CMOS Low Voltage 4Ω Dual SPDT Switch

FEATURES

+1.8 V to +5.5 V Single Supply
2.5Ω (Typ) On Resistance
Low On-Resistance Flatness
-3 dB Bandwidth > 200 MHz
Rail-to-Rail Operation
10-Lead μ SOIC Package
Fast Switching Times
$t_{\text {on }} 16 \mathrm{~ns}$
$t_{\text {off }} 8 \mathrm{~ns}$
Typical Power Consumption ($<0.01 \mu \mathrm{~W}$)
TTL/CMOS Compatible

APPLICATIONS

Battery Powered Systems
Communication Systems
Sample-and-Hold Systems
Audio Signal Routing
Audio and Video Switching
Mechanical Reed Relay Replacement

FUNCTIONAL BLOCK DIAGRAM

SWITCHES SHOWN FOR A LOGIC "1" INPUT

GENERAL DESCRIPTION

The ADG736 is a monolithic device comprising two independently selectable CMOS SPDT switches. These switches are designed on a submicron process that provides low power dissipation yet gives high switching speed, low on resistance, low leakage currents and wide input signal bandwidth.

The on resistance profile is very flat over the full analog signal range. This ensures excellent linearity and low distortion when switching audio signals. Fast switching speed also makes the part suitable for video signal switching.
The ADG736 can operate from a single +1.8 V to +5.5 V supply, making it ideally suited to portable and battery powered instruments.
Each switch conducts equally well in both directions when on and has an input signal range that extends to the power supplies. The ADG736 exhibits break-before-make switching action.
The ADG736 is available in a 10 -lead μ SOIC package.

PRODUCT HIGHLIGHTS

1. +1.8 V to +5.5 V Single Supply Operation. The ADG736 offers high performance, including low on resistance and fast switching times and is fully specified and guaranteed with +3 V and +5 V supply rails.
2. Very Low R_{ON} (4.5 Ω Max at $5 \mathrm{~V}, 8 \Omega$ Max at 3 V). At supply voltage of $+1.8 \mathrm{~V}, \mathrm{R}_{\mathrm{ON}}$ is typically 35Ω over the temperature range.
3. Low On-Resistance Flatness.
4. -3 dB Bandwidth $>200 \mathrm{MHz}$.
5. Low Power Dissipation.

CMOS construction ensures low power dissipation.
6. Fast $\mathrm{t}_{\mathrm{ON}} / \mathrm{t}_{\mathrm{OFF}}$.
7. Break-Before-Make Switching Action.
8. 10 -Lead μ SOIC Package.

REV. 0

[^0]One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.

NOTES

${ }^{1}$ Temperature ranges are as follows: B Version: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.
${ }^{2}$ Guaranteed by design, not subject to production test.
Specifications subject to change without notice.

SPECIFICATIONS ${ }^{1}$

 $\left(V_{D D}=+3 V \pm 10 \%, G N D=0 \mathrm{~V}\right.$. All Specifications $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted.)| | | | | |
| :---: | :---: | :---: | :---: | :---: |
| Parameter | $+25^{\circ} \mathrm{C}$ | $\begin{aligned} & -40^{\circ} \mathrm{C} \text { to } \\ & +85^{\circ} \mathrm{C} \end{aligned}$ | Units | Test Conditions/Comments |
| ANALOG SWITCH | | | | |
| Analog Signal Range | 5 | 0 V to V_{DD} | V | |
| On-Resistance (R_{ON}) | | 5.5 | Ω typ | $\mathrm{V}_{\mathrm{S}}=0 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{DD}}, \mathrm{I}_{\mathrm{DS}}=-10 \mathrm{~mA}$; |
| | | 8 | Ω max | Test Circuit 1 |
| On-Resistance Match Between Channels ($\Delta \mathrm{R}_{\mathrm{ON}}$) | 0.1 | | $\Omega \text { typ }$ | $\mathrm{V}_{\mathrm{S}}=0 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{DD}}, \mathrm{I}_{\mathrm{DS}}=-10 \mathrm{~mA}$ |
| | | 0.4 | Ω max | |
| On-Resistance Flatness ($\mathrm{R}_{\text {FLAT(ON) }}$) | | 2.5 | Ω typ | $\mathrm{V}_{\mathrm{S}}=0 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{DD}}, \mathrm{I}_{\mathrm{DS}}=-10 \mathrm{~mA}$ |
| LEAKAGE CURRENTS
 Source OFF Leakage IS (OFF) | ± 0.01 | | | $\mathrm{V}_{\mathrm{DD}}=+3.3 \mathrm{~V}$ |
| | | | nA typ | $\mathrm{V}_{\mathrm{S}}=3 \mathrm{~V} / 1 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=1 \mathrm{~V} / 3 \mathrm{~V}$; |
| | ± 0.1 | ± 0.3 | $n A \max$ | Test Circuit 2 |
| Channel ON Leakage $\mathrm{I}_{\mathrm{D}}, \mathrm{I}_{\text {S }}(\mathrm{ON})$ | ± 0.01 | | nA typ | $\mathrm{V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{D}}=1 \mathrm{~V}$ or 3 V ; |
| | ± 0.1 | ± 0.3 | nA max | Test Circuit 3 |
| DIGITAL INPUTS | | | | |
| Input High Voltage, $\mathrm{V}_{\text {INH }}$ | 0.005 | 2.00.4 | V min
 V max | $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {INL }}$ or $\mathrm{V}_{\text {INH }}$ |
| | | | | |
| Input Current
 $\mathrm{I}_{\mathrm{INL}}$ or $\mathrm{I}_{\mathrm{INH}}$ | | | $\mu \mathrm{A}$ typ | |
| $\mathrm{I}_{\text {INL }}$ or $\mathrm{I}_{\text {INH }}$ | | ± 0.1 | $\mu \mathrm{A}$ max | |
| DYNAMIC CHARACTERISTICS ${ }^{2}$ | | | | |
| t_{ON} | 14 | | ns typ | $\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$ |
| | | 20 | ns max | $\mathrm{V}_{\mathrm{S}}=2 \mathrm{~V}$; Test Circuit 4 |
| $\mathrm{t}_{\text {OFF }}$ | 6 | | ns typ | $\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$ |
| | | 10 | ns max | $\mathrm{V}_{\mathrm{S}}=2 \mathrm{~V}$; Test Circuit 4 |
| Break-Before-Make Time Delay, t_{D} | 7 | | ns typ | $\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$ |
| | | 1 | ns min | $\mathrm{V}_{\mathrm{S} 1}=\mathrm{V}_{\mathrm{S} 2}=2 \mathrm{~V}$; Test Circuit 5 |
| Off Isolation | $\begin{aligned} & -62 \\ & -82 \end{aligned}$ | | dB typ | $\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=10 \mathrm{MHz}$ |
| | | | dB typ | $\begin{aligned} & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz} \text {; } \\ & \text { Test Circuit } 6 \end{aligned}$ |
| Channel-to-Channel Crosstalk | -62 | | dB typ | $\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=10 \mathrm{MHz}$ |
| | -82 | | dB typ | $\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz}$ $\text { Test Circuit } 7$ |
| Bandwidth -3 dB | 200 | | MHz typ | $\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$; Test Circuit 8 |
| C_{S} (OFF) | 9 | | pF typ | |
| $\mathrm{C}_{\mathrm{D}}, \mathrm{C}_{S}(\mathrm{ON})$ | 32 | | pF typ | |
| POWER REQUIREMENTS | 0.001 | | | $\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=+3.3 \mathrm{~V} \\ & \text { Digital Inputs }=0 \mathrm{~V} \text { or } 3 \mathrm{~V} \end{aligned}$ |
| I_{DD} | | | $\mu \mathrm{A}$ typ | |
| | | 1.0 | $\mu \mathrm{A}$ max | |

NOTES

${ }^{1}$ Temperature ranges are as follows: B Version: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.
${ }^{2}$ Guaranteed by design, not subject to production test.
Specifications subject to change without notice.

ABSOLUTE MAXIMUM RATINGS ${ }^{1}$

($\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ unless otherwise noted)
V_{DD} to GND . -0.3 V to +6 V
Analog, Digital Inputs ${ }^{2}$. -0.3 V to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$ or 30 mA , Whichever Occurs First
Continuous Current, S or D . 30 mA
Peak Current, S or D . 100 mA
(Pulsed at $1 \mathrm{~ms}, 10 \%$ Duty Cycle Max)
Operating Temperature Range
Industrial (B Version) $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Junction Temperature . $+150^{\circ} \mathrm{C}$
μ SOIC Package, Power Dissipation 315 mW
θ_{JA} Thermal Impedance . $205^{\circ} \mathrm{C} / \mathrm{W}$
Lead Temperature, Soldering
Vapor Phase (60 sec) . $+215^{\circ} \mathrm{C}$
Infrared (15 sec) . $+220^{\circ} \mathrm{C}$
ESD . 2 kV

NOTES

${ }^{1}$ Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those listed in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Only one absolute maximum rating may be applied at any one time.
${ }^{2}$ Overvoltages at IN, S or D will be clamped by internal diodes. Current should be limited to the maximum ratings given.

ORDERING GUIDE

Model	Temperature Range	Brand ${ }^{1}$	Package Option ${ }^{2}$
ADG736BRM	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	SAB	RM-10
NOTES ${ }^{1}$ Brand = Due to small package size, these three characters represent the part number. ${ }^{2} \mathrm{RM}=\mu \mathrm{SOIC} .$			

PIN CONFIGURATION
 (10-Lead μ SOIC)

TERMINOLOGY

V_{DD}	Most positive power supply potential. Ground (0 V) reference.
GND	Source terminal. May be an input or output. S
D	Drain terminal. May be an input or output. Logic control input.
$\mathrm{IN}^{\text {Ohmic resistance between D and S. }}$	
R_{ON}	On resistance match between any two chan- n_{ON}
$\mathrm{R}_{\mathrm{FLAT} \text { (ON) }}$	Flatness is defined as the difference between the maximum and minimum value of on resis- tance as measured over the specified analog
signal range.	

Table I. Truth Table

Logic	Switch A	Switch B
0	OFF	ON
1	ON	OFF

CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the ADG736 features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

Typical Performance Characteristics-ADG736

Figure 1. On Resistance as a Function of $V_{D}\left(V_{S}\right)$ Single Supplies

Figure 2. On Resistance as a Function of $V_{D}\left(V_{S}\right)$ for Different Temperatures $V_{D D}=3 \mathrm{~V}$

Figure 3. On Resistance as a Function of $V_{D}\left(V_{S}\right)$ for Different Temperatures $V_{D D}=5 \mathrm{~V}$

Figure 4. Supply Current vs. Input Switching Frequency

Figure 5. On Response vs. Frequency

Figure 6. Off Isolation vs. Frequency

Figure 7. Crosstalk vs. Frequency

APPLICATIONS

Figure 8. Using the ADG736 to Select Between Two Video Signals

Test Circuits

Test Circuit 1. On Resistance

Test Circuit 2. Off Leakage

Test Circuit 3. On Leakage

Test Circuit 4. Switching Times

Test Circuit 5. Break-Before-Make Time Delay, t_{D}

Test Circuit 6. Off Isolation

Test Circuit 8. Bandwidth

OUTLINE DIMENSIONS

Dimensions shown in inches and (mm).

10-Lead μ SOIC
(RM-10)

[^0]: Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

