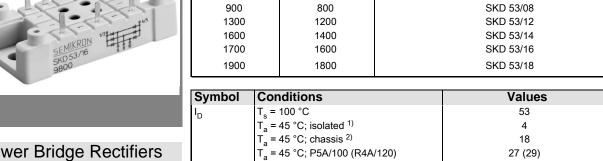


Power Bridge Rectifiers


SKD 53

Features

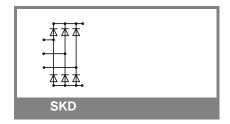
- · Glass passivated silicon chips
- · Low thermal impedance through use of direct copper bonded aluminum substrate (DCB) base plate
- Blocking voltage up to 1800 V
- · Suitable for PCB mounting and wave soldering
- · For applications with high vibrations we recommend to fasten the bridge to the pcb with 4 selftapping screw

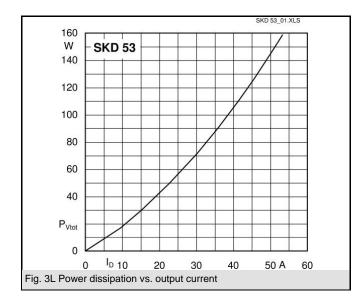
Typical Applications

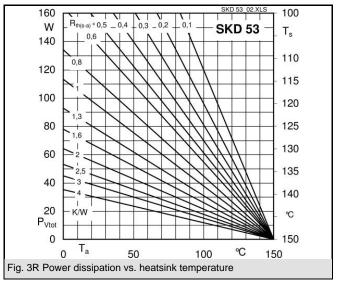
- Three phase rectifiers for power supplies
- · Input rectifiers for variable frequency drives
- · Rectifiers for DC motor field supplies
- Battery charger rectifiers
- 1) Freely suspended or mounted on an insulator
- 2) Mounted on a painted metal sheet of min. 250 x 250 x 1 mm
- 3) $T_{solder} = 250 \pm 10 \,^{\circ}\text{C} \, (10 \, \text{s})$

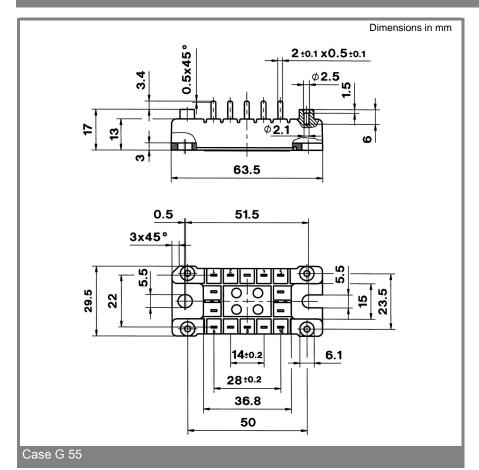
 V_{RRM}, V_{DRM}

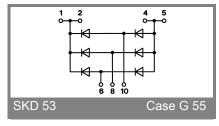
400


V_{RSM}


500


Symbol	Conditions	Values	Units
I _D	T _s = 100 °C	53	Α
	T _a = 45 °C; isolated ¹⁾	4	Α
	T _a = 45 °C; chassis ²⁾	18	Α
	T _a = 45 °C; P5A/100 (R4A/120)	27 (29)	Α
	T _a = 35 °C; P1A/120F	63	Α
I _{FSM}	T _{vi} = 25 °C; 10 ms	370	Α
	T _{vi} = 150 °C; 10 ms	270	Α
i²t	T _{vj} = 25 °C; 8,3 10 ms	685	A²s
	T _{vj} = 150 °C; 8,3 10 ms	365	A²s
V _F	T _{vi} = 25 °C; I _F = 50 A	max. 1,5	V
$V_{(TO)}$	T _{vj} = 150 °C	max. 0,8	V
r _T	T _{vi} = 150 °C	max. 13	mΩ
I_{RD}	$T_{vj} = 25 \text{ °C}; V_{DD} = V_{DRM}; V_{RD} = V_{RRM}$	max. 0,2	mA
	$T_{vj}^{\ \ \ } = 150 ^{\circ}\text{C}; V_{RD}^{\ \ \ } = V_{RRM}^{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	4	mA
R _{th(j-s)}	per diode	1,9	K/W
ang 3)	total	0,317	K/W
$R_{th(j-a)}$	isolated 1)	14,92	K/W
	chassis ²⁾	2,92	K/W
$T_{v_{j}}$		- 40 + 150	°C
T _{stg}		- 40 + 125 ³⁾	°C
V _{isol}	a. c. 50 Hz; r.m.s.; 1 s / 1 min.	3600 (3000)	V
M _s	to heatsink; SI units	2 ± 15 %	Nm
M _t			
а		5 * 9,81	m/s²
m		30	g
Case		G 55	


I_D = 53 A (full conduction) $(T_s = 100 \, ^{\circ}C)$


SKD 53/04

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.