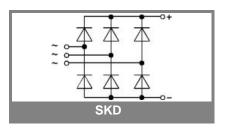
### **SKD 50**



### **Power Bridge Rectifiers**

#### SKD 50

#### Features


- Isolated metal case with screw terminals
- Blocking voltage up to 1600 V
- High surge current
- Easy chassis mounting

### **Typical Applications**

- Three phase rectifiers for power supplies
- Input rectifiers for variable frequency drives
- Rectifiers for DC motor field supplies
- Battery charger rectifiers
- Recommended snubber network: RC: 0.1  $\mu$ F, 50  $\Omega$  (P <sub>R</sub> = 1 W)
- 1) Freely suspended or mounted on an insulator
- Mounted on a painted metal sheet of min.
  250 x 250 x 1 mm

| V <sub>RSM</sub> , V <sub>RRM</sub> | V <sub>VRMS</sub> | I <sub>D</sub> = 50 A (T <sub>c</sub> = 92 °C) | C <sub>max</sub> | R <sub>min</sub> |
|-------------------------------------|-------------------|------------------------------------------------|------------------|------------------|
| V                                   | V                 | Types                                          | μF               | Ω                |
| 200                                 |                   | SKD 50/02A3                                    |                  | 0,1              |
| 400                                 |                   | SKD 50/04A3                                    |                  | 0,2              |
| 800                                 |                   | SKD 50/08A3                                    |                  | 0,4              |
| 1200                                |                   | SKD 50/12A3                                    |                  | 0,6              |
| 1400                                |                   | SKD 50/14A3                                    |                  | 0,7              |
| 1600                                |                   | SKD 50/16A3                                    |                  | 0,8              |

| Symbol               | Conditions                                     | Values      | Units |
|----------------------|------------------------------------------------|-------------|-------|
| I <sub>D</sub>       | $T_a = 45 \text{ °C}, \text{ isolated}^{1)}$   | 10          | А     |
| -                    | $T_a = 45 \text{ °C}, \text{ chassis}^{2)}$    | 22          | А     |
| I <sub>DCL</sub>     | $T_a = 45 \text{ °C}, \text{ isolated}^{1)}$   | 10          | А     |
|                      | $T_a = 45 \text{ °C}, \text{ chassis}^{2)}$    | 22          | A     |
|                      | T <sub>a</sub> = 35 °C, P1A/120 F              | 60          | А     |
| I <sub>FSM</sub>     | T <sub>vi</sub> = 25 °C, 10 ms                 | 750         | А     |
|                      | T <sub>vi</sub> = 150 °C, 10 ms                | 600         | A     |
| i²t                  | T <sub>vi</sub> = 25 °C, 8,3 10 ms             | 2800        | A²s   |
|                      | T <sub>vj</sub> = 150 °C, 8,3 10 ms            | 1800        | A²s   |
| V <sub>F</sub>       | T <sub>vi</sub> = 25°C, I <sub>F</sub> = 150 A | max. 1,6    | V     |
| V <sub>(TO)</sub>    | $T_{vi} = 150^{\circ}C$                        | max. 0,85   | V     |
| r <sub>T</sub>       | T <sub>vi</sub> = 150°C                        | max. 8      | mΩ    |
| I <sub>RD</sub>      | $T_{vj}^{0} = 25^{\circ}C, V_{RD} = V_{RRM}$   | 1000        | μA    |
|                      | $T_{vi} = °C, V_{RD} = V_{RRM} \ge V$          |             | μA    |
| I <sub>RD</sub>      | $T_{vi} = 150^{\circ}C, V_{RD} = V_{RRM}$      | 10          | mA    |
|                      | $T_{vi} = C, V_{RD} = V_{RRM} \ge V$           |             | mA    |
| t <sub>rr</sub>      | $T_{vj} = 25^{\circ}C$                         | 10          | μs    |
| f <sub>G</sub>       |                                                | 2000        | Hz    |
| R <sub>th(j-a)</sub> | isolated <sup>1)</sup>                         | 5,5         | K/W   |
|                      | chassis <sup>2)</sup>                          | 2,3         | K/W   |
| R <sub>th(j-c)</sub> | total                                          | 0,45        | K/W   |
| R <sub>th(c-s)</sub> | total                                          | 0,06        | K/W   |
| T <sub>vj</sub>      |                                                | - 40 + 150  | °C    |
| T <sub>stg</sub>     |                                                | - 55 + 150  | °C    |
| V <sub>isol</sub>    | a. c. 50 60 Hz; r.m.s.; 1 s / 1 min.           | 3000 / 2500 | V~    |
| Ms                   | to heatsink                                    | 5 ± 15 %    | Nm    |
| Mt                   | to terminals                                   | 3 ± 15 %    | Nm    |
| a                    |                                                | 5 * 9,81    | m/s²  |
| w                    |                                                | 250         | g     |
| Fu                   |                                                | 50          | А     |
| Case                 |                                                | G 15        |       |



28-06-2007 SCH

## **SKD 50**

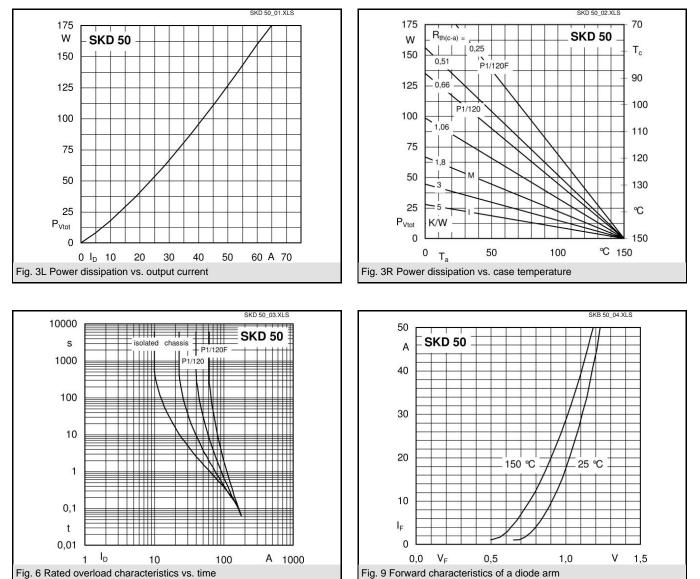
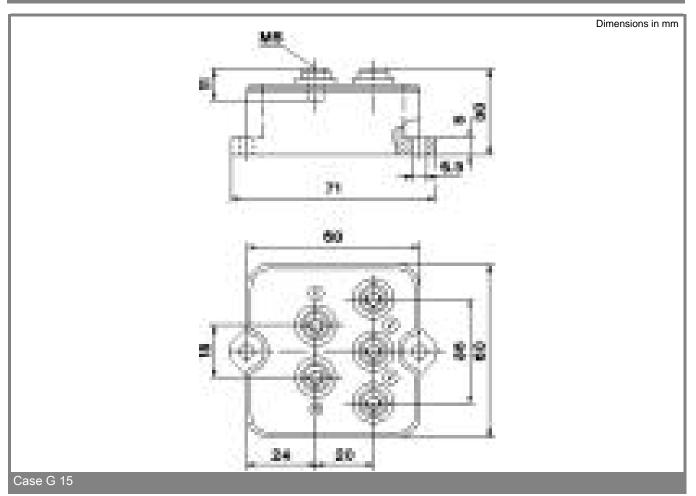




Fig. 8 Rated overload characteristics vs. time

© by SEMIKRON

2

# SKD 50



This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.