July 1997 Revised December 1999

FST16292 12-Bit to 24-Bit Multiplexer/Demultiplexer Bus Switch

General Description

FAIRCHILD

SEMICONDUCTOR

The Fairchild Switch FST16292 provides twelve 2:1 highspeed CMOS TTL-compatible multiplexer/demultiplexer bus switches. The low on resistance of the switch allows inputs to be connected to outputs without adding propagation delay or generating additional ground bounce noise.

The select pin connects the A Port to the selected B Port output. The A₂ Ports are not externally connected, thus have a 500 Ω pull-down resistor to ground.

Features

- \blacksquare 4 Ω switch connection between two ports.
- Minimal propagation delay through the switch.
- Low I_{CC}.
- Zero bounce in flow-through mode.
- Control inputs compatible with TTL level.
- Internal 500 Ω pull-down resistor on A₂ port.

Ordering Code:

Order Number	Package Number	Package Description
FST16292MEA	MS56A	56-Lead Shrink Small Outline Package (SSOP), JEDEC MO-118, 0.300 Wide
FST16292MTD	MTD56	56-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 6.1mm Wide

Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.

Logic Diagram

Pin Descriptions

Truth Table

Pin Name	Description	S0	A ₁	A ₂	Function
SO	Data-select input	L	B ₁	B ₂	$A_1 = B_1, A_2 = B_1$
A ₁	Bus A	н	B ₂	B ₁	$A_1 = B_2, A_2 = B_1$
B ₁ , B ₂	Bus B				L

© 1999 Fairchild Semiconductor Corporation DS500104

www.fairchildsemi.com

Absolute Maximum Ratings(Note 1)

Supply Voltage (V _{CC})	-0.5V to +7.0V
DC Switch Voltage (V _S)	-0.5V to +7.0V
DC Input Voltage (VIN) (Note 2)	-0.5V to +7.0V
DC Input Diode Current (I _{IK}) V _{IN} <0V	–50mA
DC Output (I _{OUT}) Sink Current	128mA
DC V _{CC} /GND Current (I _{CC} /I _{GND})	+/- 100mA
Storage Temperature Range (T _{STG})	–65°C to +150 °C

Recommended Operating Conditions

Power Supply Operating (V _{CC)}	4.0V to 5.5V
Input Voltage (V _{IN})	0V to 5.5V
Output Voltage (V _{OUT})	0V to 5.5V
Input Rise and Fall Time (t_r, t_f)	
Switch Control Input	0ns/V to 5ns/V
Switch I/O	0ns/V to DC
Free Air Operating Temperature (T_A)	–40 °C to +85 °C

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum rating. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Note 2: The input and output negative voltage ratings may be exceeded if the input and output diode current ratings are observed.

	Parameter	V _{cc}	$T_A = -40 \ ^\circ C \ to \ +85 \ ^\circ C$				
Symbol		(V)	Min	Typ (Note 3)	Max	Units	Conditions
VIK	Clamp Diode Voltage	4.5			-1.2	V	$I_{IN} = -18 \text{mA}$
VIH	HIGH Level Input Voltage	4.0-5.5	2.0			V	
VIL	LOW Level Input Voltage	4.0-5.5			0.8	V	
I _I	Input Leakage Current	5.5			±1.0	μΑ	0≤ V _{IN} ≤5.5V
		0			10	μΑ	$V_{IN} = 5.5V$
I _{OZ}	OFF-STATE Leakage Current	5.5			±1.0	μΑ	$0 \leq A, B \leq V_{CC}$
R _{ON}	Switch On Resistance	4.5		4	7	Ω	$V_{IN} = 0V, I_{IN} = 64mA$
	(Note 4)	4.5		4	7	Ω	$V_{IN} = 0V, I_{IN} = 30mA$
		4.5		8	12	Ω	$V_{IN} = 2.4V, I_{IN} = 15mA$
		4.0		14	20	Ω	$V_{IN} = 2.4V, I_{IN} = 15mA$
I _{CC}	Quiescent Supply Current	5.5			3	μΑ	$V_{IN} = V_{CC}$ or GND, $I_{OUT} = 0$
ΔI_{CC}	Increase in I _{CC} per Input	5.5			2.5	mA	One input at 3.4V
							Other inputs at $V_{\mbox{\scriptsize CC}}$ or GND

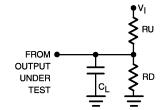
DC Electrical Characteristics

Note 3: Typical values are at V_{CC} = 5.0V and T_A =+25^{\circ}C

Note 4: Measured by the voltage drop between A and B pins at the indicated current through the switch. On resistance is determined by the lower of the voltages on the two (A or B) pins.

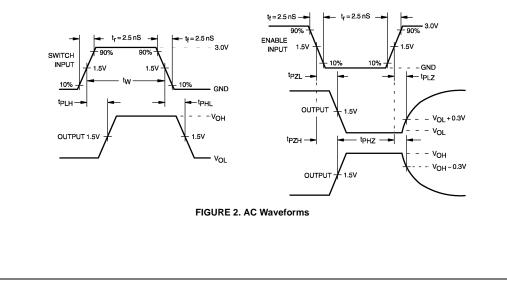
AC Electrical Characteristics

Symbol	Parameter	$T_A = -40 \text{ °C to } +85 \text{ °C},$ $C_L = 50\text{pF}, \text{RU} = \text{RD} = 500\Omega$				Units	Conditions	Figure No.
		$V_{CC}=4.5-5.5V$		$V_{CC} = 4.0V$		Units	Conditions	Figure NO.
		Min	Max	Min	Max	1		
t _{PHL} ,t _{PLH}	Prop Delay Bus to Bus (Note 5)		0.25		0.25	ns	V _I = OPEN	Figure 1 Figure 2
t _{PHL} ,t _{PLH}	Prop Delay S0 to A ₁	1.5	7.0		7.4	ns	V _I = OPEN	Figure 1 Figure 2
t _{PZL} , t _{PZH}	1.0 6.7		7.0	ns	$V_I = 7V$ for t_{PZL}	Figure 1 Figure 2		
	S0 to B ₁ or B ₂						$V_I = OPEN \text{ for } t_{PZH}$	r igure z
t _{PLZ} , t _{PHZ}	Output Disable Time	1.0	7.5		7.8	ns	$V_I = 7V$ for t_{PLZ}	Figure 1
	S0 to B ₁ or B ₂						$V_I = OPEN \text{ for } t_{PHZ}$	Figure 2

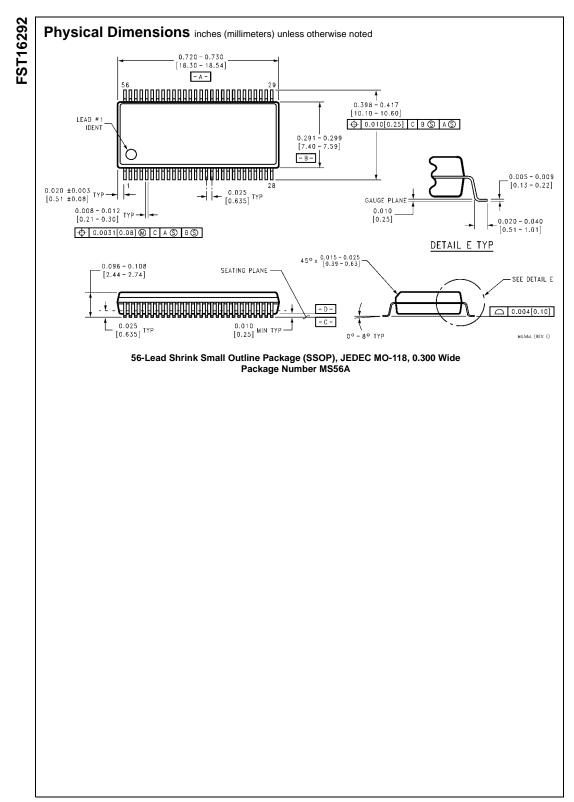

Note 5: This parameter is guaranteed by design but is not tested. The bus switch contributes no propagation delay other than the RC delay of the typical On resistance of the switch and the 50pF load capacitance, when driven by an ideal voltage source (zero output impedance).

Capacitance (Note 6)

Symbol	Parameter	Тур	Max	Units	Conditions
C _{IN}	Control pin Input Capacitance	3		pF	$V_{CC} = 5.0V$
C _{I/O}	Input/Output Capacitance	10		pF	V _{CC} = 5.0V, S0 = GND


Note 6: $T_A = +25^{\circ}C$, f = 1 MHz, Capacitance is characterized but not tested.

AC Loading and Waveforms



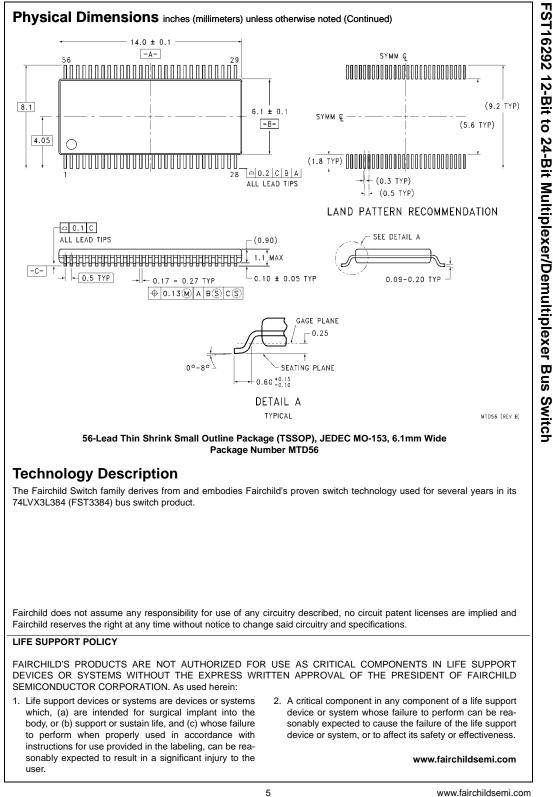

Note: Input driven by 50 Ω source terminated in 50 Ω Note: C_L includes load and stray capacitance Note: Input PRR = 1.0 MHz, t_W = 500 ns

FIGURE 1. AC Test Circuit

www.fairchildsemi.com

www.fairchildsemi.com