CMOS

FEATURES

+1.8 V to +5.5 V Single Supply
Low On Resistance (2.5 Ω Typ)
Low On-Resistance Flatness
-3 dB Bandwidth > 200 MHz
Rail-to-Rail Operation
16-Lead TSSOP and SOIC Packages
Fast Switching Times
$t_{\text {ON }} 16$ ns
$t_{\text {off }} 10$ ns
Typical Power Consumption ($<0.01 \mu \mathrm{~W}$)
TTL/CMOS Compatible

APPLICATIONS

Battery Powered Systems
Communication Systems
Sample Hold Systems
Audio Signal Routing
Video Switching
Mechanical Reed Relay Replacement

GENERAL DESCRIPTION

The ADG711, ADG712 and ADG713 are monolithic CMOS devices containing four independently selectable switches. These switches are designed on an advanced submicron process that provides low power dissipation yet gives high switching speed, low on resistance, low leakage currents and high bandwidth.
They are designed to operate from a single +1.8 V to +5.5 V supply, making them ideal for use in battery powered instruments and with the new generation of DACs and ADCs from Analog Devices. Fast switching times and high bandwidth make the part suitable for video signal switching.
The ADG711, ADG712 and ADG713 contain four independent single-pole/single throw (SPST) switches. The ADG711 and ADG712 differ only in that the digital control logic is inverted. The ADG711 switches are turned on with a logic low on the appropriate control input, while a logic high is required to turn on the switches of the ADG712. The ADG713 contains two switches whose digital control logic is similar to the ADG711, while the logic is inverted on the other two switches.
Each switch conducts equally well in both directions when ON. The ADG713 exhibits break-before-make switching action.
The ADG711/ADG712/ADG713 are available in 16-lead TSSOP and 16-lead SOIC packages.

REV. 0

[^0]
FUNCTIONAL BLOCK DIAGRAMS

SWITCHES SHOWN FOR A LOGIC "1" INPUT

PRODUCT HIGHLIGHTS

1. +1.8 V to +5.5 V Single Supply Operation. The ADG711, ADG712 and ADG713 offer high performance and are fully specified and guaranteed with +3 V and +5 V supply rails.
2. Very Low $\mathrm{R}_{\mathrm{ON}}(4.5 \Omega$ max at $+5 \mathrm{~V}, 8 \Omega \max$ at $+3 \mathrm{~V})$. At supply voltage of $+1.8 \mathrm{~V}, \mathrm{R}_{\mathrm{ON}}$ is typically 35Ω over the temperature range.
3. Low On-Resistance Flatness.
4. -3 dB Bandwidth $>200 \mathrm{MHz}$.
5. Low Power Dissipation. CMOS construction ensures low power dissipation.
6. Fast $\mathrm{t}_{\mathrm{ON}} / \mathrm{t}_{\mathrm{OFF}}$.
7. Break-Before-Make Switching. This prevents channel shorting when the switches are configured as a multiplexer (ADG713 only).
8. 16-Lead TSSOP and 16-Lead SOIC Packages.

Parameter	B Version		Units	Test Conditions/Comments	
	$+25^{\circ} \mathrm{C}$	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to } \\ & +85^{\circ} \mathrm{C} \end{aligned}$			
ANALOG SWITCH					
Analog Signal Range	2.5	0 V to V_{DD}	V		
On-Resistance (R_{ON})			Ω typ		
	4	4.5	Ω max	Test Circuit 1	
On-Resistance Match Between		0.05	Ω typ	$\mathrm{V}_{\mathrm{S}}=0 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{DD}}, \mathrm{I}_{\mathrm{S}}=-10 \mathrm{~mA}$	
Channels ($\Delta \mathrm{R}_{\mathrm{ON}}$)		0.3	Ω max		
On-Resistance Flatness ($\mathrm{R}_{\text {FLat(ON) }}$)	0.5	1.0	Ω typ	$\mathrm{V}_{\mathrm{S}}=0 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{DD}}, \mathrm{I}_{\mathrm{S}}=-10 \mathrm{~mA}$	
			Ω max		
LEAKAGE CURRENTS Source OFF Leakage I_{S} (OFF)	± 0.01		nA typ	$\mathrm{V}_{\mathrm{DD}}=+5.5 \mathrm{~V}$	
			$\mathrm{V}_{\mathrm{S}}=4.5 \mathrm{~V} / 1 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=1 \mathrm{~V} / 4.5 \mathrm{~V}$		
	± 0.1	± 0.2		$n A$ max	Test Circuit 2
Drain OFF Leakage I_{D} (OFF)	± 0.01	-	nA typ	$\mathrm{V}_{\mathrm{S}}=4.5 \mathrm{~V} / 1 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=1 \mathrm{~V} / 4.5 \mathrm{~V}$;	
	± 0.1	$\pm 0.2$$\pm 0.2$	$n A$ max	Test Circuit 2	
Channel ON Leakage $\mathrm{I}_{\mathrm{D}}, \mathrm{I}_{\mathrm{S}}(\mathrm{ON})$	± 0.01		nA typ $n A \max$	$\mathrm{V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{D}}=1 \mathrm{~V} \text {, or } 4.5 \mathrm{~V} \text {; }$	
DIGITAL INPUTS					
Input High Voltage, $\mathrm{V}_{\text {INH }}$		2.4	V min		
Input Low Voltage, V ${ }_{\text {INL }}$		0.8	V max		
Input Current					
$\mathrm{I}_{\text {INL }}$ or $\mathrm{I}_{\text {INH }}$	0.005		$\mu \mathrm{A}$ typ	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {INL }}$ or $\mathrm{V}_{\text {INH }}$	
		± 0.1	$\mu \mathrm{A}$ max		
DYNAMIC CHARACTERISTICS ${ }^{2}$					
t_{ON}	11	16	ns typ		
			ns max	$\mathrm{V}_{\mathrm{S}}=3 \mathrm{~V}$; Test Circuit 4	
$\mathrm{t}_{\text {OFF }}$	6	10	ns typ	$\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF},$	
			ns max	$\mathrm{V}_{\mathrm{S}}=3 \mathrm{~V}$; Test Circuit 4	
Break-Before-Make Time Delay, t_{D}	6	1	ns typ ns min	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}, \\ & \mathrm{~V}_{\mathrm{S} 1}=\mathrm{V}_{\mathrm{S} 2}=3 \mathrm{~V} \text {; Test Circuit } 5 \end{aligned}$	
(ADG713 Only)					
Charge Injection	3		pC typ	$\mathrm{V}_{\mathrm{S}}=2 \mathrm{~V} ; \mathrm{R}_{\mathrm{S}}=0 \Omega, \mathrm{C}_{\mathrm{L}}=1 \mathrm{nF}$ Test Circuit 6	
Off Isolation	-58		dB typ	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=10 \mathrm{MHz} \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz} ; \end{aligned}$$\text { Test Circuit } 7$	
	-78		dB typ		
Channel-to-Channel Crosstalk	-90		dB typ	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=10 \mathrm{MHz} \text {; } \\ & \text { Test Circuit } 8 \end{aligned}$	
Bandwidth -3 dB	200		MHz typ	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$; Test Circuit 9	
C_{S} (OFF)	10		pF typ		
C_{D} (OFF)	10		pF typ		
$\mathrm{C}_{\mathrm{D}}, \mathrm{C}_{\mathrm{S}}(\mathrm{ON})$	22		pF typ		
POWER REQUIREMENTS I_{DD}	0.001	1.0	$\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=+5.5 \mathrm{~V} \\ & \text { Digital Inputs }=0 \mathrm{~V} \text { or } 5 \mathrm{~V} \end{aligned}$	

NOTES

${ }^{1}$ Temperature ranges are as follows: B Version: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.
${ }^{2}$ Guaranteed by design, not subject to production test.
Specifications subject to change without notice.

Parameter	B Version		Units	Test Conditions/Comments
		$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to } \\ & +85^{\circ} \mathrm{C} \end{aligned}$		
ANALOG SWITCH Analog Signal Range On-Resistance (R_{ON}) On-Resistance Match Between Channels ($\Delta \mathrm{R}_{\mathrm{ON}}$) On-Resistance Flatness ($\mathrm{R}_{\mathrm{FLAT}(\mathrm{ON})}$)	5 0.1	$\begin{aligned} & 0 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{DD}} \\ & 5.5 \\ & 8 \\ & \\ & 0.3 \\ & 2.5 \end{aligned}$	V Ω typ Ω max Ω typ Ω max Ω typ	$\mathrm{V}_{\mathrm{S}}=0 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{DD}}, \mathrm{I}_{\mathrm{S}}=-10 \mathrm{~mA} ;$ Test Circuit 1 $\begin{aligned} & \mathrm{V}_{\mathrm{S}}=0 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{DD}}, \mathrm{I}_{\mathrm{S}}=-10 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{S}}=0 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{DD}}, \mathrm{I}_{\mathrm{S}}=-10 \mathrm{~mA} \end{aligned}$
LEAKAGE CURRENTS Source OFF Leakage IS (OFF) Drain OFF Leakage $I_{D}(O F F)$ Channel ON Leakage $\mathrm{I}_{\mathrm{D}}, \mathrm{I}_{\mathrm{S}}(\mathrm{ON})$	$\begin{aligned} & \pm 0.01 \\ & \pm 0.1 \\ & \pm 0.01 \\ & \pm 0.1 \\ & \pm 0.01 \\ & \pm 0.1 \end{aligned}$	$\begin{aligned} & \pm 0.2 \\ & \pm 0.2 \\ & \pm 0.2 \end{aligned}$	nA typ nA max nA typ nA max nA typ nA max	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=+3.3 \mathrm{~V} ; \\ & \mathrm{V}_{\mathrm{S}}=3 \mathrm{~V} / 1 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=1 \mathrm{~V} / 3 \mathrm{~V} ; \end{aligned}$ Test Circuit 2 $\mathrm{V}_{\mathrm{S}}=3 \mathrm{~V} / 1 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=1 \mathrm{~V} / 3 \mathrm{~V} ;$ Test Circuit 2 $\mathrm{V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{D}}=1 \mathrm{~V} \text {, or } 3 \mathrm{~V} \text {; }$ Test Circuit 3
DIGITAL INPUTS Input High Voltage, $\mathrm{V}_{\text {INH }}$ Input Low Voltage, VINL Input Current $\mathrm{I}_{\text {INL }}$ or $\mathrm{I}_{\text {INH }}$	0.005	$\begin{aligned} & 2.0 \\ & 0.4 \\ & \\ & \pm 0.1 \end{aligned}$	V min V max $\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {INL }}$ or $\mathrm{V}_{\text {INH }}$
DYNAMIC CHARACTERISTICS ${ }^{2}$ t_{ON} $\mathrm{t}_{\mathrm{OFF}}$ Break-Before-Make Time Delay, t_{D} (ADG713 Only) Charge Injection Off Isolation Channel-to-Channel Crosstalk Bandwidth - 3 dB C_{S} (OFF) C_{D} (OFF) $\mathrm{C}_{\mathrm{D}}, \mathrm{C}_{\mathrm{S}}(\mathrm{ON})$	13 7 7 3 -58 -78 -90 200 10 10 22	20 12 1	ns typ ns max ns typ ns max ns typ ns min pC typ dB typ dB typ dB typ MHz typ pF typ pF typ pF typ	$\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$, $\mathrm{V}_{\mathrm{S}}=2 \mathrm{~V}$; Test Circuit 4 $\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$, $\mathrm{V}_{\mathrm{S}}=2 \mathrm{~V}$; Test Circuit 4 $\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$, $\mathrm{V}_{\mathrm{S} 1}=\mathrm{V}_{\mathrm{S} 2}=2 \mathrm{~V}$; Test Circuit 5 $\mathrm{V}_{\mathrm{S}}=1.5 \mathrm{~V} ; \mathrm{R}_{\mathrm{S}}=0 \Omega, \mathrm{C}_{\mathrm{L}}=1 \mathrm{nF}$; Test Circuit 6 $\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=10 \mathrm{MHz}$ $\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz}$; Test Circuit 7 $\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=10 \mathrm{MHz}$; Test Circuit 8 $\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$; Test Circuit 9
POWER REQUIREMENTS I_{DD}	0.001	1.0	$\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=+3.3 \mathrm{~V} \\ & \text { Digital Inputs }=0 \mathrm{~V} \text { or } 3 \mathrm{~V} \end{aligned}$

NOTES

${ }^{1}$ Temperature ranges are as follows: B Version: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.
${ }^{2}$ Guaranteed by design, not subject to production test.
Specifications subject to change without notice.

ADG711/ADG712/ADG713

ABSOLUTE MAXIMUM RATINGS($\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ unless otherwise noted)V_{DD} to GND . -0.3 V to +6 VAnalog, Digital Inputs ${ }^{2} \ldots \ldots$.30 mA , Whichever Occurs First
Continuous Current, S or D . 30 mA
Peak Current, S or D 100 mA(Pulsed at $1 \mathrm{~ms}, 10 \%$ Duty Cycle max)
Operating Temperature RangeIndustrial (B Version) $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Junction Temperature . $+150^{\circ} \mathrm{C}$
TSSOP Package, Power Dissipation 430 mWθ_{JA} Thermal Impedance . $150^{\circ} \mathrm{C} / \mathrm{W}$
SOIC Package, Power Dissipation 520 mW
θ_{JA} Thermal Impedance $42^{\circ} \mathrm{C} / \mathrm{W}$
Lead Temperature, Soldering
Vapor Phase (60 sec) . $+215^{\circ} \mathrm{C}$
Infrared (15 sec) $+220^{\circ} \mathrm{C}$
ESD 2 kV
NOTES

${ }^{1}$ Stresses above those listed under Absolute Maximum Ratings may cause perma
nent damage to the device. This is a stress rating only; functional operation of the
device at these or any other conditions above those listed in the operational
sections of this specification is not implied. Exposure to absolute maximum rating
conditions for extended periods may affect device reliability. Only one absolute
maximum rating may be applied at any one time.

${ }^{2}$ Overvoltages at IN, S or D will be clamped by internal diodes. Current should be
limited to the maximum ratings given.

CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the ADG711/ADG712/ADG713 feature proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper
 ESD precautions are recommended to avoid performance degradation or loss of functionality.

ORDERING GUIDE

Model	Temperature Range	Package Description	Package Option
ADG711BR	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	0.15 " Small Outline (SOIC)	R-16A
ADG712BR	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	0.15 " Small Outline (SOIC)	R-16A
ADG713BR	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$0.15 "$ Small Outline (SOIC)	R-16A
ADG711BRU	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Thin Shrink Small Outline (TSSOP)	RU-16
ADG712BRU	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Thin Shrink Small Outline (TSSOP)	RU-16
ADG713BRU	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Thin Shrink Small Outline (TSSOP)	RU-16

Table I. Truth Table (ADG711/ADG712)

ADG711 In	ADG712 In	Switch Condition
0	1	ON
1	0	OFF

Table II. Truth Table (ADG713)

Logic	Switch 1, 4	Switch 2, 3
0	OFF	ON
1	ON	OFF

PIN CONFIGURATION (TSSOP/SOIC)

TERMINOLOGY

V_{DD}	Most positive power supply potential.	$\mathrm{t}_{\text {OFF }}$	Delay between applying the digital control
GND	Ground (0 V) reference.		input and the output switching off.
S	Source terminal. May be an input or output.	t_{D}	"OFF" time or "ON" time measured
D	Drain terminal. May be an input or output.		between the 90% points of both switches,
IN	Logic control input.		when switching from one address state to another. (ADG713 only).
R_{ON}	Ohmic resistance between D and S .	Crosstalk	A measure of unwanted signal that is coupled
$\Delta \mathrm{R}_{\mathrm{ON}}$	On resistance match between any two channels i.e., $\mathrm{R}_{\mathrm{ON}} \max -\mathrm{R}_{\mathrm{ON}} \min$.	Crosstalk	through from one channel to another as a result of parasitic capacitance.
$\mathrm{R}_{\text {FLAT(ON) }}$	Flatness is defined as the difference between the maximum and minimum value of on-	Off Isolation	A measure of unwanted signal coupling through an "OFF" switch.
$\mathrm{I}_{\text {S }}(\mathrm{OFF})$	resistance as measured over the specified analog signal range. Source leakage current with the switch "OFF."	Charge Injection	A measure of the glitch impulse transferred from the digital input to the analog output during switching.
$\mathrm{I}_{\mathrm{D}}(\mathrm{OFF})$	Drain leakage current with the switch "OFF."	Bandwidth	
$\mathrm{I}_{\mathrm{D}}, \mathrm{I}_{\mathrm{S}}(\mathrm{ON})$	Channel leakage current with the switch "ON."		ated by 3 dB .
$\mathrm{V}_{\mathrm{D}}\left(\mathrm{V}_{\mathrm{S}}\right)$	Analog voltage on terminals D, S.	On Response	The frequency response of the "ON" switch.
C_{S} (OFF)	"OFF" switch source capacitance	On Loss	The voltage drop across the "ON" switch,
C_{D} (OFF)	"OFF" switch drain capacitance.		seen on the On Response vs. Frequency plot
$\mathrm{C}_{\mathrm{D}}, \mathrm{C}_{S}(\mathrm{ON})$	"ON" switch capacitance.		as how many dBs the signal is away from 0 dB at very low frequencies.
$\mathrm{t}_{\text {ON }}$	Delay between applying the digital control		

Typical Performance Characteristics

Figure 1. On Resistance as a Function of $V_{D}\left(V_{S}\right)$

Figure 2. On Resistance as a Function of $V_{D}\left(V_{S}\right)$ for Different Temperatures $V_{D D}=3 \mathrm{~V}$

ADG711/ADG712/ADG713-Typical Performance Characteristics

Figure 3. On Resistance as a Function of $V_{D}\left(V_{S}\right)$ for Different Temperatures $V_{D D}=5 \mathrm{~V}$

Figure 4. Supply Current vs. Input Switching Frequency

Figure 5. Off Isolation vs. Frequency

Figure 6. Crosstalk vs. Frequency

Figure 7. On Response vs. Frequency

Figure 8. Charge Injection vs. Source Voltage

APPLICATIONS

Figure 9 illustrates a photodetector circuit with programmable gain. An AD820 is used as the output operational amplifier.
With the resistor values shown in the circuit, and using different combinations of the switches, gain in the range of 2 to 16 can be achieved.

Figure 9. Photodetector Circuit with Programmable Gain

Test Circuits

Test Circuit 1. On Resistance

Test Circuit 2. Off Leakage

Test Circuit 3. On Leakage

Test Circuit 4. Switching Times

Test Circuit 5. Break-Before-Make Time Delay, t_{D}

Test Circuit 6. Charge Injection

Test Circuit 7. Off Isolation

Test Circuit 9. Bandwidth

CHANNEL-TO-CHANNEL CROSSTALK $=20 \times$ LOG $\left|\mathrm{V}_{\mathrm{S}} / \mathrm{V}_{\text {OUT }}\right|$
Test Circuit 8. Channel-to-Channel Crosstalk

OUTLINE DIMENSIONS

Dimensions shown in inches and (mm).

16-Lead Narrow Body SOIC
(R-16A)

16-Lead TSSOP
(RU-16)

[^0]: Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

