MNSC100ABI/D
Rev. 1.8, 4/2000

SC100 Application Binary Interface Reference Manual

microelectronics group

als P
¢ Dig ital DNAW Lucent Technologies @

from Motorola Bell Labs Innovations

MNSC100ABI/D
Rev. 1.8, 4/2000

SC100 Application Binary Interface

Reference Manual

STA nZﬁ?canE

BRIGHTER” DSP TECHNOLOGY!

icr n
als
YO e o

Dlgltal DNA Lucent Technologies @

from Motorola . BellabsInnovations Y

This document contains information on a new product. Specifications and information herein are subject to change
without notice.

© Copyright Lucent Technologies Inc., 2000. All rights reserved.

© Copyright Motorola Inc., 2000. All rights reserved.

LICENSOR is defined as either Motorola, Inc. or Lucent Technologies Inc., whichever company distributed this
document to LICENSEE. LICENSOR reserves the right to make changes without further notice to any products
included and covered hereby. LICENSOR makes no warranty, representation or guarantee regarding the suitability of
its products for any particular purpose, nor does LICENSOR assume any liability arising out of the application or use of
any product or circuit, and specifically disclaims any and all liability, including without limitation incidental,
consequential, reliance, exemplary, or any other similar such damages, by way of illustration but not limitation, such as,
loss of profits and loss of business opportunity. "Typical" parameters which may be provided in LICENSOR data sheets
and/or specifications can and do vary in different applications and actual performance may vary over time. All operating
parameters, including "Typicals" must be validated for each customer application by customer’s technical experts.
LICENSOR does not convey any license under its patent rights nor the rights of others. LICENSOR products are not
designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or
other applications intended to support life, or for any other application in which the failure of the LICENSOR product
could create a situation where personal injury or death may occur. Should Buyer purchase or use LICENSOR products
for any such unintended or unauthorized application, Buyer shall indemnify and hold LICENSOR and its officers,
employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and
reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such
unintended or unauthorized use, even if such claim alleges that LICENSOR was negligent regarding the design or
manufacture of the part.

Motorola and @ are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action
Employer. Lucent, Lucent Technologies, and (the Lucent Technologies insignia) are trademarks of Lucent
Technologies Inc. Lucent Technologies Inc. is an Equal Opportunity/Affirmative Action Employer.

StarCore is a trademark of Motorola, Inc. It is used by Lucent Technologies with the authorization of Motorola.

All other tradenames, trademarks, and registered trademarks are the property of their respective owners.

Table of Contents

Chapter 1
Introduction

L L PUIPOSE . . ottt et 1-1
12 ReferenCes.o 1-1
1.3 ReVISONHISOrY . ..o 1-2
L4 OVEIVIBW. ottt e e e e e e 1-2
15 ConformanceLevels. 1-3
16 Future Standards.t 1-3

Chapter 2

Low-Level Binary Interface

2.1 Underlying Processor Primitivest 2-1
2.2 Fundamental Data TyPeSot 2-1
221 Compound Data TYPE. . .. v v o vttt 2-3
2211 AT Y S o ot e 2-3
2212 Structuresand UNionS.ot 2-3
2213 Bit Fields. ... 2-3
23 FunctionCalingConventionsttt 2-4
231 SACK . . 2-4
232 Stack-Based Calling Convention, 2-4
233 Optimized Calling SEQUENCES. oo e 2-6
234 Interrupt Handlers. 2-6
2.35 Stack FrameLayout e 2-6
2.3.6 Frameand Argument POINters 2-7
2.3.7 Dynamic Memory Allocation.coui e 2-8
2.3.8 Hardware LOOPS oo oot ettt e 2-8
2.39 Operating MOdES.o 2-8

Chapter 3

High-Level Languages Issues

3.1 CPreprocessor Predefines 31
32 Cln-LineAssembly Syntax 31
33 CNamMEMaADPING . . oot 31
34 Fractional Arithmetic SUPPOIto e 32
34.1 Optional PrefiX 3-3
35 Libraries ... 33
351 Compiler AssistLibraries. e 33
35.2 Floating-PoIiNt ROULINES oo e 34
353 Integer ROULINESo e 35

SC100 Application Binary Interface iii

Preliminary (April 2000)

3.6

Function Argument and Return Type CheckinginC....................... 3-5

3.6.1 Signature SymbolSo 35
3.6.2 ReturnValue. 3-6
3.6.3 Using Signature Symbolso 3-6

Chapter 4

SC100 ELF Object File Format

4.1 FOrmMatS. . ..o e e 4-1
42 DEfNItIONS ... e 4-1
4.3 Interface DeSCriptioNnS. . . . oot 4-1
431 TheELFHeader 4-2
432 SEClIONS. .« o\ttt 4-3
4.3.3 Reserved Nameso 4-4
434 RElOCALION. . .. 4-5
434.1 Relocation ExpressionFormat 4-5
4342 FUNCLIONS. . . .o e e 4-6
4343 Specia Identifiers. 4-8
4344 Reserved Names e e e e 4-8
4.3.4.5 CONSIANtS.o 4-9
4.3.4.6 OB OIS, . . ottt 4-9
4347 Relocation FOrms 4-10
435 NOTE SECtiON. . . .\ttt e e e e 4-23
4.3.6 Program Headers.o 4-24

Chapter 5

Endian Support

51 Memory Organization.t e 5-2
51.1 SCI40 Architecture. 5-3
512 DataMOVe. . .. 54
51.3 InstructionWord Transfers. e 5-6
5.2 Memory AccessBehavior inEndianModes 57
5.3 COMMENES. . .ot 5-18
531 MOVEMuUltipleRegiSterSo oo 5-18
5.3.2 MOVEL.L for the Extenson Registers.t 5-18
533 PUSH/POP INSIIUCLIONS ottt n 5-18
534 B ORISR . . 5-18
535 Control INSITUCKIONS. . . . oo ot e e 5-18

Chapter 6

Assembler Syntax and Directives

6.1 Assembler-Significant Characters i 6-1
6.2 Assembler DireCtiVeSo 6-2
6.2.1 Assembly Control 6-2
6.2.2 Symbol Definition. 6-3
6.2.3 Data Definition/Storage Allocationt 6-3
iv SC100 Application Binary Interface

Preliminary (April 2000)

6.2.4 Object FileControl e e 6-4

6.2.5 Macros and Conditional Assembly. i 6-4
6.2.6 Assembler Syntaxo 6-4
6.2.6.1 Input File Format i 6-4
6.2.6.2 Symbol Names 6-5
6.2.6.3] 0 6-5
6.2.6.4 Source Statement Format 6-6
6.2.6.5 LabElS . 6-6
6.2.6.6 Operation Feld. 6-6
6.2.6.7 Operand Field 6-7
6.2.6.8 Comment Fields 6-7

SC100 Application Binary Interface
Preliminary (April 2000)

Vi

Preliminary (April 2000)

SC100 Application Binary Interface

List of Tables

2-1 Mapping of C Fundamental Data Typesto SC100.ccunn.. 2-2
2-2 Mapping of C Fractional TypestoSC100coiiiiiiinnennn.. 2-2
2-3 Register Usage in the Stack-Based Calling Convention. 2-5
31 Predefined Macroso 31
32 Required Intrinsicsfor Fractional Types ..., 3-2
33 Floating-POINt ROULINES o e 34
34 INteger ROULINESo e e 35
3-5 Italized Fieldsinthe Symbol Names 3-5
3-6 Basatype ValUueso 3-6
4-1 SCIO00 ELF SECHiONS. . . . oot e e e e 4-3
4-2 Reserved Symbol Names 4-4
4-3 Reserved Namesfor Relocation 4-8
4-4 Group FL O . .o e 4-10
4-5 Group F2 FOrmSo 4-10
4-6 Group F3 OIS . . .o 4-11
4-7 Group FA FOIMS e 4-11
4-8 Group FS FOrmMS 4-12
4-9 Group FE FOrmMSo 4-12
4-10 Group F7 FOrmS . . o e 4-13
4-11 Group FB FOrMS o 4-13
4-12 Group FO FOIMS . . .o 4-14
4-13 Group FI0 FOIMS . . . oo e 4-14
4-14 GroUP FLL FOImMS . . oottt e e e e e 4-15
4-15 GroUP F12 FOIMS . . . oo e e e e e 4-16
4-16 GroUp FIS FOIMS . . . oo e e 4-16
4-17 GroUP FLA FOIMS . . o e e e e 4-17
4-18 Group FAIS FOIMSo 4-18
4-19 GroUPp FIB FOIMS . . . oo e e e 4-19
4-20 Group FL7 FOIMMS . . . o e e e 4-19
4-21 GroUp FAB FOIMS . . . oot e e 4-20
4-22 GroUp FIO FOIMS . . . o e e 4-21
4-23 Group F20 FOImMS . . . oo e e 4-21
4-24 GroUPp F2L FOIMS . . o e 4-22
4-25 GroUP F22 FOIMS . . . oo e e 4-22
SC100 Application Binary Interface vii

Preliminary (April 2000)

4-26 GroUP F23 FOIMS . . o ot e e e 4-23
51 MOVE INSITUCLIONS.ot et 57
5-2 Stack SUPPOrt INSLrucCtionso 5-10
5-3 Bit-Mask INSIrUCHIONS oot e 5-11
54 Changeof Flow Instructions. 5-12
5-5 Control INSLrUCLIONS . . . oo ot e e 5-13
5-6 Memory ACCESSINSLIUCLIONSot 5-14
viii SC100 Application Binary Interface

Preliminary (April 2000)

List of Figures

2-1 Fundamental DataTypesot 2-1
2-2 Stack FrameLayout 2-7
4-1 Object FileFormato e 4-2
4-2 Vendor Identification Note Format. 4-23
4-3 User (Application-Specific) NoteFormat. 4-24
51 Memory Organization in Big/Little Endian Architecture. 5-2
5-2 SC140 BasiC ArchiteCture. e 5-3
5-3 DataTransfer inBig/LittleEndian. 54
54 Multiple Data Transfer in Big/LittleEndian. 5-5
5-5 Program Memory Organizationcouiii it 5-6
5-6 INSrUCLION MOVES. . . . oo e e 5-6
SC100 Application Binary Interface iX

Preliminary (April 2000)

SC100 Application Binary Interface
Preliminary (April 2000)

List of Examples

2-1 Structure Determined by Underlying Typet 2-3
2-2 1-Byte Feld Offseto 2-4
4-1 ELF Header Structure. 4-2
4-2 SCIL40 SPECITICS « o v ettt e 4-2
4-3 SectionHeader Defined i 4-3
4-4 Relocation Entry Defined with EIf32 Rel it 4-5
4-5 RelOCation EXPressionot 4-5
4-6 Relocation FOrmo 4-5
4-7 Relocation Attribute Setting 4-6
4-8 Program Header i 4-24
6-1 Column LLabels. . ..o 6-6
6-2 Multiple-Line INStruction Groupovvi i 6-6
SC100 Application Binary Interface Xi

Preliminary (April 2000)

Xii SC100 Application Binary Interface
Preliminary (April 2000)

Chapter 1
Introduction

Thismanual definesthe SC100 Application Binary Interface (ABI). The ABI isaset of interface standards
that writers of compilers, assemblers, and debugging tools must use when creating tools for the SC100
architecture. These standards cover run-time aspects as well as object formats to be used by compatible
tools chains. The standard definition ensures that all SC100 tools are compatible and can interoperate.

Although compiler support routines are provided, this manual does not describe how to develop SC100
tools, nor does it define the services provided by an operating system or a set of libraries. These
components must be defined by tools, libraries, and operating system suppliers.

1.1 Purpose

The standards defined in this manual are intended to ensure that all development tool chainsfor the SC100
architecture are fully compatible. This ensures that the tools can interoperate, thus making it possible to
select the best tool for each component of the application development tools chain. The standardsin this
manual also ensure that compatible libraries of binary components can be created and maintained.
Developers can build up libraries over time with the assurance of continued compatibility.

1.2 References

The following documents provide useful reference information:

» Executable and Linking Format Specification, UNIX Systems L aboratories, Portable Formats
Specification, Version 1.1

» DWARF Debugging Information Format, Unix International, Revision 2.0.0, July 27, 1993
* ANSV/IEEE Sd 754-1985, |EEE standard for binary floating-point arithmetic data types
» ELF—Executable and Linking Format specification (the ELF spec)

The following documents provide StarCore-specific information:
e SC100 Assembly Language Tools User’s Manual (order # MNSC100ALT/D)
e SC140 DSP Core Reference Manual (order # MNSC140CORE/D)
e SC100 C Compiler User’'s Manual (order # MNSC100CC/D)

SC100 Application Binary Interface 1-1
Preliminary (April 2000)

Introduction

1.3 Revision History

The following updates were made to Chapter 6, “ Assembler Syntax and Directives,” for the April 2000
release of this manual:

Added four new directives. SECFLAGS, SECTYPE, SIZE, and TYPE
Removed the modulo storage directives: BSM and DSM
Noted those directives that are not currently supported

Changed the maximum length of symbol names and Assembler source statements to 4000
characters.

1.4 Overview

Standards in this manual cover the following SC100 tools components:

Object modules generated by different tools chains

Object modules and the SC100 architecture family of cores
Object modules and source level debugging tools
Debugging APIs

Current definitions include the following types of standards:

Low level run-time binary interface standards

— Processor-specific binary interface (theinstruction set, representation of fundamental datatypes,
and exception handling)

— Function calling conventions (how arguments are passed and results are returned, how registers
are assigned, and how the calling stack is organized)

Object-file binary interface standards
— Header convention

— Section layout

— Symbol table format

— Relocation information format
— Debugging information format

The SC100 object-file binary interface standards are based on ELF, as described in Section 4, “SC100 ELF
Object File Format,” on page 4-1. All development tools for SC100 are required to use the following
EL F-based standards.

Source-level standards

— Clanguage (preprocessor predefines, in-line assembly and name mapping)
— Assembler syntax and directives

Library standards

— Compiler run-time libraries

1-2

SC100 Application Binary Interface
Preliminary (April 2000)

Conformance Levels

1.5 Conformance Levels

The ABI interface standards define two levels of conformance:

Level O Features that are classified as Level 0 are mandatory. Features described in this
document are classified as Level 0, unless specifically stated otherwise.

Level 1 Features that are classified as Level 1 are optional. SC100 development tools are
not required to implement Level 1 features. Those devel opment tools that do
provide functionality that is covered by Level 1 ABI features are required to
conform to the standards.

SC100 Application Binary Interface 1-3
Preliminary (April 2000)

Introduction

1-4 SC100 Application Binary Interface
Preliminary (April 2000)

Chapter 2
Low-Level Binary Interface

2.1 Underlying Processor Primitives
For a complete description of the SC100 architecture, refer to the SC140 DSP Core Reference Manual.

2.2 Fundamental Data Types

The SC100 architecture supports the fundamental data types shown in Figure 2-1.The mapping between
these data types and the C language fundamental datatype is shown in Table 2-1. Fractiona types are
supported in C using intrinsic functions; Table 2-2 shows the fractional types supported.

39 8 0
MOVE.B (signed byte move) sign extension
39 8 0
MOVEU.B (unsigned byte move) zero extension
39 16 0
MOVE.W (signed word move) sign extension
39 16 0
MOVEU.W (unsigned word move) zero extension
39 32 0
sign
MOVE.L (signed long move) extension
39 32 0
zero
MOVEU.L (unsigned long move) extension
39 32 16 0
sign
MOVE.F (fractional move) extension zero fill

Figure 2-1. Fundamental Data Types

SC100 Application Binary Interface 2-1
Preliminary (April 2000)

Low-Level Binary Interface

Table 2-1. Mapping of C Fundamental Data Types to SC100

Type (n?(lezrﬁ) (;ZZ) (SLZeZ) Align Limits
char 8 40 32 8 -128..127
unsigned char 8 40 32 8 0..255
short 16 40 32 16 -0x8000..0x7fff
unsigned short 16 40 32 16 0.0xffff
int 32 40 32 32 -0x80000000..
OX7fffffff
unsigned 32 40 32 32 0..Oxffffffff
long 32 40 32 32 -0x80000000..
OX7fffffff
unsigned long 32 40 32 32 0..0xffffffff
float 32 40 32 32 -1.17e-38..
double 1.17e+38
long double
(24-bit mantissa)
pointer 32 40 32 32 0..Oxffffffff
Table 2-2. Mapping of C Fractional Types to SC100
Type C Type Definition (n?iezrg) (sriZZ) (F?izez) Align Limits
fractional short 16 40 32 16 -1.0 .. 0.99999
long fractional long or int 32 40 32 32 -1.0 .. 0.999999
long fractional with | t ypedef struct { 64 40 NA 32 -16.0 .. 15.999999
extension bits int Isb:
char guard;
} xfrac;
double precision typedef struct { 64 2x40 NA 32 -1.0 .. 0.999999
fractional int Ish:
int msb;
} dfrac;

The SC100 architecture uses little-endian memory representation byte ordering. The lowest addressable

byte of a memory location always contains the least significant bits of the value. Fundamental dataiis
always naturally aligned: along word is 4-byte aligned, and a short word is 2-byte aligned.

2-2

Preliminary (April 2000)

SC100 Application Binary Interface

Fundamental Data Types

2.2.1 Compound Data Type

Arrays, structures, unions and bit fields have different alignment characteristics, as described in the
following sections.

2.2.1.1 Arrays

Arrays have the same alignment restriction as their individual elements.

2.2.1.2 Structures and Unions

Members of unions and structures have the most restrictive alignments. For example, a structure
containing a char, a short, and along word must have a 4-byte alignment to match the alignment of the
long field. In addition, the size of a union or structure must be an integral multiple of its alignment.
Padding must be applied to the end of a union or structure to make its size a multiple of the alignment. To
meet this alignment requirement, padding must be introduced between members as necessary.

2.2.1.3 Bit Fields

Members of structures are always allocated on byte boundaries. However, bit fields in structures can be
alocated at any bit and can be of any length that does not exceed the size of along word (32-bits). Sighed
and unsigned bit fields are permitted and are sign-extended when fetched. A bit field of typeintis
considered signed. Bit fieldswill be allocated from the low-order end of aword (right to l€eft, or little
endian). Bit field sizes are not allowed to cross along word boundary.

In Example 2-1, the structure nor e has 4-byte alignment and will have the size of 4-bytes. Thisis because
the fundamental type of the bit fieldsislong, which requires a 4-byte alignment. The second structure

| ess requires only a 1-byte alignment because that is the requirement of the fundamental type (char) used
in that structure. The alignments are driven not by the width of the fields but by the underlying type. These
alignments are to be considered along with any other structure members. Structure car ef ul requiresa
4-byte alignment; its bit fields only require 1-byte alignment, but the field f | uf f y requires a 4-byte
alignment.

Example 2-1. Structure Determined by Underlying Type

struct nore {
long first : 3;
unsi gned int second : 8;

}s

struct |ess {
unsi gned char third : 3;
unsi gned char fourth : 8;

|

struct careful {
unsi gned char third : 3;
unsi gned char fourth : 8;
long fluffy;

SC100 Application Binary Interface 2-3
Preliminary (April 2000)

Low-Level Binary Interface

Fields within structures and unions begin on the next possible suitably-aligned boundary for their data
type. For non-bit fields, thisis a suitable byte alignment. Bit fields begin at the next available bit offset
with the following exception: the first bit field after anon-bit field member will be allocated on the next
available byte boundary.

In Example 2-2, the offset of thefield ¢ is 1 byte. The structure itself has 4-byte dignment and is 4 bytesin
size because of the alignment restrictions introduced by using the underlyingi nt datatype for the bit field.

Example 2-2. 1-Byte Field Offset

struct s {

int bf: 5;
char c;

2.3 Function Calling Conventions

SC100 compilers must support a stack-based calling convention. Additional calling conventions may be
supported. Calling conventions can be mixed within a single application.

A pragmainterface should be used to set the calling convention for afunction to one that is different from
the stack-based calling convention. This change will affect both the calling sequence and prol ogue/epilog
of these functions, if afunction body is present. Thiswill alow both calling and being called by functions
compiled with different compilers.

2.3.1 Stack

The SP register serves as the stack pointer. SP will point to the first available location, with the stack
direction being towards higher addresses (i.e., a push will be implemented as “(sp)+”). The stack pointer
must be 8-byte aligned.

2.3.2 Stack-Based Calling Convention
The calling conventions described in the following paragraphs must be supported.

The first (left-most) function parameter, regardless of size, will be passed in dO (if anumeric scalar) or in
rO (if an address parameter). The second function parameter, regardless of size, will be passed in d1 (if a
numeric scalar) or inrl (if an address parameter). The rest of the parameters will be pushed into the stack.
Parameters will be pushed on the stack using little-endianess (least significant bitsin lower addresses).

Structures and union objects that can fit in aregister are treated as numeric parameters and therefore are
candidates to be passed in aregister.

Numeric return values will be returned in dO. Numeric address return values will be returned in r0.
Functions returning large structures (i.e., structures that do not fit in a single register) will receive and
return the returned structure addressin r2. The caller allocates the space for the returned object.

Functions with a variable number of parameters will allocate all parameters on the stack.
All parameters of size smaller or equal to 4 byteswill be aligned in memory to a 4-byte boundary.
The following registers will be saved by the caller: d0-d5, d8-d15, rO-r5, nO-n3.

2-4 SC100 Application Binary Interface
Preliminary (April 2000)

Function Calling Conventions

The following registers will be saved by the caleg, if actually used: d6-d7,r6-r7.

The compiler should assume that the current settings of the following operating control bits are correct:
» Saturation mode
* Round mode
e Scale bits

Setting these mode bits is under the application responsibility. For example, for the function call:

foo(int al, struct fourbytes a2, struct eightbytes a3, int *a4)
parameters will be alocated as follows:

al - in register do.
a2 - in register dl.
a3 - on the stack.
a4 - on the stack.

For the call

bar(long *bl, int b2, int b3[])
parameters will be allocated as follows:
bl - inr0

b2 - in dl
b3 - in stack.

The stack-based calling convention must be used when calling functions that are required to maintain a
calling stack.

The compiler isfreeto use optimized calling sequences for functions that are not exposed to external calls.
Locals and formals will be allocated on the stack and in registers.
Table 2-3 summarizes register usage in the stack-based calling convention.

Table 2-3. Register Usage in the Stack-Based Calling Convention

Register Used As Caller Saved | Callee Saved

do First numeric parameter +
Return numeric value

di Second numeric parameter +
d2-d5 +
d6-d7 +
d8-di15 +
r0 First address parameter +

Return address value

rl Second address parameter +
r2 Big return object address +
r3—r5 +
ré Optional argument pointer +
SC100 Application Binary Interface 2-5

Preliminary (April 2000)

Low-Level Binary Interface

Table 2-3. Register Usage in the Stack-Based Calling Convention (Continued)

Register Used As Caller Saved | Callee Saved

r7 Optional frame pointer +

n0-n3 m0—-m3 +

2.3.3 Optimized Calling Sequences

A stackless convention may be used when calling functions that are not re-entrant, if this technique
generates more efficient code than other conventions. However, this convention can be used only if the
function is not visible to external code. When using the stackless convention, locals may be allocated
statically (i.e., not on a stack). Functions whose lifetime is mutually exclusive may share space for their
locals.

The calling function places actual parameters at locations allocated in the called function for the formal
parameters. The compiler isfree to use registers and memory locations when allocating locations for the
formal parameters. Under this calling convention, all registers are classified as caller-saved. Return values
from functions will be placed in the space allocated in the calling function for the function return value.
The compiler isfreeto use aregister or amemory location as the space for the function return value.

2.3.4 Interrupt Handlers

Using an implementati on-dependent pragma, functions requiring no parameters and returning no result can
be designated as interrupt functions. The interrupt handler function will always follow the stack-based
calling convention. When an interrupt function is called, the interrupt handler will save al registers and
other resources that are modified by the function. Upon returning from the function, al registers and
hardware loop state saved at entry will be restored to their original state.

Locals will be saved on the stack. Interrupt handlers that are known to be noninterruptible may allocate
data statically as well. Return from interrupt will be implemented using an RTE instruction.

2.3.5 Stack Frame Layout

The stack pointer points to the top (high address) of the stack frame. Space at higher addresses than the
stack pointer is considered invalid and may actually be unaddressable. The stack pointer value must always
be amultiple of eight.

Figure 2-2 shows typical stack frames for afunction and indicates the relative position of local variables,
parameters, and return addresses. The outbound argument block is located at the top (higher addresses) of
the frame. Any incoming argument spill generated for varargs and stdags processing must be at the bottom
(lower addresses) of the frame.

The caller puts argument variables that do not fit in registers into the outbound argument overflow area. If
all argumentsfit in registers, thisareais not required. A caller may alocate argument overflow space
sufficient for the worst-case call, use portions of it as necessary, and not change the stack pointer between
cals.

Local variables that do not fit into the local registers are allocated space in the local variables area of the
stack. If there are no such variables, this areais not required.

2-6 SC100 Application Binary Interface
Preliminary (April 2000)

Function Calling Conventions

For return variablesthat do not fit in registers, the caller must reserve stack space. Thisreturn buffer areais
typically located with the local variables. This space istypically allocated only in functionsthat make calls
returning structures. Beyond these requirements, afunction is free to manage its stack frame in any way
desired.

(High Addresses)
<« SP
Outgoing Parameters
Local Variables
Saved Registers
Return Address
Incoming Parameters
(Low Addresses)
AA16

Figure 2-2. Stack Frame Layout

2.3.6 Frame and Argument Pointers

The ABI standard does not require the use of aframe pointer or an argument pointer. If, however, the use
of aframe pointer or an argument pointer is hecessary, a compiler may alocate R7 as a frame pointer and
R6 as an argument pointer. When these registers are allocated for this purpose, they should be saved and
restored as part of the function prologue/epilog code.

SC100 Application Binary Interface 2-7
Preliminary (April 2000)

Low-Level Binary Interface

2.3.7 Dynamic Memory Allocation

Dynamic allocations are implemented using a heap structure managed by the standard library functions
malloc() and free(). The heap shall be alocated statically by the linker. In typical configurations, the stack
is alocated above (higher addresses) the static and global variables, growing towards higher addresses.
The heap is alocated at the top of the available memory, growing towards lower memory addresses.

2.3.8 Hardware Loops

All hardware loop resources are available for the compiler’ suse. Asit is assumed that no nesting occurs
when entering afunction, afunction may use all four nesting levels for its own use. An additional side
effect of this assumption isthat loops with afunction call as part of the loop code cannot be implemented
using hardware loops. A compilation switch will be available to disable the use of loop 3. Asin interrupts,
thiswill enable the user to alocate thisloop counter to a different execution thread.

Loops will be nested beginning loop counter O in the outermost nesting level.

2.3.9 Operating Modes

Compilers should make two assumptions about run-time operating modes and machine state:

1. All M registers (m0—m3) should be assumed to contain the value -1 (linear addressing).
Should the use of an M register be required, the using function must restore the M register to
the value -1 before returning or before calling another function.

2. No particular operating mode settings in the OMR register are assumed. It is expected that
the user will set the default settings in the start-up code (saturation modes, rounding mode,
and scale hits). These operating modes may change during the application execution under
user contral.

2-8 SC100 Application Binary Interface
Preliminary (April 2000)

Chapter 3
High-Level Languages Issues

3.1 C Preprocessor Predefines

All C/C++ language compilers must have predefined macros asin Table 3-1, in addition to the predefined
macros required by the C and C++ language standards.

Table 3-1. Predefined Macros

Macro Explanation

__SC100__ Defined for SC100-based compilers.

3.2 CIn-Line Assembly Syntax

A Cin-line assembly syntax must be provided. At aminimum, asingle line assembly has to be supported:

asm(“wait”);

3.3 C Name Mapping

Externally visible namesin the C language are prefixed by “_” when generating assembly language
symbol names. For example, the following:

voi d testfunc()

{
return;
}
generates assembly code similar to the following fragment:
_testfunc:
rts
SC100 Application Binary Interface 3-1

Preliminary (April 2000)

High-Level Languages Issues

3.4 Fractional Arithmetic Support

The compiler must support the intrinsic functionslisted in Table 3-2.

Table 3-2. Required Intrinsics for Fractional Types

Intrinsic Function Description
Fractional Arithmetic
int add(int,int) Short add
int sub(int,int) Short sub

int mult(int,int)

Short multiplication

int div_s(int,int)

Short Div

int add_r(int,int)

Short add with round

int sub_r(int,int)

Short sub with round

int mult_r(int,int)

Multiply with round

long L_mac(long,int,int)

Multiply Accumulate

long L_macNs(long,int,int)

Multiply accumulate with no saturation

int mac_r(long,int,int)

Multiply accumulate with round

long L_msu(long,int,int)

Multiply Subtract

long L_msuNs(long,int,int)

Multiply subtract with no saturation

int msu_r(long,int,int)

Multiply subtract with round

int abs_s(int)

Short abs

int negate(int)

Short negate

int round(long)

Round

int shl(int,int)

Short shift left

int shr(int,int)

Short shift right

int shr_r(int,int)

Short shift right with round

int norm_s(int)

Normalize any fractional value

Long Fractional Arithmetic

long L_add(long,long)

Long add

long L_sub(long,long)

Long subtract

long L_mult(int,int)

Long multiplication

3-2

SC100 Application Binary Interface
Preliminary (April 2000)

Libraries

Table 3-2. Required Intrinsics for Fractional Types (Continued)

Intrinsic Function

Description

int extract_h(long)

Extract high

int extract_l(long)

Extract Low

long L_deposit_h(int)

Deposit short in MSB

long L_deposit_I(int)

Deposit short in LSB

long L_abs(long)

Long Abs

long L_negate(long)

Long negate

int norm_I(long)

Normalize any long fractional value

long L_shli(long,int)

Long shift left

long L_shr(long,int)

Long shift right

long L_shr_r(long,int)

Long shift right with round

long L_sat(long)

Long saturation

3.4.1 Optional Prefix

In supporting the intrinsic functions listed in Table 3-2, the compiler can either recognize the function
names as listed in the table, or recognize them using the“__” (adouble underscore) prefix. A compiler that
supports this prefix must provide a header file that maps the names as listed in the table to the prefixed

names.

3.5 Libraries

The following sections provide details on support libraries.

3.5.1 Compiler Assist Libraries

The SC100 architecture does not provide hardware support for floating-point data types, nor for divide
functionality for integer types. Compilers should provide the functionality for some of these operations

through the use of support library routines.

The functions to be provided through support library routines include the following:

* Hoating-point math routines
* Integer divide routines
» Integer modulo routines

Compilersthat generate in-line code to provide these functions must make no reference to the library
functions. Compilersthat provide these functions by generating function calls to the support libraries must
use the stack-based calling convention when calling them.

SC100 Application Binary Interface

Preliminary (April 2000)

3-3

High-Level Languages Issues

To ensure the ability to link code produced by different compilersinto asingle executable, it is required
that names of compiler support library functions match those listed in Table 3-3 and Table 3-4.

Routines in support libraries must satisfy the following constraints:

» Theonly external stateinformation used is floating-point operation mode (rounding mode, flush to
zero, etc.).

* No other global state can be modified.
e ldentical results must be returned when aroutine is reinvoked with the same input arguments.
« Multiple calls with the same input arguments can be collapsed into asingle call with acached result.

These properties permit a compiler to make assumptions about variable lifetimes across library function
calls: values in memory will not change, previously dereferenced pointers need not be referenced again.

3.5.2 Floating-Point Routines
These routines should comply with the stack-based calling conventions.

The data formats are as specified in IEEE-754. The math routines are not required to compute results as
specified in IEEE-754. Implementation of these routines must document the degree to which operations
conform to the |EEE standard. Not all users of floating point require IEEE-754 precision and exception
handling, and may not want to incur the overhead that complete conformance requires.

SpFloat isused in Table 3-3 and Table 3-4 to represent a 32-hit basic type.

Table 3-3. Floating-Point Routines

Function Prototype Description

SpFloat _f add(SpFloat a, SpFloat b); Returns the value of a+b

SpFloat _f_sub(SpFloat a, SpFloat b) Returns the value of a-b.

SpFloat _f mul(SpFloat a, SpFloat b) Returns the value of a*b.

SpFloat _f div (SpFloat a, SpFloat b) Returns the value of a/b.

void _f_feq (SpFloat a, SpFloat b) Sets the T bit in the status register if a=b.
void _f fge (SpFloat a, SpFloat b) Sets the T bit in the status register if a>=b.
void _f fgt (SpFloat a, SpFloat b) Sets the T bit in the status register if a>b.
SpFloat _f itof(long a) Converts a 32-bit signed integer value to

floating-point representation.

SpFloat _f utof(unsigned long a) Converts a 32-bit unsigned integer value to
floating-point representation.

long _f ftoi(SpFloat a) Converts a floating-point value to a 32-bit signed
integer representation.

unsigned long _f_ftou(SpFloat a) Converts a floating-point value to a 32-bit unsigned
integer representation.

3-4 SC100 Application Binary Interface
Preliminary (April 2000)

Function Argument and Return Type Checking in C

3.5.3 Integer Routines

Theinteger routineslisted in Table 3-4 should comply with the ABI calling conventions. The routines have
no side effects.

Table 3-4. Integer Routines

Function Prototype Description
int __divl6(short a, short b); Returns the value of a/b.
int __udivl6(unsigned short a, unsigned short b); Returns the value of a/b (unsigned).
int__div32(long a, long b); Returns the value of a/b.
int __udiv32(unsigned long a, unsigned long b); Returns the value of a/b (unsigned).
int __rem16(short a, short b); Returns the value of a mod b.
int __urem16(unsigned short a, unsigned short b); Returns the value of a mod b.
int__rem32(long a, long b); Returns the value of a mod b.
int __urem32(unsigned long a, unsigned b); Returns the value of a mod b (unsigned).

3.6 Function Argument and Return Type Checking
in C

Level 1 conforming implementations support the following mechanism for checking that arguments and
return types of function calls match the called functions’ signatures.

3.6.1 Signature Symbols

For every direct call to anon-static function in asourcefile (i.e., acall using the function name as opposed
to acall through afunction pointer), the compiler system produces in the ELF object file a symbol of the
following convention:

__caller.nane. return_type. parareter_types

For every non-static function definition, the compiler system produces a symbol of the following
convention:

__callee. nane. return_type. par arret er _t ypes
Table 3-5 explains the construction of the italized fields in the symbol names:

Table 3-5. Italized Fields in the Symbol Names

Field Value Description
name ASCII string The name of the called function
return_type baset ype
parameter_types baset ype[basetype[...]]
SC100 Application Binary Interface 3-5

Preliminary (April 2000)

High-Level Languages Issues

Table 3-6 explains the possible values for baset ype.

Table 3-6. Basetype Values

Code Definition
i scalar type (e.g. char, short, int) of size <= 32 bits, passed in register
I scalar type of size = 64 bits, passed in register
p Pointer, passed in a register
f Float, passed in a register
d Double float, passed in a register
snum Struct, passed in a data register
anum Struct, passed in an address register
n A parameter passed on the stack
v Void
X Start of a variable argument list (...)
Example:
Definition:

int foo(struct { int a,b; } parml, double parn®);

Call:
struct { int a,b; } tnp;
foo(tnp, 1.0);

Special Symbols:

__callee.foo.i.s2f
__caller.foo.v.s2f

3.6.2 Return Value

In generating a signature symbol for a call to afunction defined as returning a (non-void) value, if the
return value isignored by the caller, then the compiler may specify i as the return value type for the
function.

3.6.3 Using Signhature Symbols

The caller/callee match verification using signature symbols is implementation-dependent. The
implementation must accept object modules that do not contain signature symbols.

3-6 SC100 Application Binary Interface
Preliminary (April 2000)

Chapter 4
SC100 ELF Object File Format

4.1 Formats

The executable and linking format (ELF) is used for representing the binary application to the system. For
acomplete description of ELF, see the ELF—-Executable and Linking Format specification (the ELF spec).
This section highlights differences between the ELF v1.1 definition and the SC100 EL F implementation.

4.2 Definitions

This section describes the interface for relocatable and executable programs. A relocatable program
contains code suitable for linking to create another relocatable program or executable program. An
executabl e program contains binary information suitable for loading and execution on a target processor.

4.3 Interface Descriptions

ELF presentstwo views of binary data, as shown in Figure 4-1:

» Thelinking view provides datain aformat suitable for incremental linking into arelocatable file or
final linking to an executable file.

» The execution view provides binary datain aformat suitable for loading and execution.

An ELF header is aways present in either view of the ELF file. For the linking view, sections are the main
entity in which information is presented. A section header table provides information for interpretation and
navigation for each section. For the execution view, segments are the primary sources of information.
Sections may be present but are not required. A program header table provides information for
interpretation and navigation through each segment. For exact details, see the ELF spec.

SC100 Application Binary Interface 4-1
Preliminary (April 2000)

SC100 ELF Object File Format

Linking View Execution View
Elf Header Elf Header
Optional Program Hdr Program Header
Sections Segments
Section Header Table Opt Section Hdr Table

Figure 4-1. Object File Format

4.3.1 The ELF Header

The ELF header structure is shown in Example 4-1. This structure is defined by the ELF spec, and
definitions for each field can be found in the ELF spec. Example 4-2 shows SC140-specific code.

Example 4-1. ELF Header Structure

typedef struct {
unsi gned char e_ident[El _N DENT];
Bf32 Half e _type;
B f32_Hal f e_machi ne;
B f32_Wrd e_version;
B f32_Addr e_entry;
Bf32 CGf e _phoff;
BHf32 Of e_shoff;
B f32 Wrd e _flags;
BHf32 Half e_ehsize;
B f32 Hal f e_phentsi ze;
B f32_Hal f e_phnum
B f32 Hal f e_shentsize;
Bf32 Hal f e shnum
B f32_Hal f e_shstrndx;
} B f32_Ehdr;

Example 4-2. SC140 Specifics

e_ident[Bl _CLASS] = ELFCLASS32

e_ident[El _DATA] = ELFDATA2LSB (Littl e-endi an nenory node)
e_ident[El _DATA] = ELFDATA2MSB (Bi g- endi an nmenory node)
e_nachi ne: 0x3a (EM STARCCRE)

4-2 SC100 Application Binary Interface
Preliminary (April 2000)

Interface Descriptions

4.3.2 Sections

Sections are the main components of the ELF file. Section headers define all the information about a
section. A section header is defined in Section 4-3. It isidentical to the ELF V1.1 definition.

Example 4-3. Section Header Defined

typedef struct {

B f32_Wrd
B f32_Wrd
B f32_Verd
B f32_Addr
Bf32_Of

B f32_Wrd
B f32_Wrd
B f32_Wwrd
B f32_Wrd
B f32_Verd

} B f32_Shdr;

sh_nane;
sh_type;
sh_f1 ags;
sh_addr;
sh_of f set;
sh_si ze;
sh_li nk;
sh_i nf o;

sh_addral i gn;

sh_ent si ze;

Sections used in SC100 ELF binaries are shown in Table 4-1.

Table 4-1. SC100 ELF Sections

Name Type Flags Purpose Comments
.<section_name> | PROGBITS ALLOC/EXEC Named program section
.<section_name> | NOBITS ALLOC/EXEC Overlay section Defined run time overlay
component section characteristics.
sh_info contains overlay
count.
.<section_name> | OVERLAY? ALLOC Overlay section Defines load time overlay
component section characteristics.
sh_info contains overlay
count.
text PROGBITS ALLOC/EXEC Section data Assembler physical section
containing executable
instructions.
rel.text ALLOC Relocation info See Section 4.3.4,
“Relocation.”
.data PROGBITS ALLOC Initialized data section
.rodata PROGBITS ALLOC Read-only, initialized
data
.bss NOBITS ALLOC Uninitialized data
section
.symtab SYMTAB ALLOC Symbol table
.shstrtab STRTAB NONE Section header string
table
.strtab STRTAB ALLOC General string table

SC100 Application Binary Interface

Preliminary (April 2000)

4-3

SC100 ELF Object File Format

Table 4-1. SC100 ELF Sections (Continued)

Name Type Flags Purpose Comments
.note NOTE ALLOC File identification
Jdine PROGBITS NONE Assembly debug line This information in DWARF
number info format.
.rel.line NONE Assembler line number
relocation info
.debug_macro PROGBITS NONE Assembly debug macro | This information in DWARF
information format.
.debug_info PROGBITS NONE C/C++ debug This information in DWARF
information format.
.debug_abbrev PROGBITS NONE Abbreviation tables This information in DWARF
format.
.debug_line PROGBITS NONE Line number information | This information in DWARF
format.
.debug_aranges PROGBITS NONE Address range table This information in DWARF
format.
.debug_pubname | PROGBITS NONE Global names table This information in DWARF
format.
.hash HASH NONE Symbol hash table
information

1. Processor-specific section type.

4.3.3 Reserved Names

Symbol names listed in Table 4-2 (upper- and lower-case) are reserved for the system.

Table 4-2. Reserved Symbol Names

Names
.bss .global
.data .hash
.debug Jline
.debug_abbrev .note
.debug_aranges rel.text
.debug_info .rodata
.debug_line .shstrtab
.debug_macro .strtab
.debug_pubnames .symtab
.etext text

SC100 Application Binary Interface

Preliminary (April 2000)

Interface Descriptions

4.3.4 Relocation

Each section which contains rel ocatable data has a corresponding relocation section of SHT_REL. The
sh_info field of the relocation section defines a section header index of the section to which the relocation
applies. The sh_link field of the rel section defines the associated symbol table. The relocation entry
definition is modified for the SC140. Ther_offset field defines an address to which the rel ocation applies.
Ther_info field specifies an offset into the string table of an expression, which, when evaluated, yields the
proper relocation data at the address given by r_offset.

A relocation entry is defined by EIf32_Rel in Example 4-4.

Example 4-4. Relocation Entry Defined with EIf32_Rel

typedef struct {
B f32_Addr r_offset;
B f32 Wrd r_info;

} Bf32_Rel;

4.3.4.1 Relocation Expression Format

Link file data expressions are generated when external or relocatable operands are encountered during
assembly or incremental link processing. For example, consider the assembly source in Example 4-5:

Example 4-5. Relocation Expression

nove. w (sp+LA), dO
The SC100 Assembler produces the following relocation expression for this line in the object file:

“check(sym(7),u, 16), op | F1(sym(7))” (1)
“check(sym(7),u, 16), op | F2(sym(7))” (2)

Sincethe value of symbol LA isnot known to the assembler, it generates atwo-word instruction and places
arelocation reference to the stringsin (1) and (2) in the rel ocation entry section data. The stringsin (1) and
(2) are called relocation expressions or relocations. A relocation is composed of legal C operators,
keyword identifiers defined by this document, and constant values. Note that the quotes are shown hereto
represent a sequence of printable characters in the object file' s string table. The quotes are not required in
this context. The sequence of characters are not terminated by any special characters.

Relocations are case-sensitive. Symbols are referenced by the function “sym,” whose sole argument isthe
symbol table index of the symbol from its respective compilation unit. Hence, “sym(7)” indicates that
“LA” issymbol number 7 in the symbol table for this example. “F1” and “F2” are architecture-dependent
encoding forms, whose definitions are specific to the SC140 DSP core.

The general form of arelocation is described by Example 4-6.

Example 4-6. Relocation Form
“field, field,..., field

SC100 Application Binary Interface 4-5
Preliminary (April 2000)

SC100 ELF Object File Format

The fina field in the sequence, described in Example 4-6, isthe value field. The value field, after itis
evaluated, determines the contents of the memory location. The other fields of the relocation may set
attributes of the memory location and may do genera or architecture-based checking as shown in
Example 4-7.

Example 4-7. Relocation Attribute Setting
“check(syn(5),s, 8), op| F5(sym5))”

The relocation in Example 4-7 performs a check of symbol number 5 to make sure that its signed value
will fit into a bit field 8 bits wide. The memory location value is calculated by bit-wise ORing the section
data (represented by the pre-defined identifier “op”) and the value generated by the architecture-dependent
function, “F5.”

4.3.4.2 Functions

Functions are categorized as generic or architecture-specific. Within the architecture-specific category,
functions may be further categorized as encoding or other.

Following are descriptions of the functions used for relocations.

4.3.4.2.1 Check Function

Category: generic
Arguments: value, (s|u), <len>[,<align>=0]
where:

s=signed range check
u=unsigned range check

Description: Thisfunction checks that the value passed will fit into the number of bits specified
by <len>. The second argument specifies the type of value, signed or unsigned
integer. The optional parameter, <align>, specifies the number of constant least
significant bitsin value. These constant bits are disregarded when calculating
whether the value will fit into <len> bits. The <align> argument, if omitted,
defaults to 0 (no alignment).

Returns: 0, generates error is value is out of range.

4.3.4.2.2 Pack Function

Category: generic
Arguments: value, (s|u|n), <len> [,<align>=0]
where:

s=signed range check
u=unsigned range check
n=truncate to range

Description: Thisfunction is similar to the check function. It returns the significant bits which
can be placed in a<len> size bit field. If the second argument is‘n’, thevalueis
truncated to the number of <len> bits and no error is generated.

Returns: <len> significant bits of value, generates error isvalue is out of range (s or u) or
truncated value if second argumentis‘n’.

4-6 SC100 Application Binary Interface
Preliminary (April 2000)

Interface Descriptions

4.3.4.2.3
Category:

Argument:
Description:

Returns:

4.3.4.2.4
Category:

Argument:

Description

Returns:

4.3.4.2.5
Category:

Arguments:

Description:

Returns:

4.3.4.2.6
Category:

Arguments:

Description:

Returns:
Example:
4.3.4.2.7
Category:
Arguments:

Description:

Returns:
Example:

Sym Function
generic

<index>
This function smply returns the symbol table value of the symbol at <index>.

value of symbol

Size Function
generic

<num_bytes>

This function sets the size of the memory target word to which the relocation
applies to <num_bytes>. The memory target word defaults to the architecture
word sizeis no size function is specified. The SC100 default word size is 2 bytes.

0

Line Function
generic

<line> [<file>]

This function generates line number information for the relocation. An optional
string literal, <file>, may be passed which identifies the file from which the
instruction comes, such as an included file.

0

Hi Function
generic

value

This function returns the high bits of a data value. The datavalue is masked and
shifted into the lower bits. The number of bits masked is determined by the size
function or the default target memory word size.

masked and shifted value
hi(0x1234) is equivaent to 0x0012 for size(2).

Lo Function
generic

value

This function returns the low bits of a data value. The data value is masked, the
remaining value remainsin the lower bits. The number of bits masked is
determined by the size function.

masked value
l0(0x12345678) is equivalent to 0x00005678 for size(4).

SC100 Application Binary Interface

4-7
Preliminary (April 2000)

SC100 ELF Object File Format

4.3.4.2.8 Memcheck Function

Category:
Arguments:

Description:

Returns:

SC100-specific
value, <memid>

This function verifies certain memory constraints of the symbol value. <memid>
may be 0 (no memory constraints) or 1 (target memory location must be located in
peripheral address space).

0, generates errors if memory constraint violation

4.3.4.3 Special Identifiers
The following specia identifiers are used by relocations:

Op Identifier

PC Identifier

PA |dentifier

Thisidentifier contains the base opcode value. Thisis value of the memory
location (section data value) to which the relocation applies before any fixups are
performed.

Thisidentifier contains the current value of the program counter. This allows
calculation of program counter relative offsets.

Relative branches are based on the first address of the packet. This identifier
provides the first of address of the current execution packet.

4.3.4.4 Reserved Names

Thefollowing list of names are reserved for usein relocation. ABI-conforming applications should not use
these names except for their defined purposes.

Table 4-3. Reserved Names for Relocation

Names
check op
memcheck pc
pack pa
sym s
hi u
lo n

4-8

SC100 Application Binary Interface
Preliminary (April 2000)

Interface Descriptions

4.3.4.5 Constants

Integer constants are valid in relocations. Integer constants are recognized as a sequence of the following
characters:

[0-9] Decimal integer
0x[0-f] Hexadecimal integer
0[0- 7] Octal integer
Ob[0- 1] Binary integer

String literals are valid in relocations. String literals are enclosed in double-quotes. All characters within
double-quotes are treated literally; thereis no provision for escape sequences.

4.3.4.6 Operators

The operators following operators are legal in relocations (from highest to lowest precedence):

0 parentheses
b~ - unary

!, % multiplicative
+, - additive

<<, >> shift

<, <=, >, >= relational

==, I= equality

& bitwise and

A bitwise exclusive or
| bitwise or

&& logical and

|| logical or

?: conditional

= +=,-=*=/* % assignment

: comma

All binary operators associate from left to right, except for conditional and assignment operators which
associate from right to left. The operators' functions are the same as the C language.

SC100 Application Binary Interface 4-9
Preliminary (April 2000)

SC100 ELF Object File Format

4.3.4.7 Relocation Forms

Device-specific forms describe how a memory location should be patched by the linker. Forms are a
combination of functions, operators, and constants which completely describe how amemory location’s
value will be calculated from rel ocatable symbols. A conforming assembler should generate the relocation
forms described in this section.

Typically, it takes more than one form to encode an average instruction. For example, the group F5
requires four member forms to completely describe how the instructionin (5) should be patched when both
of its operands are external.

* 313 BMOLR W#{i UL6BO}, <({ AUL6VID})’ (5)

Table 4-4. Group F1 Form

Group Name F1

Arguments value, (s|u), <len>, <align>

Member F1wW1

Description Encoding function for word 1 of instruction
Definition “value & mask(0,10)"

Applicable Instructions ‘BRA{D} <*+{AS10W1}

Table 4-5. Group F2 Forms

Group Name F2

Arguments value, (s|u), <len>, <align>

Member F2ws3
Description Encoding function for word 3 of the instruction
Definition “Oxffff & mask(0,13)”

Member F2w2
Description Encoding function for word 2 of the instruction
Definition “value & mask(0,12)"

Member F2W1
Description Encoding function for word 1 of the instruction
Definition “(value & mask(13,15))>>8 | (Oxffff & mask(14,15))>>11"

Applicable Instruction(s)

‘628 NOT.W <({AU16WO})’

4-10

SC100 Application Binary Interface
Preliminary (April 2000)

Interface Descriptions

Table 4-6. Group F3 Forms

Group Name F3

Arguments value, (s|u), <len>, <align>

Member F3wW1
Description Encoding function for word 1 of the instruction
Definition “(value & mask(13,15))>>8"

Member F3w2
Description Encoding function for word 2 of the instruction
Definition “value & mask(0,12)”

Applicable Instruction(s)

* 435 DOEN{O..3} #{iU16B0}’

* DOENSH{ 0. . 3} #{i U16B0}"

Table 4-7. Group F4 Forms

Group Name F4

Arguments value, (s|u), <len>, <align>

Member F4W101
Description Encoding function for word 1 operand 1 of the instruction
Definition “(~value & mask(14,15))>>11"

Member FAW102
Description Encoding function for word 1 operand 2 of the instruction
Definition “(val ue & mask(13,15))>>8"

Member FAW202
Description Encoding function for word 2 operand 2 of the instruction
Definition “val ue & mask(0, 12)”

Member FAW301
Description Encoding function for word 3 operand 1 of the instruction
Definition “~val ue & mask(0, 13)”

Applicable Instruction(s)

616 AND. W #{i U16BO}, <({ AUL6VD})’

SC100 Application Binary Interface 4-11

Preliminary (April 2000)

SC100 ELF Object File Format

Table 4-8. Group F5 Forms

Group Name F5
Arguments value, (s|u), <len>, <align>
Member F5wW101
Description Encoding function for word 1 operand 1 of the instruction
Definition “(~value & mask(14,15))>>11"
Member F5W102
Description Encoding function for word 1 operand 2 of the instruction
Definition “(val ue & mask(13, 15))>>8"
Member F5wW202
Description Encoding function for word 2 operand 2 of the instruction
Definition “val ue & nask(0, 12)”
Member F5W301
Description Encoding function for word 3 operand 1 of the instruction
Definition “val ue & mask(0, 13)”
Applicable Instruction(s) *313 BMCLR W #{i UL6B0}, <({ AUL6WD})’
‘315 BMSET. W #{i U16B0}, <({ AUL6WD})’
*317 BMCHG W #{i U16B0}, <({ AUL6WD})"’
*319 BMISTC. W #{i U16B0}, <({AUL6WD})’
*321 BMISTS. W #{i U16B0}, <({AUL6WD})’
*324 MOVE. W #{i S16B0}, <({ AU16WD})"’
620 OR W #{i U16B0}, <({AUL6WD})’
‘624 EOR W #{i Ul16B0}, <({AUl6WD})’
Table 4-9. Group F6 Forms
Group Name F6
Arguments value, (s|u), <len>, <align>
Member F6W101
Description Encoding function for word 1 operand 1 of the instruction
Definition “(~value & mask(14,15))>>11"
Member F6W102
Description Encoding function for word 1 operand 2 of the instruction
Definition “(val ue & mask(13,15))>>8"
Member F6W202
Description Encoding function for word 2 operand 2 of the instruction
Definition “val ue & mask(0, 12)”
4-12 SC100 Application Binary Interface

Preliminary (April 2000)

Interface Descriptions

Table 4-9. Group F6 Forms (Continued)

Member

F6W301
Description Encoding function for word 3 operand 1 of the instruction
Definition “val ue & mask(0, 13)”

Applicable Instruction(s)

‘446
447
‘448
‘449
“ 450
‘451
“ 460
‘635
‘636
‘637
‘638

BVMCLR W #{i UL6BO0}, (SP+{ AS16\0})’
BVBET. W #{i UL6BO}, (SP+{ AS16\0})’
BMCHG. W #{i UL6BO0}, (SP+{ AS16\W})’
BMISTC. W #{i UL6BO0}, (SP+{ AS16\0})’
BMTSTS. W #{i UL6BO}, (SP+{ AS16W0})’
BMTSET. W #{i UL6BO}, (SP+{ AS16\W0})’
MOVE. W #{i S16B0}, (SP+{ AS16\W0})’
AND. W #{ i UL6BO}, (SP+{ AS16W0})’
OR. W #{ i UL6BO}, (SP+{ AS16W0})’
EOR. W #{i UL6BO0} , (SP+{ AS16\0})’
NOT. W (SP+{ AS16W0})’

Table 4-10. Group F7 Forms

Group Name F7

Arguments value, (s|u), <len>, <align>

Member F7w1
Description Encoding function for word 1 of the instruction
Definition “(value & mask(13,15))>>8"

Member F7TwW2
Description Encoding function for word 2 of the instruction
Definition “value & mask(0,12)"

Applicable Instruction(s)

£ 262
* 265

AND #{i S16B0} 0000, DJ, DF’
AND #{i U16B0}, DJ, DF’

Table 4-11. Group F8 Forms

Group Name F8

Arguments value, (s|u), <len>, <align>

Member F8wW1
Description Encoding function for word 1 of the instruction
Definition “(value & mask (0,6)”

Applicable Instruction(s)

‘099

MOVE. W #{i S7B0} , HHHH

SC100 Application Binary Interface

4-13

Preliminary (April 2000)

SC100 ELF Object File Format

Table 4-12. Group F9 Forms

Group Name F9

Arguments value, (s|u), <len>, <align>

Member FOw202
Description Encoding function for word 2 operand 2 of the instruction
Definition “value & mask(0,5)”

Member FOw201
Description Encoding function for word 2 operand 1 of the instruction
Definition “(val ue & mask(0, 5))<<6”

Applicable Instruction(s)

259 EXTRACT #{| U6BO}, #{i U6BO}, Dj , DF’
260 EXTRACTU #{| U6BO}, #{i U6BO}, Dj , DF’
261 | NSERT #{| U6BO}, #{i U6BO}, Dj , DF’

Table 4-13. Group F10 Forms

Group Name F10
Arguments value, (s|u), <len>, <align>
Member F10W1
Description Encoding function for word 1 of the instruction
Definition “(val ue & mask(13, 14))>>8"
Member F10W2
Description Encoding function for word 2 of the instruction
Definition “val ue & mask(0, 12)”

Applicable Instruction(s)

*206. w MOVE. W HHHH, (R+{ AS15\\0})’
£206.1r MOVE. W (R+{ AS15\0}) , HHHH
208.w MOVE. L HHHH, (R+{ AS15L0})’
©208.r MOVE. L (R+{AS15L0}), HHHH
207.w MOVE. B HHHH, (R+{ AS15B0})’
*207.r MOVE. B (R+{AS15B0}), HHHH
*209 MOVEU. W (R+{ AS15WD}) , HHHH
“210 MOVE. F (R+{AS15W0}), Dj’
*211 MOVES.F Dj, (R+{ AS15W})’
*212. w MOVE. W DDDDD, (SP+{ AS15\\0})’
©212.r MOVE. W (SP+{ AS15W0}) , DDDDD
213 MOVE. B HHHH, (SP+{ AS15B0})’
*217.w MOVE. L DDDDD, (SP+{ AS15L0})’
“217.r MOVE. L (SP+{AS15L0}), DDDDD
214 MOVEU. B (SP+{AS15B0}), HHHH
216 MOVE. B (SP+{ AS15B0}), HHHH
218 MOVE. F (SP+{AS15W}), Dj’
*219 MOVES.F Dj, (SP+{ AS15W0})’
©220 MOVEU. W (SP+{ AS15W)}) , DDDDD

-

4-14

SC100 Application Binary Interface

Preliminary (April 2000)

Interface Descriptions

Table 4-14. Group F11 Forms

Group Name F11
Arguments value, (s|u), <len>, <align>
Member F1i1wi
Description Encoding function for word 1 of the instruction
Definition “(val ue & mask(30,31))>>27 | (value & mask(13, 15)) >>8"
Member F11w2
Description Encoding function for word 2 of the instruction
Definition “val ue & mask(0, 12)”
Member F11w3
Description Encoding function for word 3 of the instruction
Definition “(val ue & mask(16, 29))>>16"

Applicable Instruction(s)

‘311
‘312

*300.
*300.
*301.
*301.
£ 302.
*302.

‘303
* 305
‘304

* 326.
* 326.
£ 327.
£ 327.
*328.
*328.
‘328.
* 328.

* 407
‘466
* 465
‘467

MOVE. L #{i S32B0}, DDDDD'
MOVEU. L #{i U32B0}, Oj ’

w MOVE. W HHHH, ({ AU32WD})’
r MOVE. W ({ AU32\WD}) , HHHH
w MOVE. B HHHH, ({ AU32B0})’
r MOVE. B ({AU32BO0}), HHHH
w MOVE. L HHHH, ({ AU32L0})’
r MOVE.L ({AU32L0}), HHHH
MOVEU. W ({ AU32VWD}) , HHHH
MOVES. F Dj , ({ AU32WD})’
MOVE. F ({AU32W}), O’
JMPD { AU32VWD}’

IMP {AU32WD}’

JSRD { AU32\D}’

JSR {AU32WD}’

.0 JTD {AU32WD}’

.1 JT {AU32WD}’

.0 JFD { AU32WD}’

.1 JF {AU32WD}’

MOVE. L #{i U32B0}, CCC
MOVE. L Df 1.e:Df 2. e, ({AU32L0})’
MOVE. L ({AU32L0}), DQ e’
MOVE. L ({AU32L0}), Dg. €’

PPRPOORFRL,RORFRO

SC100 Application Binary Interface

4-15

Preliminary (April 2000)

SC100 ELF Object File Format

Table 4-15. Group F12 Forms

Group Name F12
Arguments value, (s|u), <len>, <align>
Member F12w1
Description Encoding function for word 1 of the instruction
Definition “(val ue & mask(30,31))>>27 | (value & mask(13, 15)) >>8"

Applicable Instruction(s)

©102
*103
©100
‘101
‘104
‘105
‘428
“130
‘131
‘602
‘603

CMPEQ W #{ i USBO} , DF’
CMPGT. W #{ i USBO} , DF’
ADD #{i USBO}, DF’

SUB #{i U5BO}, DF’
ASLL #{i U5BO}, DF’
ASRR #{i U5BO}, DF’
LSRR #{i U5BO}, DF’
ADDA #{i U5B0}, RRRR
SUBA #{i U5BO}, RRRR

| NCA RRRR

DECA RRRR

Table 4-16. Group F13 Forms

Group Name F13
Arguments value, (s|u), <len>, <align>
Member F13w1l
Description Encoding function for word 1 of the instruction
Definition “(~val ue & mask(13, 15))>>8"
Member F13w2
Description Encoding function for word 2 of the instruction
Definition “~val ue & mask(0, 12)”

Applicable Instruction(s)

640 AND #{i UL6BO}, HHHH. H
“614 AND. W #{i U16BO0}, (R)’
276a AND. W #{i U16BO}, CCC. L’

4-16

SC100 Application Binary Interface
Preliminary (April 2000)

Interface Descriptions

Table 4-17. Group F14 Forms

Group Name F14
Arguments value, (s|u), <len>, <align>
Member F14W1
Description Encoding function for word 1 of the instruction
Definition “(val ue & mask(13, 15))>>8"
Member F14w2
Description Encoding function for word 2 of the instruction
Definition “val ue & mask(0,12)"

Applicable Instruction(s)

£ 245
‘247
‘641
‘642
‘643
‘644
‘645
‘234
£ 242
243
£ 240
‘244
£ 279
£ 280
£ 281
‘291
£ 292
* 457
‘618
‘622
$ 269
£ 270
‘271
£ 272
£ 273
‘274
‘284
£ 285
$ 286
£ 287
‘276
L 277
£ 278
£ 289
£290
‘413

ADDNC. W #{i S16B0}, DJ, DF’
MAC #{i S16B0}, DJ, DF’
AND #{i U16B0}, HHHH. L’
OR #{i U16B0}, HHHH. H
OR #{i U16B0}, HHHH. L’
EOR #{i U16B0}, HHHH. H
EOR #{i U16B0}, HHHH. L’
ADDA #{i S16B0},rrrr, R
CMPEQ W #{i S16B0}, DF’
CMPGT. W #{i S16B0}, DF’
SUBNC. W #{i S16B0} , DF’
I MPY. W #{i S16B0}, DF’
BMCLR. W #{i U16B0}, (R)’
BVSET. W #{i U16B0}, (R)’
BMCHG. W #{i U16B0}, (R)’
BMISTC. W #{i U16B0}, (R)’
BMISTS. W #{i U16B0}, (R)’
BMISET. W #{i U16B0}, (R)’
OR W #{i U16B0}, (R’
EOR W #{i U16B0}, (R’
BMCLR #{i U16B0}, HHHH. H
BMCLR #{i U16B0}, HHHH. L’
BVSET #{i U16B0}, HHHH. H
BVSET #{i U16B0}, HHHH. L’
BMCHG #{i U16B0}, HHHH. H
BMCHG #{i U16B0}, HHHH. L’
BMISTC #{i U16B0}, HHHH. H
BMISTC #{i UL6B0}, HHHH. L’
BMISTS #{i UL6B0}, HHHH. H
BMISTS #{i UL6B0}, HHHH. L’
BMCLR #{i U16B0}, CCC. L’
BVBET #{i U16B0}, CCC. L’
BMCHG #{i U16B0}, CCC. L’
BMISTC #{i U16B0}, CCC. L’
BMISTS #{i Ul6B0}, CCC. L’
BMISTC #{i UL6B0}, CCC. H

SC100 Application Binary Interface

Preliminary (April 2000)

4-17

SC100 ELF Object File Format

Table 4-17. Group F14 Forms (Continued)

F14 Applicable Instructions

(Continued)

‘414 BMTSTS #{i U16BO0}, CCC. H
410 BMCLR #{i U16B0}, CCC. H
411 BMBET #{i U16BO0}, CCC. H
‘412 BMCHG #{i U16B0}, CCC. H
276b OR W #{i U16BO}, CCC. [HL]’
*276c EOR W #{i UL6BO}, CCC. [HL]’

£ 231
£ 232
$ 295
* 296
£ 299

‘221,
‘221.

£ 222

$226.
$226.

£ 228
£ 227
£ 223
£ 225
£ 229

MOVE. W #{i S16B0} , DDDDD'
MOVE. F #{i S16B0}, Oj ’

MOVEU. W #{i U16B0}, Oj . H
MOVEU. W #{i U16B0}, Oj . L’
MOVE. W #{i S16B0}, (R)’

w MOVE. W DDDDD, <({ AUL6WD})’
r MOVE. W <({ AU16\WD}) , DDDDD
MOVE. B HHHH, <({ AUL6B0})’

w MOVE. L DDDDD, <({ AUL6L0})’
r MOVE. L <({AU16L0}), DDDDD
MOVES. F Dj , <({ AUL6WD})’
MOVE. F <({AU16W}), Dj’
MOVEU. B <({ AUL6BO}) , HHHH
MOVE. B <({AUL6BO0}) , HHHH
MOVEU. W <({ AUL6WD}) , DDDDD

Table 4-18. Group F15 Forms

Group Name

F15

Arguments

value, (s|u), <len>, <align>

Member

F15wW1

Description

Encoding function for word 1 of the instruction

Definition

“(pack(val ue, s|u,l en,align) & mask(0, 7)) <<1”

Applicable Instruction(s)

‘156.
* 156.
* 156.
* 156.
*157.
*157.

0.0 BTD <*+{ AS8WL}’
0.1 BT <*+{AS8W}’
1.0 BFD <*+{ AS8WL}’
1.1 BF <*+{ AS8W}"
0 BSRD <*+{ AS8W}’
1 BSR <*+{ AS8W.}’

4-18

SC100 Application Binary Interface

Preliminary (April 2000)

Interface Descriptions

Table 4-19. Group F16 Forms

Group Name F16
Arguments value, (s|u), <len>, <align>
Member F16W101
Description Encoding function for word 1 operand 1of the instruction
Definition “(val ue & mask(13,15))>>8"
Member F16W102
Description Encoding function for word 1 operand 2 of the instruction
Definition “pack(val ue, s|u,l en,align) & mask(O0,4)”
Member F16W201
Description Encoding function for word 2 operand 1 of the instruction
Definition “val ue & mask(0, 12)”

Applicable Instruction(s)

294 MOVE. W #{i S16B0}, (SP- { AUSWL})"
294 alias 3 MOVE. W#{i S16B0}, (SP)’

Table 4-20. Group F17 Forms

Group Name F17
Arguments value, (s|u), <len>, <align>
Member F17wW101
Description Encoding function for word 1 operand 1of the instruction
Definition “(~val ue & mask(13,15))>>8"
Member F17wW102
Description Encoding function for word 1 operand 2 of the instruction
Definition “pack(val ue, s|u,l en,align) & mask(O0, 4)”
Member F17w201
Description Encoding function for word 2 operand 1 of the instruction
Definition “~val ue & mask(0, 12)”

Applicable Instruction(s)

615 AND. W #{i U16BO0}, (SP- { AUSWL})"’
‘266a alias 3 #{iUl6B0}, (SP)’

SC100 Application Binary Interface 4-19

Preliminary (April 2000)

SC100 ELF Object File Format

Table 4-21. Group F18 Forms

Group Name F18
Arguments value, (s|u), <len>, <align>
Member F18W101
Description Encoding function for word 1 operand 1 of the instruction
Definition “(~val ue & mask(13,15))>>8"
Member F18W102
Description Encoding function for word 1 operand 2 of the instruction
Definition “pack(val ue, s|u,len,align) & nask(0,4)”
Member F18w201
Description Encoding function for word 2 operand 1 of the instruction
Definition “val ue & mask(0, 12)”

Applicable Instruction(s)

266 BMCLR. W #{i UL6BO}, (SP- { AUSWL})’
266 alias 3 BVCLR W #{i UL6BO}, (SP)’
266c alias 3 EOR W#{i UL6BO}, (SP)’
282 BMISTC. W #{ i UL6B0}, (SP- { AUSWL})"’
282 alias 3 BMISTC. W #{i U16B0}, (SP)’
* 283 BMISTS. W #{i UL6B0}, (SP- { AUSWL})"
283 alias 3 BMISTS. W #{i U16B0}, (SP)’
267 BVBET. W #{i UL6BO}, (SP- { AUSWL})’
267 alias 3 BVBET. W#{i UL6BO}, (SP)’
268 BMCHG W #{i UL6B0}, (SP- { AUSWL})’
268 alias 3 BMCHG W #{i U16BO}, (SP)’
“ 452 BMTSET. W #{i UL6B0}, (SP- { AUSWL})"
452 alias 3 BMISET. W #{i U16B0}, (SP)’
*619 OR W #{i UL6BO}, (SP- { AUSWL})’
266b alias 3 OR W#{i UL6B0}, (SP)’
623 EOR W #{i UL6BO}, (SP- { AUSWL})’

4-20

SC100 Application Binary Interface
Preliminary (April 2000)

Interface Descriptions

Table 4-22. Group F19 Forms

Group Name F19
Arguments value, (s|u), <len>, <align>
Member F1o9w1
Description Encoding function for word 1 of the instruction
Definition “(pack(val ue, s|u, len,align)&mask(19, 19)>>8) |
(pack(val ue, s| u, | en, al i gn) &mask(16, 18) >>16) |
(pack(val ue, s|u, | en,align)&mask(12, 14)>>7)"
Member F1o9wW2
Description Encoding function for word 2 of the instruction
Definition “(pack(val ue, s| u, len, align)&mask(15, 15)>>8) |

(pack(val u

e,s|u,l en,align)&mmask(0, 11) <<1) |

Applicable Instruction(s)

* 236.
* 236.
£ 237.
£ 237.
£ 238.
£ 238.
$238.
£ 238.

0 BRAD >*+{AS20W1}’
1 BRA >*+{AS20W}’
0 BSRD >*+{ AS20W1}’

1 BSR >*+{AS20W}’
0.0 BTD >*+{ AS20W1}"’
0.1 BT >*+{AS20W1}’
1.0 BFD >*+{ AS20W}’
1

.1 BF >*+{AS20W.}"

Table 4-23. Group F20 Forms

Group Name F20
Arguments value, (s|u), <len>, <align>
Member F20w1
Description Encoding function for word 1 of the instruction
Definition “pack(val ue, s| u, | en, align)&mask(0, 4)”

Applicable Instruction(s)

©123

©123.
©123.
“124.
‘124.
‘124,

. W MOVE. W HHHH, (R+{ AUSWL})’
r MOVE. W (R+{ AU3WL}) , HHHH
w alias 4 MOWVE. W HHHH, (R)’
W MOVE. L HHHH, (R+{ AU3L2})’
w MOVE. L (R+{AU3L2}), HHHH
walias 4 MOVE. L HHHH, (R)’

SC100 Application Binary Interface

4-21

Preliminary (April 2000)

SC100 ELF Object File Format

Table 4-24. Group F21 Forms

Group Name F21
Arguments value, (s|u), <len>, <align>
Member F21wW1
Description Encoding function for word 1 of the instruction
Definition “pack(val ue, s| u, Il en, align)&mask(0,5)"

Applicable Instruction(s)

162 DOEN{O..3} #{i UsBO}’
421 DOENSH{0..3} #{i UsB0}’
“154. w MOVE. W HHHH, (SP- { AUBWL})’

‘154, w alias 2 MOVE. W HHHH, (SP)’
“154.r MOVE. W (SP-{AU6WL}) , HHHH
“154.r alias 2 MOVE. W (SP), HHHH
*155.w MOVE. L HHHH, (SP-{ AU6L2})’
“155.w alias 2 MOVE. L HHHH, (SP)’
“155.r MOVE. L (SP-{AU6L2}), HHHH
“155.r alias 2 MOVE. L (SP), HHHH

Table 4-25. Group F22 Forms

Group Name F22
Arguments value, (s|u), <len>, <align>
Member F22W1
Description Encoding function for word 1 of the instruction
Definition “(pack(val ue, s|u,l en,align) & nmask(12, 14))>>7"
Member F22W2
Description Encoding function for word 2 of the instruction
Definition “(pack(val ue, s|u,l en,align) & nmask(15, 15))>>15 |
(pack(val ue, s|u, len,align) & mask(0, 11)) <<1”

Applicable Instruction(s)

“ 405 BREAK *+{ AS16WL}’

‘418 SKI PLS *+{ AS16WL}’

“416.0 CONTD *+{ AS16WL}’
“416.1 CONT *+{ AS16WL}’

*329 DOSETUP{O. .3} *+{AS16W}’

4-22

SC100 Application Binary Interface
Preliminary (April 2000)

Interface Descriptions

Table 4-26. Group F23 Forms

Group Name F23

Arguments value, (s|u), <len>, <align>

Member F23W1
Description Encoding function for word 1 of the instruction
Definition “(Oxffff & mask(13,15))>>8 |

pack(val ue, s| u, | en, align) &rask(0, 4)”

Applicable Instruction(s)

627 NOT. W (SP- { AUSWL})’

4.3.5 NOTE Section

The note section is optional and contains object file vendor identification and application-specific object
file comments. If included, it follows the described format.

Vendor identification format is shown in Figure 4-2. It consists of the following:

namesz

descz

type

name

The string length (not counting null terminator) of the name. Itisa4 byte
unsigned integer.

The size of the description entries. Thisis 12 bytes for the vendor id note. The
description fields contain the version, revision, minor revision numbers of the
producing entity (assembler or linker). Data is an unsigned 4-byte integer.

Type equals 2 for the vendor identification note. It is a4-byte unsigned integer in
little-endian order.

Null terminated string and padded, if necessary, to achieve a 4-byte boundary
alignment which represents the vendor’ s identification.

Bytes
0 1 2 3

namesz

descsz

type | 2 (Vendor ID note)

name W e " q’

‘0’ i i d’

10" | pad pad’ pad

Version number

Revision number

Minor rev number

Figure 4-2. Vendor Identification Note Format

SC100 Application Binary Interface 4-23

Preliminary (April 2000)

SC100 ELF Object File Format

Object file comments generated by the user through an assembler directive are placed in the note section.
Thisistypically for usersto identify their object code. The same string termination and padding
restrictions apply to object file comments as apply to vendor identification notes. The field contains a
user-specified comment. A null comment (\0) is not avalid comment.

The object file comment format is shown in Figure 4-3.

o 1 2 3
namesz
descsz | O
type 1
name ‘¢’ ‘o’ ‘m’ ‘m’
e n 't \0

Figure 4-3. User (Application-Specific) Note Format

4.3.6 Program Headers

Program headers are used to build an executable image in memory and are only useful for executable files.
While section headers may or may not be included in executable files, program headers are always present
in executable files. See Example 4-8 for a sample program header.

Example 4-8. Program Header

typedef struct {
B f32_Wrd p_type;
Bf32 Cf p_offset;
B f32_Addr p_vaddr;
B f32_Addr p_paddr;
BHf32 Wrd p_fil esz;
B f32 Wrd p_nmensz;
B f32_Wrd p_flags;
B f32_Wrd p_align;

} B f32_Phdr;

Refer to the following list for a description of program header members.

* p_type—describes the type of program header. Only PT_LOAD and PT_NOTE are recognized as
types.

» p_offset—offset from beginning of file to first byte of segment.

e p_vaddr—virtual addressin memory of the first byte of the segment.

e p_paddr—physical addressin memory of the first byte of the segment.

» p_filesz—gives the number of bytesin segment’s memory image. (May be zero.)

* p_memsz—qgivesthe number of bytesin segment’s memory image. (May be zero.)

» p_flags—givesflags relevant to the segment. Defined flags are PF_R,PF_W,PF_X.

* p_align—segment alignment requirementsin file and memory.

4-24 SC100 Application Binary Interface
Preliminary (April 2000)

Chapter 5
Endian Support

This chapter describesthe different behavior of the SC140 instructionsin the Big-Endian and Little-Endian
memory system modes.

» Little-Endian:
“ A computer architecturein which, within a given multi-byte numeric representation, bytes at |ower
addresses have lower significance (the word is stored “ little-end-first”).”

For example, the instruction MOVE. W DO, (r 0) will store bits 0-7 of DO into address (r0) and bits
15-8 into address (r0+1).

* Big-Endian:
“ A computer architecture in which, within a given multi-byte numeric representation, the most
significant byte has the lowest address (the word is stored “ big-end-first”). “

For example, the instruction MOVE. W DO, (r 0) will store bits 15-8 of DO into address (r0) and bits
0-7 into address (rO+1).

The SC140 DSP core supports Big and Little Endian architecture through a mode bit in its Exception and
Mode Register. This bit samples a core input signal when exiting the reset state and cannot be changed
during normal operation.

SC100 Application Binary Interface 5-1
Preliminary (April 2000)

Endian Support

5.1 Memory Organization

Different types of datawill be stored differently in the memory in the different modes. Consider this
example of datain the memory shown in Figure 5-1;

A8=0102h (16-bit Number)

A16=01020304h (32-bit Number)

A24=0102030405060708h (64-bit Number)

AO0="m’
Al="7 A10=0304h
A2="c’ A12=0506h
A3="h’ A14=0708h
A3='a’
A5="
A20=0506078h
Little Endian
7 6 5 4 3 2 1 0
I a h c i m]O
7 8 5 6 3 4 1 2]8
5 6 7 8 1 2 3 4 |16(0n)
1 2 3 4 5 6 7 8 |24(18h)
32 (20h)

Big Endian

0 1 2 3 45 6 7

m i ¢ h a |l 0

12 3 45 6 7 8|8

1 3 4 5 6 7 8]|16(10n)

1 3 4 5 6 8 | 24 (18h)
32 (20h)

Figure 5-1. Memory Organization in Big/Little Endian Architecture

5-2

Preliminary (April 2000)

SC100 Application Binary Interface

Memory Organization

5.1.1 SC140 Architecture

The entire memory space of the SC140 core is unified. The memory supports two parallel 64-bit data
accesses issued by the core at the same time, one 128-bit program bus, and external port (usually for DMA
accesses).

The two data busses that connect between the Data ALU register file and the memory are 64-bits wide
each. Load and Store instructions utilize the maximum width of the bus according to the application
reguirement, by means of having different versions of the instructions for different bandwidth:

» MOVE.B loads or stores bytes (8-bit)
« MOVE.W or MOVE.F loads or stores integer or fractional words (16-bit)

« MOVE.2W, MOVE.2F and MOVE.L loads or stores double-integers, double-fractions and long
words respectively (32-bit)

« MOVE.4AW, MOVE.4F loads or stores quad-integers and quad-fractions respectively (64-bit)
« MOVE.2L loads or stores double-long words (64-bit)

SC140
Core

€ 128-hit P-BUS SRAM
€ 64-bit XA-BUS > pldata

0-ws

64-bit XB-BUS >
Figure 5-2. SC140 Basic Architecture
SC100 Application Binary Interface 5-3

Preliminary (April 2000)

Endian Support

5.1.2 Data Move

Data moves are done by moving DALU register/ Memory over one of the data buses, XDBA or XDBB.
Data registers can be accessed with three types of data:

» A long type access, writing or reading 32-bit operands
» A word type access, writing or reading 16-bit operands
* A bytetype access, writing or reading 8-bit operands

Figure 5-3 and Figure 5-4 illustrates a single data transfer and multiple data transfer, respectively, in
big/little endian modes.

Move.B AO

Big Endian
Move.B A2
Move.W A10
Move.L A16 0 1 23 4567
m i c h a I 0
1 2 3 45 6 7 8|8
1 3 4 5 6 7 8]|16(10n)
1 3 4 5 6 7 8]|24(18h)
32 (20h)
XXXXXXXM
XXXXXXXC
XXXXXX34
Xxxx1234
SC140 < >
64-bit XA-BUS
Core I B E0s >
Little Endian
7 6 5 4 3 2 1 0
I a h ¢ i m]|O
7 8 5 6 3 4 1 218
5 6 7 8 1 2 3 4 |16(10h)
1 2 3 4 5 6 7 8 |24(18h)
32 (20h)
Figure 5-3. Data Transfer in Big/Little Endian
5-4 SC100 Application Binary Interface

Preliminary (April 2000)

Memory Organization

Move.2W A8
Move.4W A16 Big Endian
Move.2L A16
0 1 2 3 4 5 6 7
m i c h a |l 0
1 2 3 45 6 7 8|8
1 2 3 4 5 6 7 8]|16(10n)
1 2 3 4 5 6 8 | 24 (18h)
Big End 32 (20M)
12 xxxx1234
12 12345678
SC140 1234 12345678
CORE 34 - >
34 64-bit XA-BUS
5678 ¢64-bitXB-BUS >
Little End
56
XXXX3412 Little Endian
78 78563412
56781234 7 6 5 4 3 2 10
I a h c¢c i m]|O
7 8 5 6 3 4 1 28
5 6 7 8 1 2 3 4 |16(10h)
1 2 3 4 5 6 7 8]|24(@18h)
32 (20h)
Figure 5-4. Multiple Data Transfer in Big/Little Endian
SC100 Application Binary Interface 5-5

Preliminary (April 2000)

Endian Support

5.1.3 Instruction Word Transfers

Instruction words are transferred to the core from the memory over the Program Data Bus (PDB), to
special instruction registers in the Program Dispatch Unit.

The instruction registers can be accessed only with 128-bit width (8 instructions).

Little Endian Big Endian
7 6 5 4 3 2 1 0 0 1 2 3 4 5 6 7
13 12 11 10 0 10 11 12 13 0
17 16 15 14 8 14 15 16 17 8
111 | 110 | 19 18 |16 (10n) 18 19 120 | 111 |46 (10n)
24 (18h) 24 (18h)
32 (20h) 32 (20h)

Figure 5-5. Program Memory Organization

Fetch AO))
Move.4W A0 Big Endian
Move.4W A8 0 1L 2 3 45 6 7
10 11 12 13 0
14 15 16 17)
18 19 110 111 |16 (10h)
24 (18h)
32 (20h)
17161514 13121110
SC140 < 128 bit P-BUS
CORE
. >
64 bit XA-BUS
64 bit XB-BUS >Little Endian
Big End Little End
7 6 5 4 3 2 10
10111213 13121110 3 2 1 0 o
14151617 17161514
17 16 15 14 |g
111 110 19 18 | 16 (10h)
24 (18h)
32 (20h)
Figure 5-6. Instruction Moves
5-6 SC100 Application Binary Interface

Preliminary (April 2000)

Memory Access Behavior in Endian Modes

5.2 Memory Access Behavior in Endian Modes

Table 5-1. MOVE Instructions

. . . . Little
Instruction Register Operands Big Endian Endian
MOVE. B AO=A AO=A
39 8 0
A
MOVEU. B 39 s 0 AO=A AO=A
A
MOVE. W AO=A AO=B
39 16 0
Al=B Al=A
A B
MOVEU. W 30 o AO=A AO=B
16 A1=B Al=A
A B
MOVE. 2W 39 16 0 AO=A AO0=B
B Al=B Al=A
A A2=C A2=D
c D A3=D A3=C
MOVE. 4W 39 16 0 AO=A Addo=B
Al=B Add1=A
A B A2=C Add2=D
c D A3=D Add3=C
Ad=E Add4=F
E A5=F Add5=E
A6=G Add6=H
G H A7=H Add7=G
MOVE. L AO=A AO=D
39 32 0
Al=B Al=C
A B c D A2=C A2=B
A3=D A3=A
MOVE. L 39 32 16 0 AO=Lb AO=A
Ext ensi on = =
() JoOA Al=B Al=La
A2=La A2=B
+ B A3=A A3=Lb
SC100 Application Binary Interface 5-7

Preliminary (April 2000)

Endian Support

Table 5-1. MOVE Instructions (Continued)

.) . . Little
Instruction Register Operands Big Endian Endian
MOVEU. L 39 5 0 AO=A A0=D
Al=B Al1=C
A B C D A2=C A2=B
A3=D A3=A
MOVES. L AO=A AO0=D
39 32 0
Al=B Al1=C
A B c D A2=C A2=B
A3=D A3=A
MOVE. 2L AO=A AO=D
39 32 0 Al1=B Al1=C
A2=C A2=B
A B C D A3=D A3=A
A4=E Ad=H
F G H AB=F A5=G
A6=G A6=F
A7=H A7=E
MOVE. F 39 32 16 0 AO=A AO=B
Al=B Al=A
A B
MOVES. F 39 32 16 0 AO=A AO=B
Al=B Al=A
A B
MOVE. 2F 39 2 16 0 AO=A A0=B
Al=B Al=A
B A2=C A2=D
A3=D A3=C
D
MOVES. 2F 39 a2 16 0 AO=A A0=B
Al=B Al=A
B A2=C A2=D
A3=D A3=C
D
MOVE. 4F 39 32 16 0 AD=A A0=B
A B Al=B Al=A
A2=C A2=D
(03 D A3=D A3=C
A4=E A4=F
E F AS=F A5=E
A6=G A6=H
G H A7=H A7=G
5-8 SC100 Application Binary Interface

Preliminary (April 2000)

Memory Access Behavior in Endian Modes

Table 5-1. MOVE Instructions (Continued)

.) . . Little
Instruction Register Operands Big Endian Endian
MOVES. 4F 39 32 16 0 AO=A AO=B

Al=B Al=A
. B A2=C A2=D
C D A3=D A3=C
A4=E A4=F
E F A5=F A5=E
A6=G A6=H
G H A7=H A7=G
VSL. 4W 39 16 0 AO=C AO=B
A B A1=D Al=A
A2=A A2=D
C D A3=B A3=C
A4=G Ad=F
E A5=H A5=E
AB=E AB=H
© 3 A7=F A7=G
VSL. 4F 39 32 16 0 A0O=C AO=B
B 5 A1=D Al=A
A2=A A2=D
C D A3=B A3=C
A4=G Ad=F
E E A5=H A5=E
A6=E A6=H
G H A7=F A7=G
VSL. 2W 39 16 0 A0=C AO=B
A1=D Al=A
B A2=A A2=D
D A3=B A3=C
VSL. 2F 30 2 16 0 A0O=C AO=B
A1=D Al=A
A B A2=A A2=D
A3=B A3=C
D
SC100 Application Binary Interface 5-9

Preliminary (April 2000)

Endian Support

Table 5-2. Stack Support Instructions

.) . . Little
Instruction Register operands Big Endian Endian
POP AO=A A0=D

A1=B Al=C
32 0 A2=C A2=B
A B c D A3=D A3=A
A4=E Ad=H
F G H A5=F A5=G
A6=G A6=F
A7=H A7=E
POPN AO=A AO=D
Al=B Al=C
32 0 A2=C A2=B
A B C D A3=D A3=A
Ad=E A4=H
F G H Ab=F A5=G
A6=G A6=F
A7=H A7=E
PUSH AO=A AO=D
Al=B Al=C
32 0
A2=C A2=B
A B © D A3=D A3=A
Ad=E A4d=H
E F G H AB5=F A5=G
A6=G A6=F
A7=H A7=E
PUSHN AO=A AO=D
5 0 A1=B A1=C
A2=C A2=B
A B C D A3=D A3=A
Ad=E A4=H
E F G H A5=F A5=G
A6=G A6=F
A7=H A7=E
5-10 SC100 Application Binary Interface

Preliminary (April 2000)

Memory Access Behavior in Endian Modes

Table 5-3. Bit-Mask Instructions

Instruction Register Operands Big Endian ELr1I<tjti|:n

BMCHG. W 39 16 AO=A AO=B
Al=B Al=A

A B
BMCLR. W 39 16 A0=A A0=B
Al=B Al=A

A B
BVBET. W 29 1% AO=A A0O=B
Al=B Al=A

A B
BMISTS. W | 39 16 AO=A A0=B
Al=B Al=A

A B
BMISTC. W 39 1 AO=A AO=B
Al=B Al=A

A B
BMISET. W | 4 1 AO=A A0=B
Al=B Al=A

A ‘ B
NOT. W AO=A AO=B
% 16 Al=B Al=A

A B
AND. W 39 " AO=A A0=B
Al=B Al=A

A B
R W 39 AO=A AO=B
16 Al=B AL=A

A B
EOR W 39 " AD=A A0=B
Al=B Al=A

A B

SC100 Application Binary Interface

Preliminary (April 2000)

5-11

Endian Support

Table 5-4. Change of Flow Instructions

. . . . Little
Instruction Register Operands Big Endian Endian
BSR AO=A A0=D

32 0 Al=B Al=C
A2=C A2=B
PC = A B

c L A3=D A3=A
BSRD AO=A A0=D
32 0 Al=B Al1=C
A2=C A2=B

PC =
c S = c b A3=D A3=A
JSR AO=A A0=D
32 0 Al=B Al1=C
A2=C A2=B

PC =
2 = c D A3=D A3=A
JSRD . AO=A A0=D
32 A1=B A1=C
PC = A B c D A2=C A2=B
A3=D A3=A
RTE AO=A A0=D
o 0 Al=B Al=C
A2=C A2=B
PC = A B C D A3=D A3=A
A4=E Ad=H
SR = F G H A5=F A5=G
A6=G A6=F
A7=H AT=E
RTED AO=A A0=D
- o Al=B Al=C
A2=C A2=B
PC=1 A B C D A3=D A3=A
A4=E Ad=H
SR=| E J G H A5=F A5=G
A6=G AB=F
A7=H AT=E
RTS AO=A A0=D
32 0 A1=B A1=C
PC = A B c D A2=C A2=B
A3=D A3=A

5-12 SC100 Application Binary Interface

Preliminary (April 2000)

Memory Access Behavior in Endian Modes

Table 5-4. Change of Flow Instructions (Continued)

.) . . Little
Instruction Register Operands Big Endian Endian
RTSD 2 0 AO=A AO=D

A1=B A1=C

A3=D A3=A

RTSTK 32 0 AO=A A0=D

Al=B Al=C

PC = A B C D A2=C A2=B

A3=D A3=A

RTSTKD 0 AO=A AO0=D

32 Al=B Al1=C

PC = A B c D A2=C A2=B

A3=D A3=A

Table 5-5. Control Instructions

. . Big Little
Instruction Register operands Endian Endian

TRAP AO=A AO=D

o 0 Al=B Al=C

_ A2=C A2=B

PC = A B C D A3=D A3=A

A4=E A4=H

SR = F G H AB=F A5=G

A6=G A6=F

A7=H A7=E

SC100 Application Binary Interface

Preliminary (April 2000)

5-13

Endian Support

Table 5-6 lists all the mnemonics available for instructions that are endian sensitive. In afuture version, a
pointer will be added from each line of the table to the correct table above that describesthe way it behaves
in the different endian modes.

Table 5-6. Memory Access Instructions

Instruction ID# Instruction Mnemonic
614 AND.W #iU16B0},(R)
635 AND.W #{iU16B0},(SP+{AS16WO})
615 AND.W #{iU16B0},(SP-{AUSW1})
616 AND.W #iU16B0},<({AU16WO})
281 BMCHG.W #{iU16B0},(R)
448 BMCHG.W #{iU16B0},(SP+{AS16WO0})
268 BMCHG.W #{iU16B0},(SP-{AUSW1})
317 BMCHG.W #iU16B0},<({AU16WO})
279 BMCLR.W #{iU16B0},(R)
446 BMCLR.W #{iU16B0},(SP+{AS16WO})
266 BMCLR.W #{iU16B0},(SP-{AUSW1})
313 BMCLR.W #iU16B0},<({AU16WO})
280 BMSET.W #{iU16B0},(R)
447 BMSET.W #iU16B0},(SP+{AS16WO0})
267 BMSET.W #iU16B0},(SP-{AUSW1})
315 BMSET.W #iU16B0},<({AU16WO})
457 BMTSET.W #{iU16B0},(R)
451 BMTSET.W #{iU16B0},(SP+{AS16W0})
452 BMTSET.W #{iU16B0},(SP-{AUSW1}))
461 BMTSET.W #iU16B0},<({AU16WO0})
291 BMTSTC.W #{iU16B0},(R)
449 BMTSTC.W #{iU16B0},(SP+{AS16WO0})
282 BMTSTC.W #iU16B0},(SP-{AUSW1})
319 BMTSTC.W #iU16B0},<({AU16WO})
292 BMTSTS.W #{iU16B0},(R)
450 BMTSTS.W #{iU16B0},(SP+{AS16WO0})
283 BMTSTS.W #iU16B0},(SP-{AUSW1})
321 BMTSTS.W #iU16B0},<({AU16WO})
157 BSR{D} <*+{ASBW1}

5-14 SC100 Application Binary Interface

Preliminary (April 2000)

Memory Access Behavior in Endian Modes

Table 5-6. Memory Access Instructions (Continued)

Instruction ID# Instruction Mnemonic
237 BSR{D} >*+{AS20W1}
622 EOR.W #{iU16B0},(R)
637 EOR.W #{iU16B0},(SP+{AS16W0})
623 EOR.W #{iU16B0},(SP-{AUSW1})
624 EOR.W #{iU16B0},<({AU16WO})
327 JSR{D} {AU32WO}
115 MOVE.2F {ea_MMM},Dh
608 MOVE.2L Dh,{ea_MMM}
113 MOVE.2W Dh,{ea_MMM}
606 MOVE.4F {ea_MMM},Dk
605 MOVE.4W Dk,{ea_MMM}
159 MOVE.B HHHH {ea_OMM}
161 MOVE.B {ea_OMM},HHHH
216 MOVE.B (SP+{AS15B0}),HHHH
225 MOVE.B <({AU16B0}),HHHH
207 MOVE.B HHHH,(R+{AS15B0})
213 MOVE.B HHHH,(SP+{AS15B0})
301 MOVE.B HHHH, ({AU32B0})
222 MOVE.B HHHH,<({AU16B0})
210 MOVE.F (R+{AS15WO0}),Dj
218 MOVE.F (SP+{AS15W0}),Dj
304 MOVE.F ({AU32WO0}),Dj
227 MOVE.F <({AU16WO0}),Dj
172 MOVE.F Dj{ea_OMM}
112 MOVE.F {ea_MMM},Dj
462 MOVE.L (SP+{AS15L0}),DQ.E
464 MOVE.L (SP+{AS15L0}),Dq.E
465 MOVE.L ({AU32L0}),DQ.E
467 MOVE.L ({AU32L0}),Dq.E
165 MOVE.L DDDD,(R)
217 MOVE.L DDDDD,(SP+{AS15L0})
226 MOVE.L DDDDD,<({AU16L0})

SC100 Application Binary Interface

Preliminary (April 2000)

5-15

Endian Support

Table 5-6. Memory Access Instructions (Continued)

Instruction ID# Instruction Mnemonic
463 MOVE.L Df1.E:Df2.E,(SP+{AS15L0})
466 MOVE.L Df1.E:Df2.E,({AU32L0})
122 MOVE.L HHHH, (R+r)

208 MOVE.L HHHH,(R+{AS15L0})

124 MOVE.L HHHH, (R+{AU3L2})

155 MOVE.L HHHH, (SP-{AU6L2})

302 MOVE.L HHHH,({AU32L0})

110 MOVE.L HHHH {ea_ MMM}

299 MOVE.W #{iS16B0},(R)

460 MOVE.W #{iS16B0},(SP+{AS16W0})

294 MOVE.W #iS16B0},(SP-{AUSW1})

324 MOVE.W #iS16B0},<({AU16WO0}))

164 MOVE.W DDDD,(R)

212 MOVE.W DDDDD,(SP+{AS15WO0})

221 MOVE.W DDDDD,<({AU16W0})

121 MOVE.W HHHH, (R+r)

206 MOVE.W HHHH, (R+{AS15WO0})

123 MOVE.W HHHH,(R+{AU3W1))

154 MOVE.W HHHH, (SP-{AU6W1})

300 MOVE.W HHHH, ({AU32W0})

109 MOVE.W HHHH {ea_ MMM}

114 MOVES.2F Dh,{fea_ MMM}

607 MOVES.4F Dk.{ea_MMM}

211 MOVES.F Dj,(R+{AS15W0})

219 MOVES.F Dj,(SP+{AS15W0})

305 MOVES.F Dj,({AU32WO0})

228 MOVES.F Dj,<({AU16WO})

111 MOVES.F Dj{ea_ MMM}

117 MOVES.L Dj,{ea_ MMM}

160 MOVEU.B {ea_OMM},HHHH

403 MOVEU.B (R+{AS15B0}),HHHH

214 MOVEU.B (SP+{AS15B0}),HHHH
5-16 SC100 Application Binary Interface

Preliminary (April 2000)

Memory Access Behavior in Endian Modes

Table 5-6. Memory Access Instructions (Continued)

Instruction ID# Instruction Mnemonic
401 MOVEU.B ({AU32B0}),HHHH
223 MOVEU.B <({AU16B0}),HHHH
209 MOVEU.W (R+{AS15W0}),HHHH
220 MOVEU.W (SP+{AS15W0}),DDDDD
303 MOVEU.W ({AU32WO}),HHHH
229 MOVEU.W <({AU16WO0}),DDDDD
116 MOVEU.W {ea_ MMM},HHHH
626 NOT.W (R)
638 NOT.W (SP+{AS16W0})
627 NOT.W (SP-{AU5SW1})
628 NOT.W <({AU16WO})
618 OR.W #{iU16B0},(R)
636 OR.W #{iU16B0},(SP+{AS16W0})
619 OR.W #{iU16B0},(SP-{AUSW1})
620 OR.W #iU16B0},<({AU16WO0})
170 POP EEEEE
443 POP eeeee
171 POPN EEEEE
444 POPN eeeee
166 PUSH EEEEE
441 PUSH eeeee
168 PUSHN EEEEE
442 PUSHN eeeee
194 RTE{D}
439 RTSTK{D}
193 RTS{D}
186 TRAP
473 VSL.2F D1:D3,(R)+NO
472 VSL.2W D1:D3,(R)+NO
471 VSL.4F D2:D6:D1:D3,(R)+NO
470 VSL.4W D2:D6:D1:D3,(R)+NO

SC100 Application Binary Interface

Preliminary (April 2000)

5-17

Endian Support

5.3 Comments

The following are some comments related to some of the instructions. Based on these comments, a more
detailed definition of these cases will be described in a future version of this document.

5.3.1 MOVE Multiple Registers

In case of instructions that access more than one register (such as MOV E.2W, etc.), notice should be paid
to which register of the pair uses what address. For example, in the following instruction, dO uses AO+A1
and d1 uses A2+A3in little endian mode.

MOVE. 2W dO: d1, (r0)

For al instructions except the V SL instructions, the relevant registers are consecutive starting at an
“aligned” number.

5.3.2 MOVE.L for the Extension Registers

MOVE.L for data extensions has also single-extension variants.

The location of this extension in memory depends on the parity of the register number.

5.3.3 PUSH/POP Instructions

PUSH/POP instructions are 32-bit operations. In case two such instructions are used, the identity of which
operand ends where in memory should be defined.

PUSH/POP can also be done on single or paired extensions—the same as MOVE.L for extension. In case
of apaired extension operand, it is not like grouping to PUSH/POP together.

5.3.4 BSR/JSR
BSR/JSR, etc. also push the SR, so the comment on PUSH instructions also apply here.

5.3.5 Control instructions
ILLEGAL and “interrupt service” will be added to the table of Control Instructions (Table 5-5).

5-18 SC100 Application Binary Interface
Preliminary (April 2000)

Chapter 6
Assembler Syntax and Directives

This chapter identifies the directives and special characters that must be recognized by SC100 assemblers.
Directives are commands that instruct the assembler to carry out some action during assembly, rather than
instructions to be directly translated into object code.

A detailed description of the SC00 Assembler, its syntax, and directives can be found in the SC100
Assembly Language Tools User’s Manual.

6.1 Assembler-Significant Characters

Several one- and two-character sequences are significant to the assembler. Some have multiple meanings
depending on the context in which they are used. These characters are as follows:

X Comment delimiter

" Unreported comment delimiter

\ Line continuation character or macro dummy argument concatenation operator
? Macro value substitution operator

% Macro hex value substitution operator

A Macro local label override operator

Macro string delimiter or quoted string DEFINE expansion character

@ Function delimiter

* Location counter substitution

++ String concatenation operator

[Substring delimiter or instruction grouping delimiter
<< I/O short addressing mode force operator

< Short addressing mode force operator

> L ong addressing mode force operator

Immediate addressing mode operator

#< Immediate short addressing mode force operator

#> Immediate long addressing mode force operator
SC100 Application Binary Interface 6-1

Preliminary (April 2000)

Assembler Syntax and Directives

6.2 Assembler Directives

Assembler directives can be grouped by function into the following types:

Assembly control

o 0~ w DN

Symbol definition

Data definition/storage allocation
Listing control and options
Object file control

Macros and conditional assembly

6.2.1 Assembly Control

The directives used for assembly control are the following:

COMMENT
DEFINE
END
FAIL
FORCE!
HIMEM
INCLUDE
LOMEM
MODE
MSG
ORG
RADIX
RDIRECT?
UNDEF
WARN

Start comment lines

Define substitution string

End of source program

Programmer generated error message

Set operand forcing mode

Set high memory bounds

Include secondary file

Set low memory bounds

Change relocation mode

Programmer generated message

Initialize memory space and location counters
Changeinput radix for constants

Remove directive or mnemonic from table
Undefine DEFINE symbol

Programmer generated warning

1. Not currently supported.

6-2

Preliminary (April 2000)

SC100 Application Binary Interface

Assembler Directives

6.2.2 Symbol Definition

The directives used to control symbol definition are the following:

ENDSEC
EQU
GLOBAL
GSET
SECFLAGS
LOCAL?
SECTION
SECTYPE
SET

SIZE

TYPE
XDEF!
XREF!

End section

Equate symbol to avalue

Global section symbol declaration

Set global symbol to avalue

Set ELF section flags

Local section symbol declaration

Start section

Set ELF section type

Set symbol to avalue

Set size of symbol in the ELF symbol table
Set symbol type in the ELF symbol table
External section symbol definition

External section symbol reference

6.2.3 Data Definition/Storage Allocation

The directives used to control constant data definition and storage alocation are the following:

ALIGN Set address to modulo boundary
BADDR Set buffer address
BSB Block storage bit-reverse
BSC Block storage of constant
BUFFER Start buffer
DC, DCW Define constant (16-bits)
DCB Define constant byte (8-bits)
DCL Define constant long word (32-bits)
DS Define storage
DSR Define reverse carry storage
ENDBUF End buffer
1. Not currently supported.
SC100 Application Binary Interface 6-3

Preliminary (April 2000)

Assembler Syntax and Directives

6.2.4 Object File Control

The directives used for control of the object file are the following™:

COBJ Comment object code
IDENT Object code identification record
SYMOBJ Write symbol information to object file

6.2.5 Macros and Conditional Assembly

The directives used for macros and conditional assembly are the following:

DUP Duplicate sequence of source lines
DUPA Duplicate sequence with arguments
DUPC Duplicate sequence with characters
DUPF Duplicate sequence in loop
ENDIF End of conditional assembly
ENDM End of macro definition

EXITM Exit macro

IF Conditional assembly directive
MACLIB Macro library

MACRO Macro definition

PMACRO Purge macro definition

6.2.6 Assembler Syntax

The following sections provide details on assembler syntax.

6.2.6.1 Input File Format

Programs written in assembly language consist of a sequence of source statements. Any source statement
can be extended to one or more lines by including the line continuation character (\) asthe |ast character on
the line to be continued. A source statement (first line and any continuation lines) can be a maximum of
4000 characterslong. Upper and lower case letters are equival ent for assembler mnemonics and directives,

but are distinct for labels, symbols, directive arguments, and literal strings.

1. Object file control directives are not currently supported.

6-4
Preliminary (April 2000)

SC100 Application Binary Interface

Assembler Directives

6.2.6.2 Symbol Names

Symbol names can be from one to 4000 characters long. Thefirst character of a symbol must be alphabetic
(upper or lower case); any remaining characters can be either aphanumeric (A-Z, a-z, 0-9) or the
underscore character (). Upper and lower case lettersin symbols are considered distinct unlessthe IC
option isin effect. Symbol names and other identifiers beginning with a‘.’ are legal but reserved for the
system.

a) Valid Symbol Names b) Invalid Symbol Names
loop_1 1 loop
ENTRY loop.e
aBc

Certain identifiers are reserved by the assembler and cannot be used. These identifiers are the upper- or
lower-case name of any SC140 DSP core processor register.

6.2.6.3 Strings

One or more ASCI| characters enclosed by single quotes (') constitute aliteral ASCII string. In order to
specify an apostrophe within aliteral string, two consecutive apostrophes must appear where the single
apostrophe isintended. Strings are used as operands for some assembler directives and also can be used to
alimited extent in expressions.

A string may also be enclosed in double quotes (*) in which case any DEFINE directive symbols contained
in the string would be expanded. The double quote should be used with care inside macros since it is used
as adummy argument string operator. In that case, the macro concatenation operator can be used to escape
the double-quoted string if desired.

Two strings separated by the string concatenation operator (++) will be recognized by the assembler as
equivalent to the concatenation of the two strings. For example, the following two strings are equivalent:

'‘ABC'++'DEF = 'ABCDEF

The assembler has a substring extraction capability using the square brackets ([]). Refer to the following
example:

['abcdefg',1,3] = 'bed'

Substrings may be used wherever strings are valid and can be nested. There are also functions for
determining the length of a string and the position of one string within another.

SC100 Application Binary Interface 6-5
Preliminary (April 2000)

Assembler Syntax and Directives

6.2.6.4 Source Statement Format

Each source statement may include several fields (for a single instruction assembly line) separated by one
or more spaces or tabs: alabel field, an operation field, an operand field or data transfer fields, and a
comment field. Only fields preceding the comment field are considered significant to the assembler; the
comment field isignored. Opcode, directives, or pseudo ops may not begin in column 1 (first character
location). Labels must begin in column 1 unless followed by a colon, as shown in Example 6-1.

Example 6-1. Column 1 Labels

I ab nove. 2w (r0), dodl ; Two word nenory to register nmove

SC140 allows instruction groupings in which multiple instructions are executed in parallel. Instruction
groups are delimited with []. An instruction group may not begin in column 1. An instruction group may
span multiple lines without the use of a continuation character, as shown in Example 6-2.

Example 6-2. Multiple-Line Instruction Group

[
nove. w (sp-14),r2
clr d5 clr d6 clr d7 clr d4

]

6.2.6.5 Labels

The label field isthefirst field of a source statement. A space or tab as the first character on aline
ordinarily indicates that the label field is empty. Labels are subject to the following rules:

» Thefirst character of alabel is an aphabetic character.
» A label that has an underscore () asthe first character is a global label.

» Labels may beindented if the label symbol isimmediately followed by a colon (:) with no
intervening spaces. In this case, all characters preceding the label on the line must be whitespace
characters—spaces or tabs.

» A label may occur only onceinthe label field of an individual sourcefileunlessitisused asaloca
label, alabel local to a section, or is used with the SET directive. If anon-local label occurs more
than oncein alabel field, each reference to that |abel after the first will be flagged as an error.

» Alineconsisting only of alabel only isvalid and hasthe effect of assigning the value of the location
counter to the label. With the exception of some directives, alabel is assigned the value of the
location counter of the first word of the instruction or data being assembled.

6.2.6.6 Operation Field

The operation field appears after the label field, and must be preceded by at least one space or tab. Entries
in the operation field may be one of three types:

Opcode Mnemonics that correspond directly to DSP machine instructions.

Directive Special operation codes known to the assembler which control the assembly
process.

Macro call Invocation of a previoudly defined macro which isto beinserted in place of the
macro call.

6-6 SC100 Application Binary Interface

Preliminary (April 2000)

Assembler Directives

6.2.6.7 Operand Field

The interpretation of the operand field is dependent on the contents of the operation field. The operand
field, if present, must follow the operation field, and must be preceded by at least one space or tab. The
operand field may contain a symbol, an expression, or acombination of symbols and expressions separated
by commas with no intervening spaces.

6.2.6.8 Comment Fields

Comments are ignored by the assembler, but can beincluded in the source file for documentation purposes.
A comment field is composed of any characters (not part of aliteral string) that are preceded by a
semicolon (;).

SC100 Application Binary Interface 6-7
Preliminary (April 2000)

Assembler Syntax and Directives

6-8 SC100 Application Binary Interface
Preliminary (April 2000)

Symbols

" 61
#6-1
#< 6-1
#> 6-1
% 6-1
* 6-1
++ 6-1
; 6-1
5 6-1
<61
<< 6-1
>6-1
?26-1
@6-1
\ 6-1
A B-1

A

Address Generation Unit (AGU) 5-7
Argument Pointers 2-7
Arrays 2-3

B
Bit Fields 2-3
C

C In-Line Assembly Syntax 3-1
C Name Mapping 3-1

C Preprocessor Predefines 3-1
Calling Sequences 2-6

Check Function 4-6

Compound Data Type 2-3
Constants 4-9

D

Data Types 2-1
Directive
assembly control 6-2
BADDR 6-3
BSB 6-3
BSC 6-3
BUFFER 6-3
COBJ 6-4
COMMENT 6-2
data definition 6-3

Index

DC 6-3

DCB 6-3
DEFINE 6-2
DS 6-3

DSR 6-3
DUP 6-4
DUPA 6-4
DUPC 6-4
DUPF 6-4
END 6-2
ENDBUF 6-3
ENDIF 6-4
ENDM 6-4
ENDSEC 6-3
EQU 6-3
EXITM 6-4
FAIL 6-2
FORCE 6-2
GLOBAL 6-3
GSET 6-3
HIMEM 6-2
IDENT 6-4

IF 6-4
INCLUDE 6-2
LOCAL 6-3
LOMEM 6-2
MACLIB 6-4
MACRO 6-4
macro 6-4
MODE 6-2
MSG 6-2
object file 6-4
ORG 6-2
PMACRO 6-4
RADIX 6-2
RDIRECT 6-2
SCSIMP 6-2
SECFLAGS 6-3
SECTION 6-3
SECTYPE 6-3
SET 6-3

SIZE 6-3
symbol definition 6-3
SYMOBJ 6-4
TYPE 6-3
UNDEF 6-2
WARN 6-2
XDEF 6-3

Index

Preliminary (April 2000)

XREF 6-3

Dynamic Memory Allocation 2-8

E
Endian 5-1

Executable and Linking Format (ELF)

Header 4-2
Relocation 4-5
Sections 4-3

F
Floating Point Routines 3-4

Fractional Arithmetic Support 3-2

Frame Pointers 2-7
H

Hardware Loops 2-8
Hi Function 4-7

Identifyers

Op 4-8

PA 4-8

PC 4-8
Integer Routines 3-5
Interrupt Handlers 2-6

L

Label 6-6

local 6-6
Libraries 3-3
Line Function 4-7
Lo Function 4-7
Local label 6-6

M

Memcheck Function 4-8

@)

Op ldentifyer 4-8
Operating Modes 2-8
Operators 4-9
Optional Prefix 3-3

P

PA ldentifyer 4-8
Pack Function 4-6
PC Identifyer 4-8
Program Headers 4-24

R

Relocation Functions 4-6

Check 4-6

Hi 4-7

Line 4-7

Lo 4-7

Memcheck 4-8

Pack 4-6

Size 4-7

Sym 4-7
Reserved Names 4-8
Reserved Symbol Names 4-4
Return Value 3-6

S

Signature Symbols 3-5
Size Function 4-7
Stack 2-4
Stack Frame Layout 2-6
String
concatenation 6-5
substring 6-5
Structures 2-3
Sym Function 4-7

U
Unions 2-3

Preliminary (April 2000)

Index

STAR

CORE

BRIGHTER" DSP TECHNOLOGY!

How to reach us:

Motorola Literature Distribution
P.O. Box 5405

Denver, Colorado 80217

1 (800) 441-2447

Asia/Pacific
Motorola Semiconductors H.K. Ltd., Hong Kong
852-26629298

Japan
Motorola Japan, Ltd., Shinagawa-ku, Japan
81-3-5487-8488

Motorola Fax Back System (Mfax™)
1 (800) 774-1848; RMFAX0@email.sps.mot.com

DSP Helpline
dsphelp@dsp.sps.mot.com
Technical Resource Center
1(800) 521-6274

Internet
http://www.motorola-dsp.com

Lucent Technologies Microelectronics Group
Internet
http://www.lucent.com/micro/dsp

Email
docmaster@micro.lucent.com

U.S./Canada

Lucent Technologies Microelectronics Group
1-800-372-2447, FAX 610-712-4106

In CANADA: 1-800-553-2448, FAX 610-712-4106

Asia/Pacific Microelectronics Group
Lucent Technologies Singapore Pte. Ltd., Singapore
Tel. (65) 778 8833, FAX (65) 777 7495

China Microelectronics Group
Lucent Technologies (China) Co., Ltd., Shanghai
Tel. (86) 21 6440 0468, ext. 316, Fax (86)21 6440 0652

Japan Microelectronics Group
Lucent Technologies Japan, Ltd., Shinagawa-ku, Japan
Tel. (81) 3 5421 1600, FAX (81) 3 5421 1700

Europe Microelectronics Group Dataline
Tel. (44) 1189 324 299, FAX (44) 1189 328 148

N\
o

Digital DNA

from Motorola

microelectronics group

Lucent Technologies
Bell Labs Innovations 3

	SC100 Application Binary Interface
	Title Page
	Copyright Information
	Table of Contents
	List of Tables
	List of Figures
	List of Examples
	Chapter�1 Introduction
	1.1 Purpose
	1.2 References
	1.3 Revision History
	1.4 Overview
	1.5 Conformance Levels
	1.6 Future Standards

	Chapter�2 Low-Level Binary Interface
	2.1 Underlying Processor Primitives
	2.2 Fundamental Data Types
	2.2.1 Compound Data Type
	2.2.1.1 Arrays
	2.2.1.2 Structures and Unions
	2.2.1.3 Bit Fields

	2.3 Function Calling Conventions
	2.3.1 Stack
	2.3.2 Stack-Based Calling Convention
	2.3.3 Optimized Calling Sequences
	2.3.4 Interrupt Handlers
	2.3.5 Stack Frame Layout
	2.3.6 Frame and Argument Pointers
	2.3.7 Dynamic Memory Allocation
	2.3.8 Hardware Loops
	2.3.9 Operating Modes

	Chapter�3 High-Level Languages Issues
	3.1 C Preprocessor Predefines
	3.2 C In-Line Assembly Syntax
	3.3 C Name Mapping
	3.4 Fractional Arithmetic Support
	3.4.1 Optional Prefix

	3.5 Libraries
	3.5.1 Compiler Assist Libraries
	3.5.2 Floating-Point Routines
	3.5.3 Integer Routines

	3.6 Function Argument and Return Type Checking in C
	3.6.1 Signature Symbols
	3.6.2 Return Value
	3.6.3 Using Signature Symbols

	Chapter�4 SC100 ELF Object File Format
	4.1 Formats
	4.2 Definitions
	4.3 Interface Descriptions
	4.3.1 The ELF Header
	4.3.2 Sections
	4.3.3 Reserved Names
	4.3.4 Relocation
	4.3.4.1 Relocation Expression Format
	4.3.4.2 Functions
	4.3.4.2.1 Check Function
	4.3.4.2.2 Pack Function
	4.3.4.2.3 Sym Function
	4.3.4.2.4 Size Function
	4.3.4.2.5 Line Function
	4.3.4.2.6 Hi Function
	4.3.4.2.7 Lo Function
	4.3.4.2.8 Memcheck Function

	4.3.4.3 Special Identifiers
	4.3.4.4 Reserved Names
	4.3.4.5 Constants
	4.3.4.6 Operators
	4.3.4.7 Relocation Forms

	4.3.5 NOTE Section
	4.3.6 Program Headers

	Chapter�5 Endian Support
	5.1 Memory Organization
	5.1.1 SC140 Architecture
	5.1.2 Data Move
	5.1.3 Instruction Word Transfers

	5.2 Memory Access Behavior in Endian Modes
	5.3 Comments
	5.3.1 MOVE Multiple Registers
	5.3.2 MOVE.L for the Extension Registers
	5.3.3 PUSH/POP Instructions
	5.3.4 BSR/JSR
	5.3.5 Control instructions

	Chapter�6 Assembler Syntax and Directives
	6.1 Assembler-Significant Characters
	6.2 Assembler Directives
	6.2.1 Assembly Control
	6.2.2 Symbol Definition
	6.2.3 Data Definition/Storage Allocation
	6.2.4 Object File Control
	6.2.5 Macros and Conditional Assembly
	6.2.6 Assembler Syntax
	6.2.6.1 Input File Format
	6.2.6.2 Symbol Names
	6.2.6.3 Strings
	6.2.6.4 Source Statement Format
	6.2.6.5 Labels
	6.2.6.6 Operation Field
	6.2.6.7 Operand Field
	6.2.6.8 Comment Fields

	Index
	How to Reach Us

