

Aluminum electrolytic capacitors

Snap-in capacitors

Series/Type: B43305 Date: December 2006

 \odot EPCOS AG 2007. Reproduction, publication and dissemination of this publication, enclosures hereto and the information contained therein without EPCOS' prior express consent is prohibited.

Snap-in capacitors

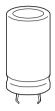
Ultra compact - 85 °C

General-purpose grade capacitors

Applications

- Switch-mode power supplies in industrial and entertainment electronics
- Uninterruptiple power supplies

Features


- Extremely high CV product, ultra compact
- High ripple current capability
- Different case sizes available for each capacitance value
- Voltage derating (0.93 · V_R) enables 105 °C operation, more details available upon request

Construction

- Charge/discharge-proof, polar
- Aluminum case, fully insulated
- Snap-in solder pins to hold component in place on PC-board
- Minus pole marking on case surface
- Minus pole not insulated from case
- Overload protection by safety vent on the base

Terminals

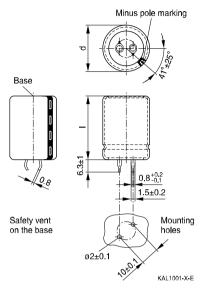
- Standard version with 2 terminals, 2 lengths available: 6.3 and 4.5 mm
- 3 terminals to ensure correct insertion: length 4.5 mm

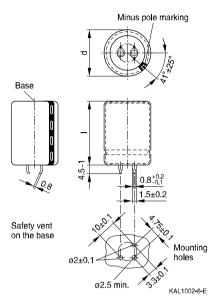
B43305

B43305

Ultra compact - 85 °C

Specifications and characteristics in brief


Rated voltage V _R	200 450 V	DC			
Surge voltage Vs	1.15 · V _R (for	$1.15 \cdot V_{\text{B}}$ (for $V_{\text{B}} \leq 250 \text{ V DC}$)			
	$1.10\cdotV_{\textrm{R}}$ (for	$V_R \ge 400$	V DC)		
Rated capacitance C _R	68 3300 µF				
Capacitance tolerance	$\pm 20\% \triangleq M$				
Dissipation factor tan δ	$V_{R} \le 250 \text{ V D}$	C: tan δ ≤	≤ 0.15		
(20 °C, 120 Hz)	$V_{R} \ge 400 \text{ V D}$	C: tan δ ≤	≤ 0.20		
Leakage current I _{leak} (5 min, 20 °C)	I _{leak} ≤ 0.3 μA	$\sqrt{\left(\frac{C_R}{\mu F}, \frac{V}{V}\right)}$	(<u>R</u>) ^{0.7} + 4 μA		
Self-inductance ESL	Approx. 20 nH	1			
Useful life		Requirements:			
85 °C, V _R , I _{AC,R}	> 2000 h	$\Delta C/C$	$\leq \pm 30\%$ of initial value		
40 °C, V_R , 1.1 · $I_{AC,R}$	> 100000 h	tan δ	\leq 3 times initial specified limit		
		I _{leak}	≤ initial specified limit		
Voltage endurance test		Post tes	st requirements:		
85 °C, V _R	2000 h	$\Delta C/C$	$\leq \pm 10\%$ of initial value		
		tan δ	\leq 1.3 times initial specified limit		
		I _{leak}	\leq initial specified limit		
Vibration resistance	To IEC 60068	8-2-6, tes	t Fc:		
test	•	•	de 0.35 mm, frequency range 10 Hz 55 Hz,		
		0.	duration 3×2 h.		
	•	unted by	its body which is rigidly clamped to the work		
	surface.				
IEC climatic category	To IEC 60068		$E = \frac{1}{2} \left(\frac{1}{2} + \frac{1}{2} +$		
			5/56 (-40 °C/+85 °C/56 days damp heat test) 5/56 (-25 °C/+85 °C/56 days damp heat test)		
Detail specification	$v_R \ge 400 \text{ V D}$				
Sectional specification	IEC 60384-4	00 3030	1-000		
Containa Specification	120 00004 4				



B43305 Ultra compact – 85 °C

Dimensional drawings

Snap-in terminals, length 6.3 ± 1 mm. Also available in a shorter version with a length of 4.5 - 1 mm. For packing mode and ordering example see next page.

Dimensions (mm)		Approx	Packing
d +1	l ±2	weight(g)	units (pcs.)
22	25	9	160
22	30	12	160
22	35	15	160
22	40	18	160
22	45	20	160
22	50	24	160
25	25	13	130
25	30	17	130
25	35	19	130
25	40	22	130
25	45	25	130
25	50	29	130
25	55	32	130

Snap-in capacitors are also available with 3 terminals (length 4.5 - 1 mm).

For packing mode and ordering example see next page.

Dimensions (mm)		Approx	Packing			
d +1	l ±2	weight(g)	units (pcs.)			
30	25	17	80			
30	30	23	80			
30	35	29	80			
30	40	36	80			
30	45	41	80			
30	50	46	80			
30	55	53	80			
35	25	22	60			
35	30	29	60			
35	35	36	60			
35	40	41	60			
35	45	56	60			
35	50	70	60			
35	55	81	60			

Ultra compact - 85 $^{\circ}$ C

B43305

Packing of snap-in capacitors

For ecological reasons the packing is pure cardboard. Components can be withdrawn (in full or in part) in the correct position for insertion.

Ordering codes for terminal styles

Snap-in capacitors Terminal versions	Identification in 3rd block of ordering code
Standard terminals (6.3 \pm 1) mm	M000
Short terminals (4.5 -1) mm	M007
3 terminals (4.5 -1) mm	M002

Ordering examples:

B43305A9107M007 }		nap-in capacitor with short terminals
-------------------	--	---------------------------------------

B43305A9107M002 }

snap-in capacitor with 3 terminals

Ultra compact – 85 °C

Overview of available types

V _R (V DC)	200	250	400	450
	Case dimensio	ons d×I (mm)		
C _R (μF)				
68			22 × 25	22 × 25
82			22 × 25	22 × 25
100			22 × 25	22 × 25
120			22 × 25	22 × 30
				25 imes 25
150			22 × 30	22×35
				25 imes 30
180			22×30	22×40
			25 imes 25	25 imes 30
				30 imes 25
220			22 imes 35	22×45
			25 imes 30	25 imes 35
				30 imes 30
270		22×25	22×45	22×50
			25 imes 35	25 imes 40
			30 imes 25	30 imes 30
				35×25
330	22×25	22 imes 30	22×50	25 imes 50
		25 imes 25	25 imes 40	30 imes 35
			30 imes 30	35 imes 30
			35×25	
390	22×25	22×30	25 imes 45	25×55
		25 imes 25	30 imes 35	30 × 40
			35 imes 30	35 × 30
470	22×30	22×35	25 imes 50	30 imes 45
	25 imes 25	25 imes 30	30 imes 40	35 imes 35
			35 imes 30	
560	22×35	22 imes 40	30 imes 45	30 imes 50
	25 imes 30	25 imes 35	35 imes 35	35 imes 40
		30 imes 25		
680	22×40	22×45	30 imes 50	35 imes 45
	25 imes 30	25 imes 40	35 imes 40	
	30 imes 25	30 imes 30		
820	22×45	25 × 45	30 × 55	35 × 55
	25 imes 35	30 imes 35	35 imes 45	
	30 imes 30	35×25		

Ultra compact – 85 °C

B43305

V _R (V DC)	200	250	400	450				
	Case dimensions $d \times I$ (mm)							
C _R (μF)								
1000	22×50	25×50	35 × 50					
	25 imes 40	30 imes 35						
	30 imes 30	35 imes 30						
	35 imes 25							
1200	25×45	25×55						
	30 imes 35	30 imes 40						
	35 imes 30	35 imes 35						
1500	25×55	30×50						
	30 imes 40	35 imes 40						
	35 imes 30							
1800	30 × 45	30 × 55						
	35 imes 35	35 imes 45						
2200	30 × 55	35×50						
	35 imes 40							
2700	35 × 50							
3300	35×55							

The capacitance and voltage ratings listed above are available in different cases upon request. Other voltage and capacitance ratings are also available upon request.

Ultra compact - 85 °C

Technical data and ordering codes

C _R	Case	ESR _{typ}	Z _{max}	I _{AC,max}	I _{AC,R} ¹⁾	Ordering code		
100 Hz	dimensions	100 Hz	10 kHz	100 Hz	100 Hz	(composition see below)		
20 °C	d×l	20 °C	20 °C	60 °C	85 °C			
μF	mm	mΩ	mΩ	А	А			
V _R = 200 V DC								
330	22×25	380	520	2.72	1.38	B43305A2337M00*		
390	22×25	320	440	2.95	1.50	B43305A2397M00*		
470	22×30	270	370	3.38	1.72	B43305A2477M00*		
470	25×25	270	370	3.33	1.70	B43305B2477M00*		
560	22×35	230	310	3.82	1.95	B43305A2567M00*		
560	25 imes 30	230	310	3.79	1.93	B43305B2567M00*		
680	22×40	190	260	4.34	2.21	B43305A2687M00*		
680	25 imes 30	190	260	4.18	2.13	B43305B2687M00*		
680	30×25	190	260	3.82	1.95	B43305C2687M00*		
820	22×45	150	210	4.90	2.50	B43305A2827M00*		
820	25 imes 35	150	210	4.76	2.42	B43305B2827M00*		
820	30 imes 30	150	210	4.37	2.23	B43305C2827M00*		
1000	22×50	130	180	5.54	2.83	B43305A2108M00*		
1000	25 imes 40	130	180	5.42	2.76	B43305B2108M00*		
1000	30×30	130	180	4.83	2.46	B43305C2108M00*		
1000	35×25	130	180	4.11	2.09	B43305D2108M00*		
1200	25×45	110	150	6.10	3.11	B43305A2128M00*		
1200	30×35	110	150	5.48	2.79	B43305B2128M00*		
1200	35 imes 30	110	150	4.99	2.54	B43305C2128M00*		
1500	25×55	85	120	7.15	3.64	B43305A2158M00*		
1500	30×40	85	120	6.74	3.44	B43305B2158M00*		
1500	35 imes 30	85	120	5.58	2.84	B43305C2158M00*		
1800	30 imes 45	70	100	7.59	3.87	B43305A2188M00*		
1800	35 imes 35	70	100	6.33	3.23	B43305B2188M00*		
2200	30×55	60	80	8.80	4.49	B43305A2228M00*		
2200	35 imes 40	60	80	7.22	3.68	B43305B2228M00*		
2700	35×50	45	65	8.44	4.30	B43305A2278M00*		
3300	35 imes 55	40	55	9.55	4.87	B43305A2338M00*		

Composition of ordering code

- * = Terminal style
 - 0 = snap-in standard terminals (6.3 \pm 1) mm
 - 2 = snap-in 3 terminals (4.5 -1) mm
 - 7 = snap-in short terminals (4.5 -1) mm

1) 120-Hz conversion factor of ripple current: I_{AC} (120 Hz) = 1.03 \cdot I_{AC} (100 Hz)

B43305

Ultra compact - 85 °C

Technical data and ordering codes

C _R	Case	ESR _{typ}	Z _{max}	I _{AC,max}	I _{AC,R} ²⁾	Ordering code			
100 Hz	dimensions	100 Hz	10 kHz	100 Hz	100 Hz	(composition see below)			
20 °C	d×l	20 °C	20 °C	60 °C	85 °C				
μF	mm	mΩ	mΩ	А	А				
·	V _B = 250 V DC								
270	22 × 25	470	640	2.61	1.33	B43305E2277M00*			
330	22×30	380	520	3.01	1.53	B43305E2337M00*			
330	25×25	380	520	2.95	1.50	B43305F2337M00*			
390	22×30	320	440	3.27	1.67	B43305E2397M00*			
390	25×25	320	440	3.21	1.64	B43305F2397M00*			
470	22×35	270	370	3.72	1.90	B43305E2477M00*			
470	25 imes 30	270	370	3.68	1.87	B43305F2477M00*			
560	22×40	230	310	4.19	2.13	B43305E2567M00*			
560	25 imes 35	230	310	4.16	2.12	B43305F2567M00*			
560	30×25	230	310	3.62	1.84	B43305G2567M00*			
680	22×45	190	260	4.74	2.42	B43305E2687M00*			
680	25 imes 40	190	260	4.73	2.41	B43305F2687M00*			
680	30 imes 30	190	260	4.15	2.12	B43305G2687M00*			
820	25 imes 45	150	210	5.34	2.72	B43305E2827M00*			
820	30 imes 35	150	210	4.73	2.41	B43305F2827M00*			
820	35×25	150	210	3.82	1.95	B43305G2827M00*			
1000	25×50	130	180	6.04	3.08	B43305E2108M00*			
1000	30 imes 35	130	180	5.22	2.66	B43305F2108M00*			
1000	35 imes 30	130	180	4.69	2.39	B43305G2108M00*			
1200	25×55	110	150	6.77	3.45	B43305E2128M00*			
1200	30×40	110	150	6.29	3.21	B43305F2128M00*			
1200	35 imes 35	110	150	5.32	2.71	B43305G2128M00*			
1500	30×50	85	120	7.41	3.78	B43305E2158M00*			
1500	35 imes 40	85	120	6.13	3.13	B43305F2158M00*			
1800	30×55	70	100	8.31	4.24	B43305E2188M00*			
1800	35 imes 45	70	100	6.91	3.52	B43305F2188M00*			
2200	35 imes 50	60	80	7.83	3.99	B43305E2228M00*			

Composition of ordering code

- * = Terminal style
 - 0 = snap-in standard terminals (6.3 \pm 1) mm
 - 2 = snap-in 3 terminals (4.5 1) mm
 - 7 = snap-in short terminals (4.5 -1) mm

2) 120-Hz conversion factor of ripple current: I_{AC} (120 Hz) = 1.03 \cdot I_{AC} (100 Hz)

Ultra compact - 85 °C

Technical data and ordering codes

C _R	Case	ESR _{typ}	Z _{max}	I _{AC,max}	I _{AC,R} ³⁾	Ordering code		
100 Hz	dimensions	100 Hz	10 kHz	100 Hz	100 Hz	(composition see below)		
20 °C	d×l	20 °C	20 °C	60 °C	85 °C			
μF	mm	mΩ	mΩ	A	A			
V _R = 400 V DC								
68	22 × 25	1990	2690	1.28	0.65	B43305A9686M00*		
82	22×25	1650	2230	1.41	0.72	B43305A9826M00*		
100	22×25	1360	1830	1.55	0.79	B43305A9107M00*		
120	22×25	1130	1530	1.70	0.87	B43305A9127M00*		
150	22×30	900	1220	1.98	1.01	B43305A9157M00*		
180	22×30	750	1020	2.17	1.11	B43305A9187M00*		
180	25×25	750	1020	2.18	1.11	B43305B9187M00*		
220	22×35	620	830	2.49	1.27	B43305A9227M00*		
220	25 imes 30	620	830	2.51	1.28	B43305B9227M00*		
270	22×45	500	680	2.92	1.49	B43305A9277M00*		
270	25 imes 35	500	680	2.89	1.47	B43305B9277M00*		
270	30 × 25	500	680	2.79	1.42	B43305C9277M00*		
330	22×50	410	560	3.31	1.69	B43305A9337M00*		
330	25×40	410	560	3.29	1.68	B43305B9337M00*		
330	30×30	410	560	3.22	1.64	B43305C9337M00*		
330	35×25	410	560	3.04	1.55	B43305D9337M00*		
390	25×45	350	470	3.68	1.87	B43305A9397M00*		
390	30 imes 35	350	470	3.62	1.85	B43305B9397M00*		
390	35 imes 30	350	470	3.67	1.87	B43305C9397M00*		
470	25×50	290	390	4.14	2.11	B43305A9477M00*		
470	30×40	290	390	4.37	2.23	B43305B9477M00*		
470	35 imes 30	290	390	4.03	2.05	B43305C9477M00*		
560	30×45	240	330	4.91	2.50	B43305A9567M00*		
560	35 imes 35	240	330	4.56	2.32	B43305B9567M00*		
680	30×50	200	270	5.55	2.83	B43305A9687M00*		
680	35 imes 40	200	270	5.18	2.64	B43305B9687M00*		
820	30×55	170	230	6.23	3.18	B43305A9827M00*		
820	35×45	170	230	5.85	2.98	B43305B9827M00*		
1000	35 imes 50	140	190	6.63	3.38	B43305A9108M00*		

Composition of ordering code

* = Terminal style

- 0 = snap-in standard terminals (6.3 \pm 1) mm
- 2 = snap-in 3 terminals (4.5 -1) mm
- 7 = snap-in short terminals (4.5 -1) mm

3) 120-Hz conversion factor of ripple current: I_{AC} (120 Hz) = 1.03 \cdot I_{AC} (100 Hz)

B43305

Ultra compact - 85 °C

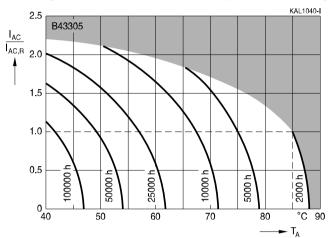
Technical data and ordering codes

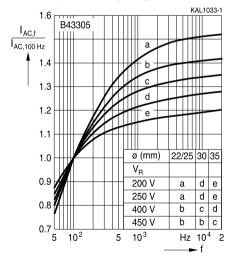
C _R	Case	ESR _{typ}	Z _{max}	I _{AC,max}	I _{AC,R} ⁴⁾	Ordering code
100 Hz	dimensions	100 Hz	10 kHz	100 Hz	100 Hz	(composition see below)
20 °C	d×l	20 °C	20 °C	60 °C	85 °C	, , , , , , , , , , , , , , , , , , , ,
μF	mm	mΩ	mΩ	A	A	
$V_{\rm R} = 450 $ V		_ · · · = -	[···	<u></u>	<u> </u>	
68	22×25	1990	2800	1.37	0.70	B43305A5686M00*
82	22×25	1650	2320	1.50	0.76	B43305A5826M00*
100	22×25	1360	1900	1.66	0.85	B43305A5107M00*
120	22×30	1130	1590	1.90	0.97	B43305A5127M00*
120	25×25	1130	1590	1.90	0.97	B43305B5127M00*
150	22×35	900	1270	2.20	1.12	B43305A5157M00*
150	25 imes 30	900	1270	2.21	1.13	B43305B5157M00*
180	22×40	750	1060	2.48	1.26	B43305A5187M00*
180	25 imes 30	750	1060	2.42	1.23	B43305B5187M00*
180	30 × 25	750	1060	2.49	1.27	B43305C5187M00*
220	22×45	620	870	2.82	1.44	B43305A5227M00*
220	25 imes 35	620	870	2.78	1.41	B43305B5227M00*
220	30 imes 30	620	870	2.87	1.46	B43305C5227M00*
270	22×50	500	710	3.20	1.63	B43305A5277M00*
270	25 imes 40	500	710	3.17	1.62	B43305B5277M00*
270	30 imes 30	500	710	3.18	1.62	B43305C5277M00*
270	35×25	500	710	3.04	1.55	B43305D5277M00*
330	25 imes 50	410	580	3.70	1.88	B43305A5337M00*
330	30 imes 35	410	580	3.64	1.86	B43305B5337M00*
330	35 imes 30	410	580	3.73	1.90	B43305C5337M00*
390	25 imes 55	350	490	4.11	2.09	B43305A5397M00*
390	30×40	350	490	4.36	2.22	B43305B5397M00*
390	35 imes 30	350	490	4.06	2.07	B43305C5397M00*
470	30×45	290	410	4.92	2.51	B43305A5477M00*
470	35 imes 35	290	410	4.62	2.35	B43305B5477M00*
560	30 imes 50	240	340	5.50	2.81	B43305A5567M00*
560	35×40	240	340	5.20	2.65	B43305B5567M00*
680	35×45	200	280	5.89	3.00	B43305A5687M00*
820	35 imes 55	170	240	6.79	3.46	B43305A5827M00*

Composition of ordering code

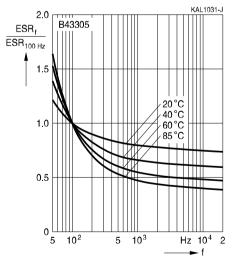
* = Terminal style

- 0 = snap-in standard terminals (6.3 \pm 1) mm
- 2 = snap-in 3 terminals (4.5 -1) mm
- 7 = snap-in short terminals (4.5 -1) mm


4) 120-Hz conversion factor of ripple current: I_{AC} (120 Hz) = 1.03 \cdot I_{AC} (100 Hz)

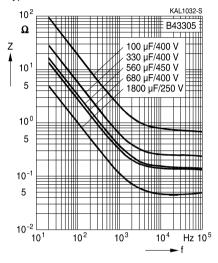


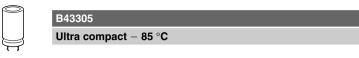
Useful life


depending on ambient temperature T_A under ripple current operating conditions¹⁾

Frequency factor of permissible ripple current I_{AC} versus frequency f

Frequency characteristics of ESR Typical behavior


 Refer to chapter "General technical information, 5.3 Calculation of useful life" for an explanation on how to interpret the useful life graphs.


Ultra compact - 85 $^{\circ}$ C

Impedance Z versus frequency f

Typical behavior at 20 °C

Cautions and warnings

Personal safety

The electrolytes used by EPCOS have not only been optimized with a view to the intended application, but also with regard to health and environmental compatibility. They do not contain any solvents that are detrimental to health, e.g. dimethyl formamide (DMF) or dimethyl acetamide (DMAC).

Furthermore, part of the high-voltage electrolytes used by EPCOS are self-extinguishing. They contain flame-retarding substances which will quickly extinguish any flame that may have been ignited.

As far as possible, EPCOS does not use any dangerous chemicals or compounds to produce operating electrolytes. However, in exceptional cases, such materials must be used in order to achieve specific physical and electrical properties because no safe substitute materials are currently known. However, the amount of dangerous materials used in our products has been limited to an absolute minimum. Nevertheless, the following rules should be observed when handling Al electrolytic capacitors:

- Any escaping electrolyte should not come into contact with eyes or skin.
- If electrolyte does come into contact with the skin, wash the affected parts immediately with running water. If the eyes are affected, rinse them for 10 minutes with plenty of water. If symptoms persist, seek medical treatment.
- Avoid breathing in electrolyte vapor or mists. Workplaces and other affected areas should be well ventilated. Clothing that has been contaminated by electrolyte must be changed and rinsed in water.

Ultra compact - 85 °C

Product safety

The table below summarize the safety instructions that must be observed without fail. A detailed description can be found in the relevant sections of chapter "General technical information".

Торіс	Safety information	Reference Chapter "General technical information"
Polarity	Make sure that polar capacitors are connected with the right polarity.	1 "Basic construction of aluminum electrolytic capacitors"
Reverse voltage	Voltages polarity classes should be prevented by connecting a diode.	3.1.6 "Reverse voltage"
Upper category temperature	Do not exceed the upper category temperatur.	7.2 "Maximum permissible operating temperature"
Maintenance	Make periodic inspections of the capacitors. Before the inspection, make sure that the power supply is turned off and carefully discharge the electricity of the capacitors. Do not apply any mechanical stress to the capacitor terminals.	10 "Maintenance"
Mounting position of screw terminal capacitors	Do not mount the capacitor with the terminals (safety vent) upside down.	11.1. "Mounting positions of capacitors with screw terminals"
Mounting of single-ended capacitors	The internal structure of single-ended capacitors might be damaged if excessive force is applied to the lead wires. Avoid any compressive, tensile or flexural stress. Do not move the capacitor after soldering to PC board. Do not pick up the PC board by the soldered capacitor. Do not insert the capacitor on the PC board with a hole space different to the lead space specified.	11.4 "Mounting considerations for single-ended capacitors"
Robustness of terminals	The following maximum tightening torques must not be exceeded when connecting screw terminals: M5: 2 Nm M6: 2.5 Nm	11.3 "Mounting torques"
Soldering	Do not exceed the specified time or temperature limits during soldering.	11.5 "Soldering"

Ultra compact - 85 °C

Торіс	Safety information	Reference Chapter "General technical information"
Soldering, cleaning agents	Do not allow halogenated hydrocarbons to come into contact with aluminum electrolytic capacitors.	11.6 "Cleaning agents"
Passive flammability	Avoid external energy, such as fire or electricity.	8.1 "Passive flammability"
Active flammability	Avoid overload of the capacitors.	8.2 "Active flammability"
		Reference Chapter "Capacitors with screw terminals"
Breakdown strength of insulating sleeves	Do not damage the insulating sleeve, especially when ring clips are used for mounting.	"Screw terminals - accessories"

The following applies to all products named in this publication:

- 1. Some parts of this publication contain statements about the suitability of our products for certain areas of application. These statements are based on our knowledge of typical requirements that are often placed on our products in the areas of application concerned. We nevertheless expressly point out that such statements cannot be regarded as binding statements about the suitability of our products for a particular customer application. As a rule, EPCOS is either unfamiliar with individual customer applications or less familiar with them than the customers themselves. For these reasons, it is always ultimately incumbent on the customer to check and decide whether an EPCOS product with the properties described in the product specification is suitable for use in a particular customer application.
- 2. We also point out that in individual cases, a malfunction of passive electronic components or failure before the end of their usual service life cannot be completely ruled out in the current state of the art, even if they are operated as specified. In customer applications requiring a very high level of operational safety and especially in customer applications in which the malfunction or failure of a passive electronic component could endanger human life or health (e.g. in accident prevention or life-saving systems), it must therefore be ensured by means of suitable design of the customer application or other action taken by the customer (e.g. installation of protective circuitry or redundancy) that no injury or damage is sustained by third parties in the event of malfunction or failure of a passive electronic component.
- 3. The warnings, cautions and product-specific notes must be observed.
- 4. In order to satisfy certain technical requirements, some of the products described in this publication may contain substances subject to restrictions in certain jurisdictions (e.g. because they are classed as "hazardous"). Useful information on this will be found in our Material Data Sheets on the Internet (www.epcos.com/material). Should you have any more detailed questions, please contact our sales offices.
- 5. We constantly strive to improve our products. Consequently, the products described in this publication may change from time to time. The same is true of the corresponding product specifications. Please check therefore to what extent product descriptions and specifications contained in this publication are still applicable before or when you place an order. We also reserve the right to discontinue production and delivery of products. Consequently, we cannot guarantee that all products named in this publication will always be available.
- Unless otherwise agreed in individual contracts, all orders are subject to the current version of the "General Terms of Delivery for Products and Services in the Electrical Industry" published by the German Electrical and Electronics Industry Association (ZVEI).
- 7. The trade names EPCOS, EPCOS-JONES, BAOKE, Alu-X, CeraDiode, CSSP, MLSC, PhaseCap, PhaseMod, SIFERRIT, SIFI, SIKOREL, SilverCap, SIMID, SIOV, SIP5D, SIP5K, UltraCap, WindCap are trademarks registered or pending in Europe and in other countries. Further information will be found on the Internet at www.epcos.com/trademarks.