High-Speed 8-Bit Monolithic A/D Converter

FEATURES
150 MSPS Encode Rate
Low Input Capacitance: 17 pF
Low Power: 750 mW
-5.2 V Single Supply
MIL-STD-883 Compliant Versions Available

APPLICATIONS

Radar Systems
Digital Oscilloscopes/ATE Equipment
Laser/Radar Warning Receivers
Digital Radio
Electronic Warfare (ECM, ECCM, ESM)
Communication/Signal Intelligence

GENERAL DESCRIPTION

The AD9002 is an 8-bit, high-speed, analog-to-digital converter. The AD9002 is fabricated in an advanced bipolar process that allows operation at sampling rates in excess of 150 megasamples/ second. Functionally, the AD9002 is comprised of 256 parallel comparator stages whose outputs are decoded to drive the ECL compatible output latches.
An exceptionally wide large signal analog input bandwidth of 160 MHz is due to an innovative comparator design and very close attention to device layout considerations. The wide input bandwidth of the AD9002 allows very accurate acquisition of high speed pulse inputs, without an external track-and-hold. The comparator output decoding scheme minimizes false codes, which is critical to high speed linearity.
The AD9002 provides an external hysteresis control pin that can be used to optimize comparator sensitivity to further improve performance. Additionally, the AD9002's low power dissipation of 750 mW makes it usable over the full extended temperature range. The AD9002 also incorporates an overflow bit to indicate overrange inputs. This overflow output can be disabled with the overflow inhibit pin.

REV. F
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

FUNCTIONAL BLOCK DIAGRAM

The AD9002 is available in two grades, one with 0.5 LSB linearity and one with 0.75 LSB linearity. Both versions are offered in an industrial grade, $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, packaged in a 28 -lead DIP and a 28 -leaded JLCC. The military temperature range devices, $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, are available in ceramic DIP and LCC packages and comply with MIL-STD-883 Class B.

AD9002-SPECIFICATIONS
ELECTRICAL CHARACTERISTICS $\left(-V_{s}=-5.2 v ;\right.$ pifferential Reference voltage $=2.20 ;$ unless othemise noted $)$

NOTES

${ }^{1}$ Measured with AIN $=0 \mathrm{~V}$.
${ }^{2}$ Measured by FFT analysis where fundamental is -3 dBc .
${ }^{3}$ Input slew rate derived from rise time (10 to 90%) of full scale input.
${ }^{4} 0$ utputs terminated through 100Ω to -2 V .
${ }^{5}$ Measured from ENCODE in to data out for LSB only.
${ }^{6}$ For full-scale step input, 8 -bit accuracy is attained in specified time.
${ }^{7}$ Recovers to 8 -bit accuracy in specified time after 150% full-scale input overvoltage.
bit-to-bit time skew differences.
${ }^{9}$ bNCOD-bit time skew differences.
${ }^{9} 0 \mathrm{D}$.
${ }^{10}$ Measured at 125 MSPS encode rate.
${ }^{11}$ Analog input frequency $=1.23 \mathrm{MHz}$.
${ }^{12} \mathrm{RMS}$ signal to rms noise, with 1.23 MHz analog input signal.
${ }^{13}$ Input signals 1 V p-p@ 1.23 MHz and 1 V p-p @ 2.30 MHz .
${ }^{14}$ Supplies should remain stable within $\pm 5 \%$ for normal operation.
${ }^{15}$ Measured at $-5.2 \mathrm{~V} \pm 5 \%$.
${ }^{8}$ Output time skew includes high-to-low and low-to-high transitions as well as
Specifications subject to change without notice.

ABSOLUTE MAXIMUM RATINGS ${ }^{1}$
Supply Voltage ($-\mathrm{V}_{\text {S }}$) . -6 V
Analog-to-Digital Supply Voltage Differential 0.5 V
Analog Input Voltage - $\mathrm{V}_{\text {S }}$ to +0.5 V
Digital Input Voltage . - - $\mathrm{V}_{\text {S }}$ to 0 V
Reference Input Voltage ($\left.+\mathrm{V}_{\text {REF }}-\mathrm{V}_{\text {REF }}\right)^{2} \ldots-3.5 \mathrm{~V}$ to +0.1 V
Differential Reference Voltage 2.1 V
Reference Midpoint Current $\pm 4 \mathrm{~mA}$
ENCODE to ENCODE Differential Voltage 4 V
Digital Output Current
Operating Temperature Range
AD9002AD/BD/AJ/BJ $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
AD9002SE/SD/TD/TE $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Junction Temperature ${ }^{3}$. $150^{\circ} \mathrm{C}$
Lead Soldering Temperature (10 sec) $300^{\circ} \mathrm{C}$
NOTES ${ }^{1}$ Absolute maximum ratings are limiting values, to be applied individually, and beyond which the serviceability of the circuit may be impaired. Functional operability under any of these conditions is not necessarily implied. Exposure to absolute maximum rating conditions for extended periods of time may affect device reliability.
$\mathrm{t}_{\mathrm{J}}=\operatorname{PD}\left(\theta_{\text {IA }}\right)+\mathrm{t}_{\mathrm{A}}$
PD ($\left.\theta_{\mathrm{JC}}\right)+\mathrm{t}_{\mathrm{C}}$
where
$\theta_{\mathrm{IA}}=$ thermal impedance from junction to ambient $\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)$ $\theta_{\mathrm{IC}}=$ thermal impedance from junction to case $\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)$
$\mathrm{t}_{\mathrm{A}}=$ ambient temperature (${ }^{\circ} \mathrm{C}$)
${ }_{\mathrm{t}_{\mathrm{C}}}=$ case temperature (${ }^{\circ} \mathrm{C}$)
Typical thermal impedances are:
Ceramic DIP $\theta_{\mathrm{JA}}=56^{\circ} \mathrm{C} / \mathrm{W} ; \theta_{\mathrm{JC}}=20^{\circ} \mathrm{C} / \mathrm{W}$
Ceramic LCC $\theta_{\text {IA }}=69^{\circ} \mathrm{C} / \mathrm{W} ; \theta_{\mathrm{JC}}=23^{\circ} \mathrm{C} / \mathrm{W}$
PLCC $\theta_{\mathrm{JA}}=60^{\circ} \mathrm{C} / \mathrm{W} ; \theta_{\mathrm{JC}}=19^{\circ} \mathrm{C} / \mathrm{W}$.

Supply Voltage ($-\mathrm{V}_{\mathrm{S}}$) . -6 V
Analog-to-Digital Supply Voltage Differential 0.5 V
Analog Input Voltage $-\mathrm{V}_{\mathrm{S}}$ to +0.5 V
Digital Input Voltage . $-\mathrm{V}_{\text {S }}$ to 0 V
Reference Input Voltage $\left(+\mathrm{V}_{\text {REF }}-\mathrm{V}_{\mathrm{REF}}\right)^{2} \ldots-3.5 \mathrm{~V}$ to +0.1 V
Differential Reference Voltage . 2.1 V
Reference Midpoint Current $\pm 4 \mathrm{~mA}$
ENCODE to ENCODE Differential Voltage 4 V
Digital Output Current . 20 mA
Operating Temperature Range
AD9002AD/BD/AJ/BJ $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
AD9002SE/SD/TD/TE $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Junction Temperature ${ }^{3}$. $150^{\circ} \mathrm{C}$
Lead Soldering Temperature (10 sec) $300^{\circ} \mathrm{C}$
NOTES
Absolute maximum ratings are limiting values, to be applied individually, and beyond which the serviceability of the circuit may be impaired. Functional operability under any of these conditions is not necessarily implied. Exposure to reliability.
${ }^{2}+V_{\text {REF }} \geq-V_{\text {REF }}$ under all circumstances.
${ }^{3}$ Maximum junction temperature ($\mathrm{t}_{\mathrm{J}} \max$) should not exceed $175^{\circ} \mathrm{C}$ for ceramic (θ_{A}) for plastic packages:

$$
\operatorname{PD}\left(\theta_{\mathrm{JC}}\right)+\mathrm{t}_{\mathrm{C}}
$$

where
$\theta_{\mathrm{JA}}=$ thermal impedance from junction to ambient $\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)$
$\mathrm{t}_{\mathrm{A}}=$ ambient temperature $\left({ }^{\circ} \mathrm{C}\right)$
$\mathrm{t}_{\mathrm{C}}=$ case temperature (${ }^{\circ} \mathrm{C}$)

Ceramic DIP $\theta_{\mathrm{JA}}=56^{\circ} \mathrm{C} / \mathrm{W} ; \theta_{\mathrm{JC}}=20^{\circ} \mathrm{C} / \mathrm{W}$
PLCC $\theta_{\mathrm{IA}}=60^{\circ} \mathrm{C} / \mathrm{W} ; \theta_{\mathrm{JC}}=19^{\circ} \mathrm{C} / \mathrm{W}$.

Recommended Operating Conditions			
Parameter	Input Voltage		
	Min	Nominal	Max
	-5.46	-5.20	-4.94
$+V_{\text {REF }}$	$-V_{\text {REF }}$	0.0 V	+0.1
$-V_{\text {REF }}$	-2.1	-2.0	$+V_{\text {REF }}$
Analog Input	$-V_{\text {REF }}$		$+V_{\text {REF }}$

EXPLANATION OF TEST LEVELS

Test Level I - 100\% production tested.
Test Level II - 100% production tested at $25^{\circ} \mathrm{C}$, and sample tested at specified temperatures.
Test Level III - Sample tested only.
Test Level IV - Parameter is guaranteed by design and characterization testing.
Test Level V - Parameter is a typical value only.
Test Level VI - All devices are 100\% production tested at $25^{\circ} \mathrm{C} .100 \%$ production tested at temperature extremes for extended temperature devices; sample tested at temperature extremes for commercial/industrial devices.

ORDERING GUIDE

Model	Linearity	Temperature Range	Package Option*
AD9002AD	0.75 LSB	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$\mathrm{D}-28$
AD9002BD	0.50 LSB	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$\mathrm{D}-28$
AD9002AJ	0.75 LSB	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$\mathrm{J}-28$
AD9002BJ	0.50 LSB	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$\mathrm{J}-28$
AD9002SD/883B	0.75 LSB	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$\mathrm{D}-28$
AD9002SE/883B	0.75 LSB	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$\mathrm{E}-28 \mathrm{~A}$
AD9002TD/883B	0.50 LSB	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$\mathrm{D}-28$
AD9002TE/883B	0.50 LSB	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$\mathrm{E}-28 \mathrm{~A}$

*D = Ceramic DIP; E = Leadless Ceramic Chip Carrier; J = Ceramic Chip Carrier, J-Formed Leads.

CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the AD9002 features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high-energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

PIN DESIGNATIONS

Figure 1. Timing Diagram

Figure 2. Input/Output Circuits

Figure 3. Burn-in Diagram

Figure 4. Die Layout and Mechanical Information

Die Dimensions $106 \times 114 \times 15(\pm 2)$ mils
Pad Dimensions . 4×4 mils
Metalization . Gold
Backing None
Substrate Potential . - V $_{\text {S }}$
Passivation . Nitride
Die Attach . Gold Eutectic (Ceramic) . Epoxy (Plastic)
Bond Wire 1-1.3 mil Gold; Gold Ball Bonding

APPLICATION INFORMATION

The AD9002 is compatible with all standard ECL logic families, including 10 K and 10 KH .100 K ECL's logic levels are temperature compensated, and are therefore compatible with the AD9002 (and most other ECL device families) only over a limited temperature range. To operate at the highest encode rates, the supporting logic around the AD9002 will need to be equally fast. Whichever of the ECL logic families is used, special care must be exercised to keep digital switching noise away from the ana\log circuits around the AD9002. The two most critical items are digital supply lines and digital ground return.
The input capacitance of the AD9002 is an exceptionally low 17 pF . This allows the use of a wide range of input amplifiers, both hybrid and monolithic. To take full advantage of the wide input bandwidth of the AD9002, a hybrid amplifier such as the AD9610 will be required. For those applications that do not require the full input bandwidth of the AD9002, more traditional monolithic amplifiers, such as the AD846, will work very well. Overall performance with any amplifier can be improved by inserting a 10Ω resistor in series with the amplifier output.
The output data is buffered through the ECL compatible output latches. All data is delayed by one clock cycle, in addition to the latch propagation delay (t_{PD}), before becoming available at the outputs. Both the analog-to-digital conversion cycle and the data transfer to the output latches are triggered on the rising edge of the differential, ECL compactible ENCODE signal (see timing diagram). In applications where only a single-ended signal is available, the AD96685, a high speed, ECL voltage comparator, can be employed to generate the differential signals. All ECL signals (including the overflow bit) should be terminated properly to avoid ringing and reflection.
The AD9002 also incorporates a HYSTERESIS control pin which provides from 0 mV to 10 mV of additional hysteresis in the comparator input stages. Adjustments in the HYSTERESIS control voltage may help improve noise immunity and overall performance in harsh environments.
The OVERFLOW INHIBIT pin of the AD9002 determines how the converter handles overrange inputs (AIN $\geq+\mathrm{V}_{\mathrm{REF}}$). In the "enabled" state (floating at -5.2 V), the OVERFLOW output will be at logic HIGH and all other outputs will be at logic LOW for overrange inputs (return-to-zero operation). In the "inhibited" state (tied to ground), the OVERFLOW output will be at logic LOW, and all other outputs will be at logic HIGH for overrange inputs (nonreturn-to-zero operation).
The AD9002 provides outstanding error rate performance. This is due to tight control of comparator offset matching and a fault tolerant decoding stage. Additional improvements in error rate are possible through the addition of hysteresis (see HYSTERESIS control pin). This level of performance is extremely important in fault-sensitive applications such as digital radio (QAM).
Dramatic improvements in comparator design and construction give the AD9002 excellent dynamic characteristics, especially SNR (signal-to-noise ratio). The 160 MHz input bandwidth and low error rate performance give the AD9002 an SNR of 48 dB with a 1.23 MHz input. High SNR performance is particularly important in wide bandwidth applications, such as pulse signature analysis, commonly performed in advanced radar receivers.

LAYOUT SUGGESTIONS

Designs using the AD9002, like all high speed devices, must follow a few basic layout rules to insure optimum performance. Essentially, these guidelines are meant to avoid many of the problems associated with high speed designs. The first requirement is for a substantial ground plane around and under the AD9002. Separate ground plane areas for the digital and analog components may be useful, but these separate grounds should be connected together at the AD9002 to avoid the effects of "ground loop" currents.
The second area that requires an extra degree of attention involves the three reference inputs, $+\mathrm{V}_{\text {REF }}, \mathrm{REF}_{\mathrm{MID}}$, and $-\mathrm{V}_{\text {REF }}$. The $+\mathrm{V}_{\text {REF }}$ input and the $-\mathrm{V}_{\text {REF }}$ input should both be driven from a low impedance source (note that the $+\mathrm{V}_{\mathrm{REF}}$ input is typically tied to analog ground). A low drift amplifier should provide satisfactory results, even over an extended temperature range. Adjustments at the $\mathrm{REF}_{\text {MID }}$ input may be useful in improving the integral linearity by correcting any reference ladder skews. The application circuit shown below demonstrates a simple and effective means of driving the reference circuit.
The reference inputs should be adequately decoupled to ground through $0.1 \mu \mathrm{~F}$ chip capacitors to limit the effects of system noise on conversion accuracy. The power supply pins must also be decoupled to ground to improve noise immunity; $0.1 \mu \mathrm{~F}$ and $0.01 \mu \mathrm{~F}$ chip capacitors are recommended.
The analog input signal is brought into the AD9002 through two separate input pins. It is very important that the two input pins be driven symmetrically with equal length electrical connections. Otherwise, aperture delay errors may degrade converter performance at high frequencies.

Figure 5. Typical Application

Figure 6. AD9002 Evaluation Circuit

Figure 7. Dynamic Performance

OUTLINE DIMENSIONS

Dimensions shown in inches and (mm).

28-Leaded JLCC

(J-28)

Revision History

Location
Data Sheet changed from REV. E to REV. F.
Edit to ABSOLUTE MAXIMUM RATINGS

