

Low Voltage 4 Ω Dual SPDT Switch

ADG736

FEATURES

+1.8 V to +5.5 V Single Supply 2.5 Ω (Typ) On Resistance Low On-Resistance Flatness -3 dB Bandwidth >200 MHz Rail-to-Rail Operation 10-Lead μ SOIC Package Fast Switching Times

t_{ON} 16 ns t_{OFF} 8 ns

Typical Power Consumption (<0.01 μ W) TTL/CMOS Compatible

APPLICATIONS

Battery Powered Systems
Communication Systems
Sample-and-Hold Systems
Audio Signal Routing
Audio and Video Switching
Mechanical Reed Relay Replacement

FUNCTIONAL BLOCK DIAGRAM

SWITCHES SHOWN FOR A LOGIC "1" INPUT

GENERAL DESCRIPTION

The ADG736 is a monolithic device comprising two independently selectable CMOS SPDT switches. These switches are designed on a submicron process that provides low power dissipation yet gives high switching speed, low on resistance, low leakage currents and wide input signal bandwidth.

The on resistance profile is very flat over the full analog signal range. This ensures excellent linearity and low distortion when switching audio signals. Fast switching speed also makes the part suitable for video signal switching.

The ADG736 can operate from a single +1.8 V to +5.5 V supply, making it ideally suited to portable and battery powered instruments.

Each switch conducts equally well in both directions when on and has an input signal range that extends to the power supplies. The ADG736 exhibits break-before-make switching action.

The ADG736 is available in a 10-lead $\mu SOIC$ package.

PRODUCT HIGHLIGHTS

- +1.8 V to +5.5 V Single Supply Operation.
 The ADG736 offers high performance, including low on resistance and fast switching times and is fully specified and guaranteed with +3 V and +5 V supply rails.
- 2. Very Low R_{ON} (4.5 Ω Max at 5 V, 8 Ω Max at 3 V). At supply voltage of +1.8 V, R_{ON} is typically 35 Ω over the temperature range.
- 3. Low On-Resistance Flatness.
- 4. −3 dB Bandwidth >200 MHz.
- Low Power Dissipation. CMOS construction ensures low power dissipation.
- 6. Fast t_{ON}/t_{OFF} .
- 7. Break-Before-Make Switching Action.
- 8. 10-Lead μSOIC Package.

REV. 0

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781/329-4700 World Wide Web Site: http://www.analog.com Fax: 781/326-8703 © Analog Devices, Inc., 1998

$\label{eq:add-specifications-40°C to +85°C, unless otherwise add of the control of the control$

	B Version			
Parameter	+25°C	-40°C to +85°C	Units	Test Conditions/Comments
ANALOG SWITCH				
Analog Signal Range		0 V to V _{DD}	V	
On-Resistance (R _{ON})	2.5	DD.	Ω typ	$V_S = 0 \text{ V to } V_{DD}, I_{DS} = -10 \text{ mA};$
olv,	4	4.5	Ω max	Test Circuit 1
On-Resistance Match Between				
Channels (ΔR_{ON})		0.1	Ω typ	$V_S = 0 \text{ V to } V_{DD}, I_{DS} = -10 \text{ mA}$
		0.4	Ω max	
On-Resistance Flatness (R _{FLAT(ON)})	0.5		Ω typ	$V_S = 0 \text{ V to } V_{DD}, I_{DS} = -10 \text{ mA}$
		1.2	Ω max	
LEAKAGE CURRENTS				$V_{DD} = +5.5 \text{ V}$
Source OFF Leakage I _S (OFF)	±0.01		nA typ	$V_S = 4.5 \text{ V/1 V}, V_D = 1 \text{ V/4.5 V};$
20 m 20 21 20 m 20 15 (211)	±0.1	±0.3	nA max	Test Circuit 2
Channel ON Leakage ID, IS (ON)	±0.01		nA typ	$V_S = V_D = 1 \text{ V or } 4.5 \text{ V};$
	±0.1	± 0.3	nA max	Test Circuit 3
DIGITAL INPUTS				
Input High Voltage, V _{INH}		2.4	V min	
Input Low Voltage, V _{INL}		0.8	V max	
Input Current		0.0	V IIIux	
I _{INL} or I _{INH}	0.005		μA typ	$V_{IN} = V_{INI}$ or V_{INH}
-INL V2 -INF		±0.1	μA max	· IN · INL 02 · INH
DYNAMIC CHARACTERISTICS ²				
ton	12		ns typ	$R_{L} = 300 \Omega, C_{L} = 35 pF$
-ON		16	ns max	$V_S = 3 \text{ V}$, Test Circuit 4
t_{OFF}	5		ns typ	$R_{L} = 300 \Omega, C_{L} = 35 pF$
		8	ns max	$V_S = 3 \text{ V}$, Test Circuit 4
Break-Before-Make Time Delay, t _D	7		ns typ	$R_L = 300 \Omega, C_L = 35 pF$
• -		1	ns min	$V_{S1} = V_{S2} = 3 \text{ V}$, Test Circuit 5
Off Isolation	-62		dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 10 MHz$
	-82		dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$;
				Test Circuit 6
Channel-to-Channel Crosstalk	-62		dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 10 MHz$
	-82		dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$;
				Test Circuit 7
Bandwidth –3 dB	200		MHz typ	$R_L = 50 \Omega$, $C_L = 5 pF$; Test Circuit 8
C_{S} (OFF)	9		pF typ	
C_D , C_S (ON)	32		pF typ	
POWER REQUIREMENTS				$V_{\rm DD}$ = +5.5 V
				Digital Inputs = 0 V or 5 V
$I_{ m DD}$	0.001		μA typ	
		1.0	μA max	

NOTES

Specifications subject to change without notice.

¹Temperature ranges are as follows: B Version: -40°C to +85°C.

²Guaranteed by design, not subject to production test.

 $\textbf{SPECIFICATIONS}^{1} \text{ (V}_{DD} = +3 \text{ V} \pm 10\%, \text{ GND} = 0 \text{ V}. \text{ All Specifications} -40^{\circ}\text{C to} +85^{\circ}\text{C}, \text{ unless otherwise noted.)}$

	B Version -40°C to			
Parameter	+25°C	+85°C	Units	Test Conditions/Comments
ANALOG SWITCH				
Analog Signal Range		0 V to V _{DD}	V	
On-Resistance (R _{ON})	5	5.5	Ω typ	$V_S = 0 \text{ V to } V_{DD}, I_{DS} = -10 \text{ mA};$
		8	Ω max	Test Circuit 1
On-Resistance Match Between		Ü	111421	Tost Great 1
Channels (ΔR_{ON})	0.1		Ω typ	$V_S = 0 \text{ V to } V_{DD}, I_{DS} = -10 \text{ mA}$
	0.1	0.4	Ω max	13 0 1 to 1 DD, 1 D3 10 IM1
On-Resistance Flatness (R _{FLAT(ON)})		2.5	Ω typ	$V_S = 0 \text{ V to } V_{DD}, I_{DS} = -10 \text{ mA}$
. (2.9	ii typ	
LEAKAGE CURRENTS	1001		Α.	$V_{DD} = +3.3 \text{ V}$
Source OFF Leakage I _S (OFF)	±0.01		nA typ	$V_S = 3 \text{ V/1 V}, V_D = 1 \text{ V/3 V};$
	±0.1	±0.3	nA max	Test Circuit 2
Channel ON Leakage I_D , I_S (ON)	±0.01		nA typ	$V_{S} = V_{D} = 1 \text{ V or } 3 \text{ V};$
	±0.1	±0.3	nA max	Test Circuit 3
DIGITAL INPUTS				
Input High Voltage, V _{INH}		2.0	V min	
Input Low Voltage, V _{INL}		0.4	V max	
Input Current				
I _{INL} or I _{INH}	0.005		μA typ	$V_{IN} = V_{INI}$ or V_{INH}
		±0.1	μA max	III III
DYNAMIC CHARACTERISTICS ²				
t _{ON}	14		ns typ	$R_{L} = 300 \Omega, C_{L} = 35 pF$
ON		20	ns max	$V_S = 2 \text{ V}$; Test Circuit 4
$t_{ m OFF}$	6	20	ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$
OFF		10	ns max	$V_S = 2 \text{ V}$; Test Circuit 4
Break-Before-Make Time Delay, t _D	7	10	ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$
Break Before Wake Time Belay, th	'	1	ns min	$V_{S1} = V_{S2} = 2 \text{ V}$; Test Circuit 5
Off Isolation	-62	1	dB typ	$R_{L} = 50 \Omega, C_{L} = 5 \text{ pF, f} = 10 \text{ MHz}$
On Isolation	-82		dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 10 MHz$;
	-02		ub typ	Test Circuit 6
Channel-to-Channel Crosstalk	-62		dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 10 MHz$
Chamier to Chamier Crosstain	-82		dB typ	$R_L = 50 \Omega$, $C_L = 5 \text{ pF}$, $f = 1 \text{ MHz}$;
	02		ab typ	Test Circuit 7
Bandwidth –3 dB	200		MHz typ	$R_L = 50 \Omega$, $C_L = 5 pF$; Test Circuit 8
C _S (OFF)	9		pF typ	I. Journ of private of content of
$C_S(ON)$	32		pF typ	
POWER REQUIREMENTS				$V_{\rm DD} = +3.3 \text{ V}$
IOWER REQUIREMENTS				Digital Inputs = 0 V or 3 V
${ m I}_{ m DD}$	0.001		μA typ	Digital Inputs – 0 v of 5 v
∸עע	0.001	1.0	μΑ typ μΑ max	

Specifications subject to change without notice.

REV. 0 -3-

NOTES $^{1}Temperature$ ranges are as follows: B Version: $-40\,^{\circ}C$ to +85 $^{\circ}C.$

²Guaranteed by design, not subject to production test.

ADG736

ABSOLUTE MAXIMUM RATINGS¹

$(T_A = +25^{\circ}C \text{ unless otherwise noted})$
V_{DD} to GND0.3 V to +6 V
Analog, Digital Inputs ² 0.3 V to V_{DD} +0.3 V or
30 mA, Whichever Occurs First
Continuous Current, S or D
Peak Current, S or D 100 mA
(Pulsed at 1 ms, 10% Duty Cycle Max)
Operating Temperature Range
Industrial (B Version)40°C to +85°C
Storage Temperature Range65°C to +150°C
Junction Temperature +150°C
μSOIC Package, Power Dissipation
θ_{JA} Thermal Impedance
Lead Temperature, Soldering
Vapor Phase (60 sec) +215°C
Infrared (15 sec) +220°C
ESD

NOTES

¹Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those listed in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Only one absolute maximum rating may be applied at any one time.

²Overvoltages at IN, S or D will be clamped by internal diodes. Current should be limited to the maximum ratings given.

ORDERING GUIDE

Model	Temperature Range	Brand ¹	Package Option ²
ADG736BRM	−40°C to +85°C	SAB	RM-10

NOTES

PIN CONFIGURATION (10-Lead μSOIC)

TERMINOLOGY

TERMINOLOG	σΥ
$\overline{ m V_{DD}}$	Most positive power supply potential.
GND	Ground (0 V) reference.
S	Source terminal. May be an input or output.
D	Drain terminal. May be an input or output.
IN	Logic control input.
R_{ON}	Ohmic resistance between D and S.
$\Delta R_{ m ON}$	On resistance match between any two channels i.e., R_{ON} max- R_{ON} min.
R _{FLAT(ON)}	Flatness is defined as the difference between the maximum and minimum value of on resis- tance as measured over the specified analog signal range.
I _S (OFF)	Source leakage current with the switch "OFF."
I_D , I_S (ON)	Channel leakage current with the switch "ON."
$V_{D}(V_{S})$	Analog voltage on terminals D, S.
C _S (OFF)	"OFF" switch source capacitance.
$C_D, C_S (ON)$	"ON" switch capacitance.
t_{ON}	Delay between applying the digital control input and the output switching on. See Test Circuit 4.
t _{OFF}	Delay between applying the digital control input and the output switching off.
t_D	"OFF" time or "ON" time measured between the 90% points of both switches, when switch- ing from one address state to another. See Test Circuit 5.
Crosstalk	A measure of unwanted signal that is coupled through from one channel to another as a result of parasitic capacitance.
Off Isolation	A measure of unwanted signal coupling through an "OFF" switch.
Bandwidth	The frequency at which the output is attenuated by –3 dBs.
On Response	The frequency response of the "ON" switch.
On Loss	The voltage drop across the "ON" switch, seen on the On Response versus frequency plot as how many dBs the signal is away from 0 dB at very low frequencies.

Table I. Truth Table

Logic	Switch A	Switch B
0	OFF	ON
1	ON	OFF

CAUTION.

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the ADG736 features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

¹Brand = Due to small package size, these three characters represent the part number.

 $^{^{2}}$ RM = μ SOIC.

Typical Performance Characteristics—ADG736

Figure 1. On Resistance as a Function of V_D (V_S) Single Supplies

Figure 4. Supply Current vs. Input Switching Frequency

Figure 2. On Resistance as a Function of V_D (V_S) for Different Temperatures $V_{DD} = 3 \ V$

Figure 5. On Response vs. Frequency

Figure 3. On Resistance as a Function of V_D (V_S) for Different Temperatures V_{DD} = 5 V

Figure 6. Off Isolation vs. Frequency

REV. 0 –5–

ADG736

Figure 7. Crosstalk vs. Frequency

APPLICATIONS

Figure 8. Using the ADG736 to Select Between Two Video Signals

Test Circuits

Test Circuit 1. On Resistance

Test Circuit 2. Off Leakage

Test Circuit 3. On Leakage

Test Circuit 4. Switching Times

Test Circuit 5. Break-Before-Make Time Delay, t_D

Test Circuit 6. Off Isolation

CHANNEL-TO-CHANNEL CROSSTALK = 20 \times LOG $|V_S/V_{OUT}|$

Test Circuit 7. Channel-to-Channel Crosstalk

Test Circuit 8. Bandwidth

OUTLINE DIMENSIONS

Dimensions shown in inches and (mm).

10-Lead μSOIC (RM-10)

