

Absolute Maximum Ratings (Notes 1 and 2)		Recommended Operating	
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.		Conditions (Note 2)	
		DC Supply Voltage (VDD)	3 to $15 \mathrm{~V}_{\text {DC }}$
DC Supply Voltage (V_{DD})	-0.5 to $+18 V_{D C}$	Input Voltage ($\mathrm{V}_{\text {IN }}$)	0 to $V_{D D} V_{D C}$
Input Voltage ($\mathrm{V}_{\mathbf{I N}}$)	-0.5 V to $\mathrm{V}_{\mathrm{DD}}+0.5 \mathrm{~V}_{\mathrm{DC}}$	Operating Temperature Range (T_{A}) ${ }_{\text {CD }}$ (5388BM	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature Range (T_{S})	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	CD4538BC	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Power Dissipation (PD_{D})			
Dual-In-Line	700 mW		
Small Outline	500 mW		
Lead Temperature (T_{L}) (Soldering, 10 seconds)	$260^{\circ} \mathrm{C}$		

DC Electrical Characteristics CD4538BM (Note 2)

Symbol	Parameter	Conditions	$-55^{\circ} \mathrm{C}$		$+25^{\circ} \mathrm{C}$			$+125^{\circ} \mathrm{C}$		Units
			Min	Max	Min	Typ	Max	Min	Max	
${ }^{\text {ID }}$	Quiescent Device Current	$\left.\begin{array}{l}\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{DD}}=10 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{DD}}=15 \mathrm{~V}\end{array}\right\}$$\mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{DD}}$ $\mathrm{V}_{I L}=\mathrm{V}_{\mathrm{SS}}$ All Outputs Open		$\begin{gathered} 5 \\ 10 \\ 20 \\ \hline \end{gathered}$		$\begin{aligned} & 0.005 \\ & 0.010 \\ & 0.015 \end{aligned}$	$\begin{gathered} 5 \\ 10 \\ 20 \\ \hline \end{gathered}$		$\begin{aligned} & 150 \\ & 300 \\ & 600 \\ & \hline \end{aligned}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$
$\mathrm{V}_{\text {OL }}$	Low Level Output Voltage	$\left.\begin{array}{l} \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{DD}}=10 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{DD}}=15 \mathrm{~V} \end{array}\right\} \begin{aligned} & \|\mathrm{I} \mathrm{I}\|<1 \mu \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{DD}}, \mathrm{~V}_{\mathrm{IL}}=\mathrm{V}_{\mathrm{SS}} \\ & \hline \end{aligned}$		$\begin{aligned} & 0.05 \\ & 0.05 \\ & 0.05 \\ & \hline \end{aligned}$		$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0.05 \\ & 0.05 \\ & 0.05 \\ & \hline \end{aligned}$		$\begin{aligned} & 0.05 \\ & 0.05 \\ & 0.05 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$
V_{OH}	High Level Output Voltage	$\left.\begin{array}{l} \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{DD}}=10 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{DD}}=15 \mathrm{~V} \end{array}\right\} \quad \begin{aligned} & \|\mathrm{IO}\|<1 \mu \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{DD}}, \mathrm{~V}_{\mathrm{IL}}=\mathrm{V}_{\mathrm{SS}} \end{aligned}$	$\begin{gathered} \hline 4.95 \\ 9.95 \\ 14.95 \end{gathered}$		$\begin{gathered} 4.95 \\ 9.95 \\ 14.95 \end{gathered}$	$\begin{gathered} 5 \\ 10 \\ 15 \end{gathered}$		$\begin{gathered} 4.95 \\ 9.95 \\ 14.95 \end{gathered}$		$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$
VIL	Low Level Input Voltage	$\begin{aligned} & \left\|\mathrm{I}_{\mathrm{O}}\right\|<1 \mu \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0.5 \mathrm{~V} \text { or } 4.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=1.0 \mathrm{~V} \text { or } 9.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=1.5 \mathrm{~V} \text { or } 13.5 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 1.5 \\ & 3.0 \\ & 4.0 \\ & \hline \end{aligned}$		$\begin{aligned} & 2.25 \\ & 4.50 \\ & 6.75 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.5 \\ & 3.0 \\ & 4.0 \\ & \hline \end{aligned}$		$\begin{aligned} & 1.5 \\ & 3.0 \\ & 4.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$
V_{IH}	High Level Input Voltage	$\begin{aligned} & \left\|\mathrm{I}_{\mathrm{O}}\right\|<1 \mu \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0.5 \mathrm{~V} \text { or } 4.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=1.0 \mathrm{~V} \text { or } 9.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=1.5 \mathrm{~V} \text { or } 13.5 \mathrm{~V} \\ & \hline \end{aligned}$	$\begin{gathered} 3.5 \\ 7.0 \\ 11.0 \end{gathered}$		$\begin{gathered} 3.5 \\ 7.0 \\ 11.0 \\ \hline \end{gathered}$	$\begin{aligned} & 2.75 \\ & 5.50 \\ & 8.25 \\ & \hline \end{aligned}$		$\begin{gathered} 3.5 \\ 7.0 \\ 11.0 \\ \hline \end{gathered}$		$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \\ & \hline \end{aligned}$
${ }^{\text {OLL }}$	Low Level Output Current (Note 3)	$\left.\begin{array}{l} \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0.4 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{DD}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0.5 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{D}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=1.5 \mathrm{~V} \end{array}\right\} \begin{aligned} & \mathrm{V} \mathrm{H}=\mathrm{V}_{\mathrm{DD}} \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{V}_{\mathrm{SS}} \end{aligned}$	$\begin{gathered} 0.64 \\ 1.6 \\ 4.2 \end{gathered}$		$\begin{gathered} 0.51 \\ 1.3 \\ 3.4 \end{gathered}$	$\begin{gathered} 0.88 \\ 2.25 \\ 8.8 \end{gathered}$		$\begin{gathered} 0.36 \\ 0.9 \\ 2.4 \end{gathered}$		$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \\ & \mathrm{~mA} \end{aligned}$
${ }^{\mathrm{IOH}}$	High Level Output Current (Note 3)	$\left.\begin{array}{l} \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=4.6 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{DD}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=9.5 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{D}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=13.5 \mathrm{~V} \end{array}\right\} \begin{aligned} & \mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{DD}} \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{V}_{\mathrm{SS}} \end{aligned}$	$\begin{gathered} -0.64 \\ -1.6 \\ -4.2 \end{gathered}$		$\begin{gathered} -0.51 \\ -1.3 \\ -3.4 \end{gathered}$	$\begin{gathered} -0.88 \\ -2.25 \\ -8.8 \end{gathered}$		$\begin{gathered} -0.36 \\ -0.9 \\ -2.4 \end{gathered}$		$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \\ & \mathrm{~mA} \end{aligned}$
I N	Input Current, Pin 2 or 14	$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=0 \mathrm{~V}$ or 15 V		± 0.02		$\pm 10^{-5}$	± 0.05		± 0.5	$\mu \mathrm{A}$
I_{IN}	Input Current Other Inputs	$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V}$ or 15 V		± 0.1		$\pm 10^{-5}$	± 0.1		± 1.0	$\mu \mathrm{A}$

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed, they are not meant to imply that the devices should be operated at these limits. The tables of "Recommended Operating Conditions" and "Electrical Characteristics" provide conditions for acutal device operation.
Note 2: $\mathrm{V}_{\mathrm{SS}}=\mathrm{OV}$ unless otherwise specified.
Note 3: I_{OH} and I_{OL} are tested one output at a time.

DC Electrical Characteristics CD4538BC (Note 2)

Symbol	Parameter	Conditions	$-40^{\circ} \mathrm{C}$		$+25^{\circ} \mathrm{C}$			$+85^{\circ} \mathrm{C}$		Units
			Min	Max	Min	Typ	Max	Min	Max	
IDD	Quiescent Device Current	$\left.\begin{array}{l}\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{DD}}=10 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{DD}}=15 \mathrm{~V}\end{array}\right\}$$\mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{DD}}$ $\mathrm{V}_{\mathrm{IL}}=\mathrm{V}_{\mathrm{SS}}$ All Outputs Open		$\begin{aligned} & 20 \\ & 40 \\ & 80 \\ & \hline \end{aligned}$		$\begin{aligned} & \hline 0.005 \\ & 0.010 \\ & 0.015 \\ & \hline \end{aligned}$	$\begin{aligned} & 20 \\ & 40 \\ & 80 \\ & \hline \end{aligned}$		$\begin{aligned} & \hline 150 \\ & 300 \\ & 600 \\ & \hline \end{aligned}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$
$\mathrm{V}_{\text {OL }}$	Low Level Output Voltage			$\begin{aligned} & \hline 0.05 \\ & 0.05 \\ & 0.05 \\ & \hline \end{aligned}$		$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \hline 0.05 \\ & 0.05 \\ & 0.05 \\ & \hline \end{aligned}$		$\begin{aligned} & 0.05 \\ & 0.05 \\ & 0.05 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$
V_{OH}	High Level Output Voltage	$\left.\begin{array}{\|l} \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{DD}}=10 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{DD}}=15 \mathrm{~V} \end{array}\right\} \quad \begin{aligned} & \left\|\mathrm{I}_{\mathrm{O}}\right\|<1 \mu \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{DD}}, \mathrm{~V}_{\mathrm{IL}}=\mathrm{V}_{\mathrm{SS}} \end{aligned}$	$\begin{array}{\|c\|} \hline 4.95 \\ 9.95 \\ 14.95 \\ \hline \end{array}$		$\begin{gathered} 4.95 \\ 9.95 \\ 14.95 \end{gathered}$	$\begin{gathered} 5 \\ 10 \\ 15 \end{gathered}$		$\begin{gathered} 4.95 \\ 9.95 \\ 14.95 \end{gathered}$		$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage	$\begin{array}{\|l\|} \hline\left\|\mathrm{I}_{\mathrm{O}}\right\|<1 \mu \mathrm{~A} \\ \mathrm{~V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0.5 \mathrm{~V} \text { or } 4.5 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{DD}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=1.0 \mathrm{~V} \text { or } 9.0 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{DD}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=1.5 \mathrm{~V} \text { or } 13.5 \mathrm{~V} \\ \hline \end{array}$		$\begin{aligned} & 1.5 \\ & 3.0 \\ & 4.0 \\ & \hline \end{aligned}$		$\begin{aligned} & 2.25 \\ & 4.50 \\ & 6.75 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.5 \\ & 3.0 \\ & 4.0 \\ & \hline \end{aligned}$		$\begin{aligned} & 1.5 \\ & 3.0 \\ & 4.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \\ & \hline \end{aligned}$
V_{IH}	High Level Input Voltage	$\begin{array}{\|l\|} \hline\left\|\mathrm{I}_{\mathrm{O}}\right\|<1 \mu \mathrm{~A} \\ \mathrm{~V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0.5 \mathrm{~V} \text { or } 4.5 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{DD}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=1.0 \mathrm{~V} \text { or } 9.0 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{DD}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=1.5 \mathrm{~V} \text { or } 13.5 \mathrm{~V} \\ \hline \end{array}$	$\begin{gathered} 3.5 \\ 7.0 \\ 11.0 \end{gathered}$		$\begin{gathered} 3.5 \\ 7.0 \\ 11.0 \end{gathered}$	$\begin{aligned} & 2.75 \\ & 5.50 \\ & 8.25 \\ & \hline \end{aligned}$		$\begin{gathered} 3.5 \\ 7.0 \\ 11.0 \end{gathered}$		$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$
loL	Low Level Output Current (Note 3)	$\left.\begin{array}{l} \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0.4 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{DD}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0.5 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{D}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=1.5 \mathrm{~V} \end{array}\right\} \begin{aligned} & \mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{DD}} \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{V}_{\mathrm{SS}} \end{aligned}$	$\begin{gathered} 0.52 \\ 1.3 \\ 3.6 \end{gathered}$		$\begin{gathered} 0.44 \\ 1.1 \\ 3.0 \end{gathered}$	$\begin{gathered} 0.88 \\ 2.25 \\ 8.8 \end{gathered}$		$\begin{gathered} 0.36 \\ 0.9 \\ 2.4 \end{gathered}$		$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \\ & \mathrm{~mA} \end{aligned}$
${ }^{\mathrm{OH}}$	High Level Output Current (Note 3)	$\left.\begin{array}{\|l} \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=4.6 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{DD}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=9.5 \mathrm{~V} \end{array}\right\} \quad \mathrm{V}_{\mathrm{IL}}=\mathrm{V}_{\mathrm{SS}}$	$\begin{gathered} -0.52 \\ -1.3 \\ -3.6 \end{gathered}$		$\begin{gathered} -0.44 \\ -1.1 \\ -3.0 \\ \hline \end{gathered}$	$\begin{gathered} -0.88 \\ -2.25 \\ -8.8 \end{gathered}$		$\begin{gathered} -0.36 \\ -0.9 \\ -2.4 \end{gathered}$		$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \\ & \mathrm{~mA} \end{aligned}$
I_{N}	Input Current, Pin 2 or 14	$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V}$ or 15 V		± 0.02		$\pm 10^{-5}$	± 0.05		± 0.5	$\mu \mathrm{A}$
I_{N}	Input Current Other Inputs	$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V}$ or 15 V		± 0.3		$\pm 10^{-5}$	± 0.3		± 1.0	$\mu \mathrm{A}$

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed, they are not meant to imply that the devices should be operated at these limits. The tables of "Recommended Operating Conditions" and "Electrical Characteristics" provide conditions for acutal device operation.
Note 2: $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$ unless otherwise specified.
Note 3: I_{OH} and I_{OL} are tested one output at a time.

AC Electrical Characteristics* $T_{A}=25^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$, and $\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=20$ ns unless otherwise specified

Symbol	Parameter	Conditions		Min	Typ	Max	Units
${ }_{\text {t }}^{\text {TLH, }}$, $\mathrm{t}_{\text {THL }}$	Output Transition Time	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=10 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=15 \mathrm{~V} \\ & \hline \end{aligned}$			$\begin{gathered} \hline 100 \\ 50 \\ 40 \end{gathered}$	$\begin{gathered} \hline 200 \\ 100 \\ 80 \end{gathered}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \\ & \mathrm{~ns} \end{aligned}$
${ }_{\text {tPLH }}, \mathrm{t}_{\text {PHL }}$	Propagation Delay Time	Trigger OperationA or B to Q or \bar{Q} $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$ $V_{D D}=10 \mathrm{~V}$ $V_{D D}=15 \mathrm{~V}$ Reset Operation- C_{D} to Q or \bar{Q} $V_{D D}=5 V$ $V_{D D}=10 \mathrm{~V}$ $V_{D D}=15 \mathrm{~V}$			$\begin{gathered} 300 \\ 150 \\ 100 \\ \\ 250 \\ 125 \\ 95 \end{gathered}$	$\begin{aligned} & 600 \\ & 300 \\ & 220 \\ & \\ & 500 \\ & 250 \\ & 190 \end{aligned}$	ns ns ns ns ns ns
$t_{W L}, t_{W H}$	Minimum Input Pulse Width A, B, or C_{D}	$\begin{aligned} & V_{D D}=5 \mathrm{~V} \\ & V_{D D}=10 \mathrm{~V} \\ & V_{D D}=15 \mathrm{~V} \\ & \hline \end{aligned}$			$\begin{aligned} & 35 \\ & 30 \\ & 25 \\ & \hline \end{aligned}$	$\begin{aligned} & 70 \\ & 60 \\ & 50 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \\ & \mathrm{~ns} \end{aligned}$
$t_{R R}$	Minimum Retrigger Time	$\begin{aligned} & V_{D D}=5 \mathrm{~V} \\ & V_{D D}=10 \mathrm{~V} \\ & V_{D D}=15 \mathrm{~V} \end{aligned}$			0	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \\ & \mathrm{~ns} \end{aligned}$
C_{IN}	Input Capacitance	Pin 2 or 14 Other Inputs			$\begin{gathered} \hline 10 \\ 5 \end{gathered}$	7.5	$\begin{aligned} & \mathrm{pF} \\ & \mathrm{pF} \end{aligned}$
PWOUT	Output Pulse Width (Q or $\overline{\mathrm{Q}}$) (Note: For Typical Distribution, see Figure 9)	$\begin{aligned} & \mathrm{R}_{\mathrm{X}}=100 \mathrm{k} \Omega \\ & \mathrm{C}_{\mathrm{X}}=0.002 \mu \mathrm{~F} \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=10 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=15 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \hline 208 \\ & 211 \\ & 216 \\ & \hline \end{aligned}$	$\begin{aligned} & 226 \\ & 230 \\ & 235 \\ & \hline \end{aligned}$	$\begin{aligned} & 244 \\ & 248 \\ & 254 \end{aligned}$	$\begin{aligned} & \mu \mathrm{S} \\ & \mu \mathrm{~S} \\ & \mu \mathrm{~S} \end{aligned}$
		$\begin{aligned} & \mathrm{R}_{\mathrm{X}}=100 \mathrm{k} \Omega \\ & \mathrm{C}_{\mathrm{X}}=0.1 \mu \mathrm{~F} \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=10 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=15 \mathrm{~V} \\ & \hline \end{aligned}$	$\begin{aligned} & 8.83 \\ & 9.02 \\ & 9.20 \end{aligned}$	$\begin{gathered} 9.60 \\ 9.80 \\ 10.00 \end{gathered}$	$\begin{aligned} & 10.37 \\ & 10.59 \\ & 10.80 \end{aligned}$	ms ms ms
		$\begin{aligned} & \mathrm{RX}=100 \mathrm{k} \Omega \\ & \mathrm{C}_{\mathrm{X}}=10.0 \mu \mathrm{~F} \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=10 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=15 \mathrm{~V} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.87 \\ & 0.89 \\ & 0.91 \end{aligned}$	$\begin{aligned} & \hline 0.95 \\ & 0.97 \\ & 0.99 \end{aligned}$	$\begin{aligned} & 1.03 \\ & 1.05 \\ & 1.07 \end{aligned}$	$\begin{aligned} & \mathrm{s} \\ & \mathrm{~s} \\ & \mathrm{~s} \\ & \hline \end{aligned}$
Pulse Width Match between Circuits in the Same Package $\mathrm{C}_{\mathrm{X}}=0.1 \mu \mathrm{~F}, \mathrm{R}_{\mathrm{X}}=100 \mathrm{k} \Omega$		$\begin{aligned} & \mathrm{R}_{\mathrm{X}}=100 \mathrm{k} \Omega \\ & \mathrm{C}_{\mathrm{X}}=0.1 \mu \mathrm{~F} \end{aligned}$	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=10 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=15 \mathrm{~V} \\ & \hline \end{aligned}$		± 1 ± 1 ± 1		$\begin{aligned} & \hline \% \\ & \% \\ & \% \end{aligned}$
Operating Conditions							
$\begin{aligned} & \mathrm{R}_{\mathrm{x}} \\ & \mathrm{C}_{\mathrm{X}} \end{aligned}$	External Timing Resistance External Timing Capacitance			$\begin{gathered} 5.0 \\ 0 \end{gathered}$		No Limit	$\begin{aligned} & \mathrm{k} \Omega \\ & \mathrm{pF} \end{aligned}$
AC parameters are guaranteed by DC correlated testing. ${ }^{ *}$ The maximum usable resistance R_{X} is a function of the leakage of the Capacitor C_{X}, leakage of the CD4538B, and leakage due to board layout, surface resistance, etc.							

Logic Diagram

FIGURE 1

Theory of Operation

$\begin{array}{llll}\text { (1) POSITIVE EDGE TRIGGER } & \text { (4) POSITIVE EDGE RE-TRIGGER (PULSE LENGTHENING) } \\ \text { (2) NEGATIVE EDGE TRIGGER } & \text { (5) RESET (PULSE SHORTENING) } \\ \text { (3) POSITIVE EDGE TRIGGER } & \end{array}$
FIGURE 2

Trigger Operation

The block diagram of the CD4538B is shown in Figure 1, with circuit operation following.

As shown in Figures 1 and 2, before an input trigger occurs, the monostable is in the quiescent state with the Q output low, and the timing capacitor C_{X} completely charged to $V_{D D}$. When the trigger input A goes from $V_{S S}$ to $V_{D D}$ (while inputs B and C_{D} are held to $V_{D D}$) a valid trigger is recognized, which turns on comparator C 1 and N -Channel transistor N1 © . At the same time the output latch is set. With transistor N 1 on, the capacitor C_{X} rapidly discharges toward V_{SS} until $\mathrm{V}_{\text {REF1 }}$ is reached. At this point the output of comparator C 1 changes state and transistor N1 turns off. Comparator C 1 then turns off while at the same time comparator C 2 turns on. With transistor N1 off, the capacitor C_{X} begins to charge through the timing resistor, R_{X}, toward V_{DD}. When the voltage across C_{X} equals $\mathrm{V}_{\text {REF2 }}$, comparator C 2 changes state causing the output latch to reset (Q goes low) while at the same time disabling comparator C 2 . This ends the timing cycle with the monostable in the quiescent state, waiting for the next trigger.
A valid trigger is also recognized when trigger input B goes from $V_{D D}$ to $V_{S S}$ (while input A is at $V_{S S}$ and input C_{D} is at V_{DD} (2).
It should be noted that in the quiescent state C_{X} is fully charged to V_{DD}, causing the current through resistor RX to be zero. Both comparators are "off" with the total device current due only to reverse junction leakages. An added feature of the CD4538B is that the output latch is set
via the input trigger without regard to the capacitor voltage. Thus, propagation delay from trigger to Q is independent of the value of C_{X}, R_{X}, or the duty cycle of the input waveform.

Retrigger Operation

The CD4538B is retriggered if a valid trigger occurs (3) followed by another valid trigger (4) before the Q output has returned to the quiescent (zero) state. Any retrigger, after the timing node voltage at pin 2 or 14 has begun to rise from $V_{\text {REF1 }}$, but has not yet reached $V_{\text {REF2 }}$, will cause an increase in output pulse width T . When a valid retrigger is initiated (4), the voltage at T 2 will again drop to $\mathrm{V}_{\text {REF1 }}$ before progressing along the RC charging curve toward V_{DD}. The Q output will remain high until time T , after the last valid retrigger.

Reset Operation

The CD4538B may be reset during the generation of the output pulse. In the reset mode of operation, an input pulse on C_{D} sets the reset latch and causes the capacitor to be fast charged to V_{DD} by turning on transistor Q1 © . When the voltage on the capacitor reaches $\mathrm{V}_{\text {REF2 }}$, the reset latch will clear and then be ready to accept another pulse. If the C_{D} input is held low, any trigger inputs that occur will be inhibited and the Q and \bar{Q} outputs of the output latch will not change. Since the Q output is reset when an input low level is detected on the C_{D} input, the output pulse T can be made significantly shorter than the minimum pulse width specification.

Typical Applications

TL/F/6000-5

TL/F/6000-7

FIGURE 3. Retriggerable Monostables Circuitry

TL/F/6000-6

TL/F/6000-8 FIGURE 4. Non-Retriggerable Monostables Circuitry

FIGURE 5. Connection of Unused Sections

7

Typical Applications (Continued)

TL/F/6000-15
FIGURE 9. Typical Normalized Distribution of Units for Output Pulse Width

FIGURE 10. Typical Pulse Width Variation as a Function of Supply Voltage VDD

TL/F/6000-19
FIGURE 11. Typical Total Supply Current Versus Output Duty Cycle, $\mathrm{RX}_{\mathrm{X}}=100 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$, $C_{x}=100 \mathrm{pF}$, One Monostable Switching Only

TL/F/6000-16
FIGURE 12. Typical Pulse Width Error Versus Temperature

TL/F/6000-18
FIGURE 13. Typical Pulse Width Error Versus Temperature

TL/F/6000-20
FIGURE 14. Typical Pulse Width Versus Timing RC Product

Physical Dimensions inches (millimeters) (Continued)

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation 1111 West Bardin Road Arlington, TX 76017 Tel: 1(800) 272-9959 Fax: 1(800) 737-7018	National Semiconductor Europe Fax: (+49) 0-180-530 8586 Email: cnjwge@tevm2.nsc.com Deutsch Tel: $(+49)$ 0-180-530 8585 English Tel: $(+49)$ 0-180-532 7832 Français Tel: $(+49)$ 0-180-532 9358 Italiano Tel: (+49) 0-180-534 1680	National Semiconductor Hong Kong Ltd. 13th Floor, Straight Block, Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960	National Semiconductor Japan Ltd. Tel: 81-043-299-2309 Fax: 81-043-299-2408

