SIEMENS

1 Overview

1.1 Features

- 155 MHz FM and 40 MHz AM input frequency
- 30 mV eff AM and 50 mVeff FM sensitivity
- 16 bit IF counter up to 50 MHz
- Additional open drain ports controlled by $\mathrm{I}^{2} \mathrm{C}$
- 2-pin quartz oscillator

- Fast phase detector with short anti-backlash pulses and polarity reversal
- Charge pump current programmable in four steps up to 4.5 mA
- Frequency resolution of 1,5 and 10 kHz AM and $12.5,25$ and 50 kHz FM
- P-DSO-24 package

Type	Ordering Code	Package
SDA 4330-2X	Q67100-H5140	P-DSO-24-1

1.2 Application

The SDA 4330-2X provides separated input and output ports for AM and FM and is well suited for extremely fast loop settling times in the FM mode.

1.3 Pin Configuration

(top view)

P-DSO-24-1

$V_{\text {DD1 }}$ 마	1	\bigcirc	24	\square GND
SCL 미	2		23	$\square \mathrm{OSC}_{\text {IN }}$
SDA 마	3		22	$\square \mathrm{OSC}_{\text {FB }}$
$A 0$ 민	4		21	$\square V_{\text {DD2 }}$
LD \square	5		20	$\square \mathrm{PD}_{\text {AMA }}$
SA1매	6		19	$\square \mathrm{PD}_{\text {FMA }}$
SA2 미	7		18	$\square \mathrm{PD}_{\mathrm{AM}}$
SA3 미	8		17	$\square \mathrm{PD}_{\mathrm{FM}}$
SA4 매	9		16	$\square I_{\text {REF }}$
AM/FM 매	10		15	$\square \mathrm{F}_{\mathrm{AM}}$
$\mathrm{FM}_{\text {IN }} \square$	11		14	$\square 1 \mathrm{~F}_{\mathrm{FM}}$
$\mathrm{GND}_{\text {AN }}$-1]	12		13	D $\mathrm{AM}_{1 \mathrm{~N}}$

Figure 1

1.4 Pin Definitions and Functions

Pin No.	Symbol	Input (I) Output (O)	Function
1	$V_{\text {DD } 1}$		Supply voltage digital (5 V)
2	SCL	I	Clock I ${ }^{2} \mathrm{C}$ Bus
3	SDA	I/O	Data $\mathrm{I}^{2} \mathrm{C}$ Bus
4	A0	I	Address selection, sets the LSB of the IC address
5	LD	0	H-active lock detect output port
$6 \ldots 9$	SA1 ... SA4	O	10 V open drain output, controlled via $\mathrm{I}^{2} \mathrm{C}$ Bus
10	AM/FM	O	10 V open drain output, indicating the operation mode ($\mathrm{H}=\mathrm{AM}$)
11	FM ${ }_{\text {IN }}$	I	Input for the FM signal from VCO
12	$\mathrm{GND}_{\text {AN }}$		Ground analog
13	$\mathrm{AM}_{\text {IN }}$	I	Input for the AM signal from VCO
14	$\mathrm{IF}_{\mathrm{FM}}$	I/O	FM input of IF counter as long as the counter is enabled, otherwise pulled to ground
15	$\mathrm{IF}_{\text {AM }}$	I/O	AM input of IF counter as long as the counter is enabled, otherwise pulled to ground
16	$I_{\text {REF }}$	I	Reference current, setting the base current level for the charge pumps
17	$P D_{\text {FM }}$	0	FM charge pump output
18	$P D_{\text {AM }}$	0	AM charge pump output
19	$P D_{\text {FMA }}$	0	Source follower output FM
20	PD ${ }_{\text {AMA }}$	0	Source follower output AM
21	$V_{\text {DD2 }}$		Supply voltage digital (up to 10 V)
22	$\mathrm{OSC}_{\text {FB }}$	I/O	Oscillator feedback, quartz terminal
23	$\mathrm{OSC}_{\text {IN }}$	I	Oscillator input, quartz terminal, optionally input for external reference
24	GND		Ground digital

1.5 Functional Block Diagram

Figure 2
Block Diagram

2 Functional Description

The SDA $4330-2 X$ is a radio PLL controlled via $I^{2} C$ Bus for frequency synthesis in the AM and FM range. It includes an IF counter up to 50 MHz enabling a precise search tuning stop.

3 Circuit Description

The reference frequency for the PLL is derived from the quartz oscillator OSC ${ }^{1)}$. The R-prescaler can be adapted to quartz frequencies of 4 , 8 or 10.25 MHz , respectively, yielding an internal 50 kHz reference. Programming the R-counter sets the phase detector reference frequency to 1,5 or 10 kHz in the AM mode or to $12.5,25$ or 50 kHz in the FM mode. The VCO frequency is set by programming the A/N-counter which operates as dual-modulus counter for FM and AM using a divide by $4 / 5$ swallow counter.
The phase detector drives two different charge pumps for AM and FM mode. Additional source followers are connected to the charge pump. There are four programmable current levels for each charge pump. The supply voltage for the charge pump and the source followers is supplied via the $V_{\mathrm{DD2}}-$-pin and can reach 10 V maximum. AM/FM is an open drain output as well as the additional outputs SA1 ... SA4 which are controlled by $\mathrm{I}^{2} \mathrm{C}$ Bus.

The IF counter is activated by the IF bit of the $\mathrm{I}^{2} \mathrm{C}$ status word. In the FM mode the $\mathrm{IF}_{\mathrm{FM}}$ signal is divided by 2 or 4 in the F -counter in the AM mode the $\mathrm{IF}_{\mathrm{AM}}$ input is switched directly to the gate. The G-counter provides four different gate intervals T_{G} of 2,4 , 8 , or 20 ms respectively. During this interval the D-counter counts up from zero and after closing the gate its content Z is transferred into the D-register where it can be read from the $I^{2} C$ Bus. The IF frequency is given by

$$
\begin{aligned}
& f_{\text {IFFM }}=\mathrm{Z} \frac{1}{\mathrm{~F} \times T_{\mathrm{G}}} ; F=\frac{1}{2}, \frac{1}{4} \\
& f_{\mathrm{IFAM}}=\mathrm{Z} \frac{1}{T_{\mathrm{G}}}
\end{aligned}
$$

The relations between gate interval, resolution and measurement range are given in table 1.

After being started by setting the IF bit the count-cycle is repeated continuously and the content of the D-register is updated after each cycle. So the first valid result in the D-register can be expected one gate length after starting with an additional delay of

[^0]$100 \mu \mathrm{~s}$. Afterwards always the latest count is stored in the D-register and can be read via $I^{2} C$ Bus at any time. In order to achieve a valid result after the first gate cycle the control bits for G-counter, F-counter and R-prescaler have to be set to the actual value prior to setting the IF bit.
The $I^{2} C$ Bus interface provides slave receiver and slave transmitter functions. There are two addresses selected by the A0 pin. The I²C-protocol (see diagram 1) contains one string for programming all counters and functions. The transfer may be stopped optionally after each word if the remaining functions are not to be altered. After power ON all control signals are undefined, so that the complete write sequence must be executed. In the read mode only the contents of the D-register can be accessed. The programming of the counters and functions is shown in tables 2-4.

4 Electrical Characteristics

4.1 Absolute Maximum Ratings

$T_{\mathrm{A}}=-25^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$

Parameter	Symbol	Limit Values		Unit	Remarks
		min.	max.		
Supply voltage	$V_{\mathrm{DD} 1}$	-0.3	6	V	
Supply voltage	$V_{\mathrm{DD} 2}$	-0.3	10.5	V	
Input voltage	V_{IN}	-0.3	$V_{\mathrm{DD} 1}+0.3$	V	
Power dissipation per output	P_{Q}		10	mW	
Power dissipation	$\mathrm{P}_{\text {tot }}$		t.b.d.	mW	
Storage temperature	T_{S}	-40	125	${ }^{\circ} \mathrm{C}$	
Output voltage SA1-SA4, AM/FM	V_{QH}		10.5	V	
ESD voltage (HBM: $1.5 \mathrm{k} \Omega, 100 \mathrm{pF})$	V_{ESD}	-2	2	kV	

Note: Maximum ratings are absolute ratings; exceeding only one of these values may cause irreversible damage to the integrated circuit.

4.2 Operating Range

Parameter	Symbol	Limit Values			Unit
		min.	typ.	max.	
Supply voltage	$V_{\mathrm{DD} 1}$	4.5	5	5.5	V
Supply voltage	$V_{\mathrm{DD} 2}$	9		10.3	V
Supply current ${ }^{1}$)	$I_{\mathrm{DD} 1}$			20	mA
Supply current ${ }^{2}$)	$I_{\mathrm{DD} 2}$			0.5	mA
Ambient temperature	T_{U}	-25		+85	${ }^{\circ} \mathrm{C}$
Output voltage SA1 $\ldots \mathrm{SA} 4, \mathrm{AM} / \mathrm{FM}$	V_{OH}			$V_{\mathrm{DD} 2}$	V

[^1]Note: In the operating range the functions given in the circuit description are fulfilled.

4.3 AC/DC Characteristics

Parameter	Symbol	Limit Values		Unit	Test Condition
		min.	typ.	max.	

Input AM $_{\text {IN }}$

Input voltage (sine wave)	V_{IN}	30			mVeff	$V_{\mathrm{DD} 1}=4.5 \mathrm{~V}$ $0.5 \mathrm{MHz}<f_{\mathrm{IN}}<40 \mathrm{MHz}$
Input capacitance	C			4	pF	
Input leakage current	$I_{\text {Leakage }}$	-10		10	$\mu \mathrm{~A}$	$0 \leq V_{\mathrm{Q}} \leq V_{\mathrm{DD} 1}$

Input $\mathrm{FM}_{\text {IN }}$

Input voltage (sine wave)	V_{IN}	50 120			mVeff mVeff	$V_{\mathrm{DD} 1}=4.5 \mathrm{~V}$ $20 \mathrm{MHz}<f_{\mathrm{IN}}<120 \mathrm{MHz}$ $10 \mathrm{MHz}<f_{\mathrm{IN}}<155 \mathrm{MHz}$
Input capacitance	C			4	pF	
Input leakage current	$I_{\text {Leakage }}$	-10		10	$\mu \mathrm{~A}$	$0 \leq V_{\mathrm{Q}} \leq V_{\mathrm{DD} 1}$

Input OSC $_{\text {IN }}$

Input voltage (sine wave)	V_{IN}					$V_{\mathrm{DD} 1}=4.5 \mathrm{~V}$
		100			mVeff mVeff 150 $f_{\mathrm{IN}}=4 \mathrm{MHz}$ $f_{\mathrm{IN}}=8 \mathrm{MHz}$ mVeff	
$f_{\mathrm{IN}}=10.25 \mathrm{MHz}$						

Input/Output IF $_{\text {AM }}$

AC input voltage	V_{AC}	50			mVeff	$2 \mathrm{~V} \leq V_{\mathrm{DC}} \leq 3 \mathrm{~V}$
Input frequency	f_{IN}	0.3		15	MHz	$V_{\mathrm{DD} 1}=4.5 \mathrm{~V}$
Input leakage current	$I_{\text {Leakage }}$	-10		10	$\mu \mathrm{~A}$	$0 \leq V_{\mathrm{Q}} \leq V_{\mathrm{DD} 1}$, counter enabled
L-output voltage DC	V_{QL}			1	V	$I_{\mathrm{QL}}=2 \mathrm{~mA}$, counter disabled
Input capacitance	C			4	pF	

4.3 AC/DC Characteristics (cont'd)

Parameter	Symbol	Limit Values		Unit	Test Condition	
		min.	typ.			

Input/Output $\mathrm{IF}_{\mathrm{FM}}$

AC input voltage	V_{AC}					$2 \mathrm{~V} \leq V_{\mathrm{DC}} \leq 3 \mathrm{~V}$ $V_{\mathrm{D} 1}=4.5 \mathrm{~V}$
		50 120		mVeff mV eff $3 \mathrm{MHz} \leq f_{\mathrm{IN}} \leq 30 \mathrm{MHz}$ $30 \mathrm{MHz}<f_{\mathrm{IN}} \leq 50 \mathrm{MHz}$		
Input leakage current	$I_{\text {Leakage }}$	-10		10	$\mu \mathrm{~A}$	$0 \leq V_{\mathrm{Q}} \leq V_{\mathrm{DD} 1}$, counter enabled
L-output voltage DC	V_{QL}			1	V	$I_{\mathrm{QL}}=2 \mathrm{~mA}$, counter disabled
Input capacitance	C			4	pF	

Input/Output SDA

H-input voltage	V_{HH}	$0.7 \times$ $V_{\mathrm{DD} 1}$		$V_{\mathrm{DD} 1}$	V	
L-input voltage	V_{LL}	0		$0.3 \times$ $V_{\mathrm{DD} 1}$	V	
L-output voltage	V_{QL}			0.4	V	$I_{\mathrm{QL}}=3 \mathrm{~mA}, V_{\mathrm{DD} 1}=5 \mathrm{~V}$, $C_{\mathrm{L}}=400 \mathrm{pF}$
Input leakage current	$I_{\text {Leakage }}$	-1		1	$\mu \mathrm{~A}$	$0 \leq V_{\mathrm{Q}} \leq V_{\mathrm{DD} 1}$
Input capacitance	C			10	pF	

Inputs SCL, AO

H-input voltage	V_{HH}	$0.7 \times$ $V_{\mathrm{DD} 1}$		$V_{\mathrm{DD} 1}$	V	
L-input voltage	V_{IL}	0		$0.3 \times$ $V_{\mathrm{DD} 1}$	V	
Input leakage current	$I_{\text {Leakage }}$	-1		1	$\mu \mathrm{~A}$	$0 \leq V_{\mathrm{Q}} \leq V_{\mathrm{DD} 1}$
Input capacitance	C			10	pF	

4.3 AC/DC Characteristics (cont'd)

Parameter	Symbol	Limit Values		Unit	Test Condition
		min.	typ.	max.	

Outputs SA1, SA2, SA3, SA4, AM/FM (open drain outputs)

L-output voltage	V_{QL}			0.4	V	$I_{\mathrm{QL}}=1 \mathrm{~mA}$ $V_{\mathrm{DD} 1}=5 \mathrm{~V}$ $I_{\mathrm{QL}}=0.1 \mathrm{~mA}$

Output LD

H-output voltage	V_{QH}	$V_{\mathrm{DD}}-$ 0.4			V	$I_{\mathrm{QH}}=1 \mathrm{~mA}$
L-output voltage	V_{QL}			0.4	V	$I_{\mathrm{QL}}=1 \mathrm{~mA}$

Input $I_{\text {Ref }}$

Input current	$I_{\text {IN }}$	t.b.d.	100	t.b.d.	$\mu \mathrm{A}$	
Voltage at $I_{\text {REF }}$	$V_{\text {IREF }}$		1.2		V	$I_{\text {IN }}=100 \mu \mathrm{~A}$

Output $\mathrm{PD}_{\text {FM }}$

PD current A	I_{Q}		± 4.5		mA	$V_{\mathrm{PD}}=4 \mathrm{~V}$
PD current B	I_{Q}		± 3		mA	
PD current C	I_{Q}		± 1.5		mA	
PD current D	I_{Q}		± 150		$\mu \mathrm{~A}$	

Output $\mathrm{PD}_{\text {AM }}$

PD current A	I_{Q}		± 450		$\mu \mathrm{~A}$	$V_{\mathrm{PD}}=4 \mathrm{~V}$
PD current B	I_{Q}		± 300		$\mu \mathrm{~A}$	
PD current C	I_{Q}		± 150		$\mu \mathrm{~A}$	
PD current D	I_{Q}		± 30		$\mu \mathrm{~A}$	

4.3 AC/DC Characteristics (cont'd)

Parameter	Symbol	Limit Values		Unit	Test Condition
		min.	typ.		

Output PD $_{\text {FMA }}$

H-output voltage	V_{QH}	7.5	7.7		V	$I_{\mathrm{QH}}=2 \mathrm{~mA}$ $V_{\mathrm{PDFM}}=V_{\mathrm{DD2} 2}=9 \mathrm{~V}$
H-output current	I_{QH}		2	5	mA	$V_{\mathrm{PDFM}}=V_{\mathrm{DD2}}=9 \mathrm{~V}$
L-output current	I_{QL}	10			$\mu \mathrm{~A}$	$V_{\text {PDFM }}=\mathrm{GND}$

Output $\mathrm{PD}_{\text {AMA }}$

H-output voltage	I_{QH}		1	2.5	mA	$V_{\mathrm{PDAM}}=5 \mathrm{~V}$
L-output current	I_{QL}	t.b.d.			mA	$V_{\text {PDAM }}=\mathrm{GND}$ $V_{\mathrm{Q}}=5 \mathrm{~V}$

Note: The listed characteristics are ensured over the operating range of the integrated circuit. Typical characteristics specify mean values expected over the production spread. If not otherwise specified, typical characteristics apply at $T_{A}=25^{\circ} \mathrm{C}$ and the given supply voltage.

Table 1

IF counter

$T_{\mathrm{G}}[\mathrm{ms}]$	F-counter	Resolution $[\mathrm{Hz}]$	Accuracy $[\mathrm{Hz}]^{n}$	Frequency Range [MHz]

FM

2	$1: 2$	1000	3000	65.5
4	$1: 4$	1000	3000	65.5
4	$1: 2$	500	1500	32.8
8	$1: 4$	500	1500	32.8
8	$1: 2$	250	750	16.4
20	$1: 4$	200	600	13
20	$1: 2$	100	300	6.5

AM

2		500	1500	32.8
4	250	750	16.4	
8	125	375	8.2	
20	50	150	3.25	

${ }^{1)}$ Accuracy due to gate uncertainty; there is an additional inaccuracy due o the quartz frequency.

Table 2
Programming of Mode and Frequency Resolution

AM/FM	R1	R0	Mode	Frequency Range [kHz]
0	0	1	FM	12.5
0	1	0	FM	25
0	1	1	FM	50
1	0	1	AM	1
1	1	0	AM	5
1	1	1	AM	10

Table 3
Programming R-prescaler

RP1	RP0	Divide ratio	Quartz Frequency [MHz]
0	0	$1: 1$	Test mode only
0	1	$1: 80$	4
1	0	$1: 160$	8
1	1	$1: 205$	10.25

Table 4
Programming IF counter

G1	G0	G-Divide Ratio	$\boldsymbol{T}_{\mathrm{G}}[\mathrm{ms}]$
0	0	$1: 100$	2
0	1	$1: 200$	4
1	0	$1: 400$	8
1	1	$1: 1000$	20

F0	F-Divide Ratio
0	$1: 2$
1	$1: 4$

IF	Function
0	Disable IF counter
1	Enable IF counter

Table 5
Programming Phase Detector

PD1	PD0	Current Level
0	0	D
0	1	C
1	0	B
1	1	A

PPD	Polarity
0	Normal
1	Invers

Table 6
Programming Test Mode

T1	T2	SA1	SA2	SA3	SA4
0	0	Controlled by I²C Bus			
0	1	PD_MUX	Clk_50 kHz	N_A_CLN	D_INX

T3	Operation
0	Normal
1	Test-reset

T0	Output LD
0	Disabled
0	Enabled

Diagram 1: I²C Protocol

Slave-receive (Write)
START
1
1
0
0
1
1
0
$0 / 1$
0
ACK
MSB
N14
N13
N12
N11
N10
N9
N8
ACK
N7
N6
N5
N4
N3
N2
N1
LSB
ACK
ACounter

[STOP or START]
AM/FM
PD1
PDO
IF
SA4
SA3
SA2
SA1
ACK
[STOP or START]

G0
F0
R1
R0
RP1
RP0
0
ACK
[STOP or START]
PPD
T0 (= '0')
T1 (= '0')
T2 (= '0')
T3 (= ${ }^{\prime}$ ')
X
X
X
ACK
STOP or START

Figure 3
Application Circuit for AM and FM Charge Pump Output

$5 \quad$ Package Outlines

P-DSO-24-1

(Plastic Dual Small Outline Package)

Index Marking

1) Does not include plastic or metal protrusion of 0.15 max. per side
2) Does not include dambar protrusion

Sorts of Packing

Package outlines for tubes, trays etc. are contained in our Data Book "Package Information".

[^0]: ${ }^{1)}$ The power dissipation of the quartz is given by:
 $P_{\mathrm{v}}=2 \times R_{1}\left(\Pi \times f_{\mathrm{Q}} \times\left(C_{\mathrm{O}}+C_{\mathrm{L}}\right) \times V_{\mathrm{DD}}\right)^{2}$
 R_{1} : Series resistance of the quartz
 f_{Q} : Quartz frequency
 C_{0} : Parallel capacitance of the quartz
 C_{L} : Load capacitance, including input capacitance of the IC

[^1]: ${ }^{1)}$ Measurement conditions: IF counter disabled
 ${ }^{2}$) Measurement conditions: Pins $\mathrm{PD}_{\mathrm{FM}}, \mathrm{PD}_{\mathrm{AM}}, \mathrm{PD}_{\mathrm{FMA}}$, and $\mathrm{PD}_{\mathrm{AMA}}$: Output current $=0 \mathrm{~mA}$

