5 - 5.5	2.0			V	
VIL	LOW Level Input Voltage	4.5 - 5.5			0.8	V	
V _{OH}	HIGH Level	4.5 - 5.5		See Figure 3	3	V	
I _I	Input Leakage Current	5.5			±1.0	μΑ	$0 \le V_{IN} \le 5.5V$
		0			10	μΑ	$V_{IN} = 5.5V$
I _{OZ}	OFF-STATE Leakage Current	5.5			±1.0	μΑ	$0 \le A, B \le V_{CC}$
R _{ON}	Switch On Resistance	4.5	20	26	38	Ω	$V_{IN} = 0V, I_{IN} = 64 \text{ mA}$
	(Note 6)	4.5	20	27	40	Ω	$V_{IN} = 0V, I_{IN} = 30 \text{ mA}$
		4.5	20	28	48	Ω	$V_{IN} = 2.4V, I_{IN} = 15 \text{ mA}$
I _{CC}	Quiescent Supply Current				1.5	mA	$OE_1 = OE_2 = GND$
		5.5			1.5		$V_{IN} = V_{CC}$ or GND, $I_{OUT} = 0$
					3	mA	$OE_1 = OE_2 = V_{CC}$
					3		$V_{IN} = V_{CC}$ or GND, $I_{OUT} = 0$
ΔI_{CC}	Increase in I _{CC} per Input	5.5			2.5	mA	One Input at 3.4V
							Other Inputs at V _{CC} or GND

Note 5: Typical values are at V_{CC} = 5.0V and T_A = +25 $^{\circ}C$

Note 6: Measured by the voltage drop between A and B pins at the indicated current through the switch. On Resistance is determined by the lower of the voltages on the two (A or B) pins.

AC Electrical Characteristics

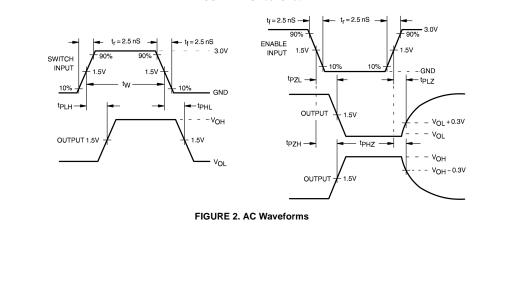
Symbol	Parameter	C _L = 50 pF, R	C to +85 °C, U = RD = 500Ω 9.5 – 5.5V	Units	Conditions	Figure Number
		Min	Max			
t _{PHL} , t _{PLH}	Propagation Delay Bus to Bus (Note 7)		1.25	ns	V _I = OPEN	Figures 1, 2
t _{PZH} , t _{PZL}	Output Enable Time	1.0	6.0	ns	$V_I = 7V$ for t_{PZL} $V_I = OPEN$ for t_{PZH}	Figures 1, 2
t _{PHZ} , t _{PLZ}	Output Disable Time	1.0	7.0	ns	$V_I = 7V$ for t_{PLZ} $V_I = OPEN$ for t_{PHZ}	Figures 1, 2

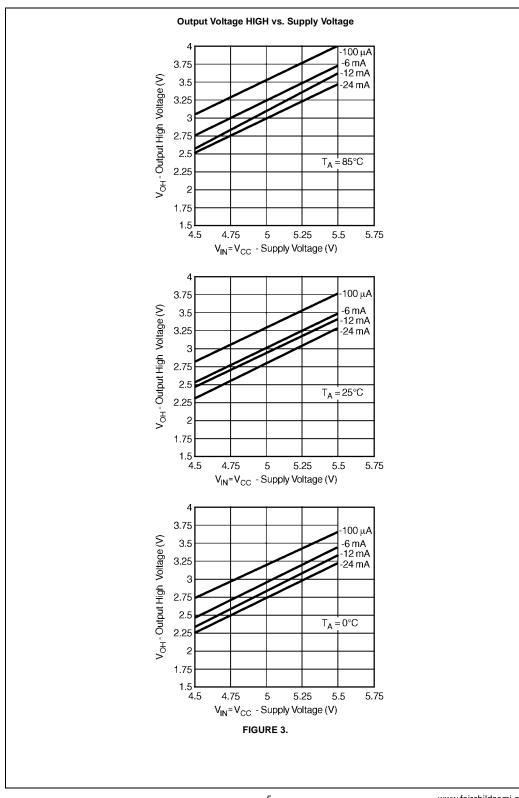

Note 7: This parameter is guaranteed by design but is not tested. The bus switch contributes no propagation delay other than the RC delay of the typical On Resistance of the switch and the 50pF load capacitance, when driven by an ideal voltage source (zero output impedance).

Capacitance (Note 8)

Symbol	Parameter	Тур	Max	Units	Conditions
C _{IN}	Control Pin Input Capacitance	3.5		pF	$V_{CC} = 5.0V, \ V_{IN} = 0V$
C _{I/O}	Input/Output Capacitance "OFF State"	6.0		pF	$V_{CC}, \overline{OE} = 5.0V, V_{IN} = 0V$

Note 8: $T_A = +25^{\circ}C$, f = 1 MHz, Capacitance is characterized but not tested.


AC Loading and Waveforms


Note: Input driven by 50Ω source terminated in 50Ω

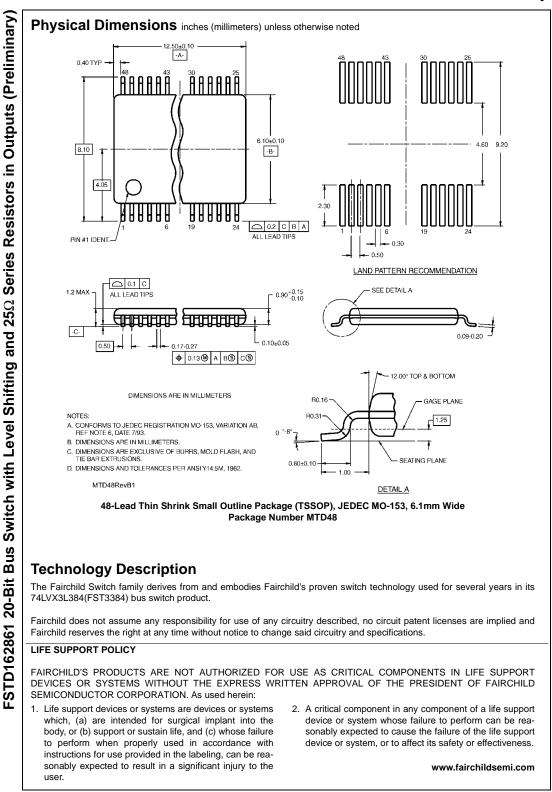

Note: C_L includes load and stray capacitance Note: Input PRR = 1.0 MHz, t_W = 500 ns

FIGURE 1. AC Test Circuit

FSTD162861

