Data Sheet, DS 1, March 2001

Q-SMINT ${ }^{\text {® }}$ 2B1Q Sego (Intelligent)

 PEF 829ffif82913 Version 1.3
Wired
 Communications

Edition March 2001

Published by Infineon Technologies AG, St.-Martin-Strasse 53, D-81541 München, Germany
 © Infineon Technologies AG 2001.
 All Rights Reserved.

Attention please!

The information herein is given to describe certain components and shall not be considered as warranted characteristics.
Terms of delivery and rights to technical change reserved.
We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding circuits, descriptions and charts stated herein.
Infineon Technologies is an approved CECC manufacturer.

Information

For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office in Germany or our Infineon Technologies Representatives worldwide (see address list).

Warnings

Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office.
Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

Q-SMINT ${ }^{\circledR} \mid$
2B1Q Second Gen. Modular ISDN NT
(Intelligent)
PEF 82912/82913 Version 1.3

Wired
 Communications

PEF 82912/82913

Revision History:		March 2001	DS 1
Previous Version:		Preliminary Data Sheet 10.00	
Page	Subjects (major changes since last revision)		
All	Editorial changes, addition of notes for clarification etc.		
Table 1, Chapter 1.3	Introduced new version 82913 with extended performance of the U-interface		
Chapter 2.1.1.1	SCI: header description: added to sequences $43_{\mathrm{H}}, 41_{\mathrm{H}}$ and 49_{H} : 'Generally, it can be used for any register access to the address range $20_{\mathrm{H}}-7 \mathrm{D}_{\mathrm{H}}$. '		
Chapter 2.3.2	IOM-2 handler: removed 'U-transceiver (U)' from listing of functional units with programmable time slot and data port.		
Figure 12	Figure 'Data Access via CDAx0 and CDAx1 register pairs' corrected: input swap has influence on the input enable (EN_IO,1), too		
Chapter 2.5.5.2	C/I commands: removed 'unconditional command' from description C/I-command 'DR'		
Chapter 2.5.5.3	LT-S state machine: $\mathrm{C} / \mathrm{l}=$ command AIL removed (no valid input to the LT-S state machine)		
Chapter 4	Detailed register description: - U-transceiver Mode Evaluation Timing: clarified description - register ID: reset value of version 1.3 is $01_{\mathrm{H}}\left(\right.$ not $\left.00_{\mathrm{H}}\right)$ - CIX1.CODX1: bits 5-0 of C/l-channel 1 (not 7-2) - IOM_CR:TIC_DIS: added for clarification: 'This means that the timeslots TIC, A/ $B, S / G$ and BAC are not available any more.'		
Chapter 5.1	Refined references for ESD requirements:' ...(CDM), EIA/JESD22-A114B (HBM) ---'		
Chapter 5.2	Input/output leakage current set to $10 \mu \mathrm{~A}$ (before: $1 \mu \mathrm{~A}$)		
Table 38	U-transceiver characteristics: enhanced S/N+D for 82913 and threshold level for 82912 and 82913 distinguished		
Chapter 5.1	Absolute Maximum Ratings: Maximum Voltage on VDD: 4.2V (before: 4.6V)		
Chapter 5.6.2 Chapter 5.6.3	AC-Timing SCI/parallel $\mu \mathrm{C}$ interface: enhanced timing specifications		
Chapter 5.6.3	Added restriction for control interval t_{RI}		
Chapter 5.6.5	Parameters of the UVD/POR Circuit: defined reduced range of hysteresis: min. $30 \mathrm{mV} / \mathrm{max} .90 \mathrm{mV}$ relaxed upper limit of Detection Threshold to 2.92V (before: 2.9V) defined max. rising VDD for power-on		
Chapter 7.2.5	Register summary U-transceiver 4B3T: Reset value of MASKU is FF_{H} (not 00_{H})		
Chapter 7.3	External circuitry for T-SMINT updated		

For questions on technology, delivery and prices please contact the Infineon Technologies Offices in Germany or the Infineon Technologies Companies and Representatives worldwide: see our webpage at http://www.infineon.com

PEF 82912/82913

Page

Table of Contents Page
1 Overview 1
1.1 References 2
1.2 Features PEF 82912 3
1.3 Features PEF 82913 4
1.4 Not Supported are 5
1.5 Pin Configuration 6
1.6 Block Diagram 7
1.7 Pin Definitions and Functions 8
1.7.1 Specific Pins 13
1.8 System Integration 14
2 Functional Description 17
2.1 Microcontroller Interfaces 17
2.1.1 Serial Control Interface (SCI) 18
2.1.1.1 Programming Sequences 20
2.1.2 Parallel Microcontroller Interface 22
2.1.3 Microcontroller Clock Generation 24
2.2 Reset Generation 25
2.3 IOM®-2 Interface 28
2.3.1 IOM,-2 Functional Description 28
2.3.2 IOM,-2 Handler 29
2.3.2.1 Controller Data Access (CDA) 31
2.3.2.2 Serial Data Strobe Signal 41
2.3.3 IOM,-2 Monitor Channel 42
2.3.3.1 Handshake Procedure 42
2.3.3.2 Error Treatment 46
2.3.3.3 MONITOR Channel Programming as a Master Device 48
2.3.3.4 MONITOR Channel Programming as a Slave Device 48
2.3.3.5 Monitor Time-Out Procedure 49
2.3.3.6 MONITOR Interrupt Logic 49
2.3.4 C/I Channel Handling 50
2.3.5 D-Channel Access Control 52
2.3.5.1 Application Examples for D-Channel Access Control 52
2.3.5.2 TIC Bus Handling 53
2.3.5.3 Stop/Go Bit Handling 54
2.3.5.4 D-Channel Arbitration 55
2.3.5.5 State Machine of the D-Channel Arbiter 56
2.3.6 Activation/Deactivation of IOM^{\circledR}-2 Interface 59
2.4 U-Transceiver 60
2.4.1 2B1Q Frame Structure 60
2.4.2 Maintenance Channel 64
2.4.2.1 Reporting to the $\mu \mathrm{C}$ Interface 64
2.4.2.2 Access from the μ C Interface 64

PEF 82912/82913
Table of Contents Page
2.4.2.3 Availability of Maintenance Channel Information 64
2.4.2.4 \quad M-Bit Register Access Timing 65
2.4.3 Processing of the EOC 67
2.4.3.1 EOC Commands 67
2.4.3.2 EOC Processor 69
2.4.3.3 EOC Operating Modes 71
2.4.3.4 Examples for different EOC modes 72
2.4.4 Processing of the Overhead Bits M4, M5, M6 75
2.4.4.1 \quad M4 Bit Reporting to the $\mu \mathrm{C}$ 75
2.4.4.2 M4 Bit Reporting to State Machine 75
2.4.4.3 M5, M6 Bit Reporting to the $\mu \mathrm{C}$ 75
2.4.4.4 Summary of M4, M5, M6 Bit Reporting 75
2.4.5 M4, M5, M6 Bit Control Mechanisms 77
2.4.6 Cyclic Redundancy Check / FEBE bit 79
2.4.7 Block Error Counters 81
2.4.7.1 Near-End and Far-End Block Error Counter 81
2.4.7.2 Testing Block Error Counters 81
2.4.8 Scrambling/ Descrambling 83
2.4.9 C/l Codes 83
2.4.10 State Machines for Line Activation / Deactivation 85
2.4.10.1 Notation 85
2.4.10.2 Standard NT State Machine (IEC-Q / NTC-Q Compatible) 87
2.4.10.3 Inputs to the U-Transceiver: 88
2.4.10.4 Outputs of the U-Transceiver: 89
2.4.10.5 Description of the NT-States 93
2.4.10.6 Simplified NT State Machine 95
2.4.11 Metallic Loop Termination 99
2.4.12 U-Transceiver Interrupt Structure 101
2.5 S-Transceiver 103
2.5.1 Line Coding, Frame Structure 103
2.5.2 S/Q Channels, Multiframing 105
2.5.3 Data Transfer between IOM,-2 and SO 106
2.5.4 Loopback 2 106
2.5.5 Control of S-Transceiver / State Machine 106
2.5.5.1 C/l Codes 109
2.5.5.2 State Machine NT Mode 111
2.5.5.3 State Machine LT-S Mode 115
2.5.6 S-Transceiver Enable / Disable 118
2.5.7 Interrupt Structure S-Transceiver 119
3 Operational Description 120
3.1 Layer 1 Activation/Deactivation 120
3.1.1 Complete Activation Initiated by Exchange 120

PEF 82912/82913
Table of Contents Page
3.1.2 Complete Activation Initiated by TE 121
3.1.3 Complete Activation Initiated by NT 122
3.1.4 Complete Deactivation 123
3.1.5 Loop 2 124
3.2 Layer 1 Loopbacks 125
3.2.1 Analog Loopback U-Transceiver (No. 3) 125
3.2.2 Analog Loop-Back S-Transceiver 126
3.2.3 Loopback No. 2 127
3.2.3.1 Complete Loopback 127
3.2.3.2 Loopback No.2 - Single Channel Loopbacks 128
3.2.4 Local Loopbacks Featured By the LOOP Register 128
3.3 External Circuitry 130
3.3.1 Power Supply Blocking Recommendation 130
3.3.2 U-Transceiver 130
3.3.3 S-Transceiver 132
3.3.4 Oscillator Circuitry 134
3.3.5 General 135
4 Register Description 136
4.1 Address Space 136
4.2 Interrupts 137
4.3 Register Summary 139
4.4 Reset of U-Transceiver Functions During Deactivation or with C/I-Code RESET 146
4.5 U-Transceiver Mode Register Evaluation Timing 147
4.6 Detailed C/l Registers 148
4.6.1 MODEH - Mode Register IOM-2 148
4.6.2 CIR0 - Command/Indication Receive 0 148
4.6.3 CIXO - Command/Indication Transmit 0 150
4.6.4 CIR1 - Command/Indication Receive 1 151
4.6.5 CIX1 - Command/Indication Transmit 1 151
4.7 Detailed S-Transceiver Registers 152
4.7.1 S_CONFO-S-Transceiver Configuration Register 0 152
4.7.2 S_CONF2 - S-Transmitter Configuration Register 2 153
4.7.3 S_STA - S-Transceiver Status Register 154
4.7.4 S_CMD - S-Transceiver Command Register 155
4.7.5 SQRR - S/Q-Channel Receive Register 156
4.7.6 SQXR- S/Q-Channel Transmit Register 156
4.7.7 ISTAS - Interrupt Status Register S-Transceiver 157
4.7.8 MASKS - Mask S-Transceiver Interrupt 158
4.7.9 S_MODE - S-Transceiver Mode 159
4.8 Interrupt and General Configuration Registers 160
4.8.1 ISTA - Interrupt Status Register 160

PEF 82912/82913
Table of Contents Page
4.8.2 MASK - Mask Register 161
4.8.3 MODE1 - Mode1 Register 162
4.8.4 MODE2 - Mode2 Register 163
4.8.5 ID - Identification Register 164
4.8.6 SRES - Software Reset Register 165
4.9 Detailed IOM ${ }^{\circledR}$-2 Handler Registers 165
4.9.1 CDAxy - Controller Data Access Register xy 165
4.9.2 XXX_TSDPxy - Time Slot and Data Port Selection for CHxy 166
4.9.3 CDAx_CR - Control Register Controller Data Access CH1x 167
4.9.4 S_CR - Control Register S-Transceiver Data 168
4.9.5 \quad CI_CR - Control Register for Cl1 Data 169
4.9.6 MON_CR - Control Register Monitor Data 170
4.9.7 SDS1_CR - Control Register Serial Data Strobe 1 171
4.9.8 SDS2_CR - Control Register Serial Data Strobe 2 172
4.9.9 IOM_CR - Control Register IOM Data 173
4.9.10 MCDA - Monitoring CDA Bits 174
4.9.11 STI - Synchronous Transfer Interrupt 174
4.9.12 ASTI - Acknowledge Synchronous Transfer Interrupt 175
4.9.13 MSTI - Mask Synchronous Transfer Interrupt 175
4.10 Detailed MONITOR Handler Registers 176
4.10.1 MOR - MONITOR Receive Channel 176
4.10.2 MOX - MONITOR Transmit Channel 176
4.10.3 MOSR - MONITOR Interrupt Status Register 177
4.10.4 MOCR - MONITOR Control Register 177
4.10.5 MSTA - MONITOR Status Register 178
4.10.6 MCONF - MONITOR Configuration Register 179
4.11 Detailed U-Transceiver Registers 179
4.11.1 OPMODE - Operation Mode Register 179
4.11.2 MFILT - M Bit Filter Options 180
4.11.3 EOCR - EOC Read Register 181
4.11.4 EOCW - EOC Write Register 182
4.11.5 M4RMASK - M4 Read Mask Register 183
4.11.6 M4WMASK - M4 Write Mask Register 183
4.11.7 M4R - M4 Read 184
4.11.8 M4W - M4 Write Register 185
4.11.9 M56R - M56 Read Register 186
4.11.10 M56W - M56 Write Register 187
4.11.11 UCIR - C/I Code Read Register 187
4.11.12 UCIW - C/I Code Write Register 188
4.11.13 TEST - Test Register 188
4.11.14 LOOP - Loop Back Register 189
4.11.15 FEBE - Far End Block Error Counter Register 190
Table of Contents Page
4.11.16 NEBE - Near End Block Error Counter Register 191
4.11.17 ISTAU - Interrupt Status Register U-Interface 191
4.11.18 MASKU - Mask Register U-Interface 192
4.11.19 FW_VERSION 193
5 Electrical Characteristics 194
5.1 Absolute Maximum Ratings 194
5.2 DC Characteristics 195
5.3 Capacitances 197
5.4 Power Consumption 197
5.5 Supply Voltages 197
5.6 AC Characteristics 199
5.6.1 \quad IOM $^{\circledR}$-2 Interface 200
5.6.2 Serial μ P Interface 202
5.6.3 Parallel $\mu \mathrm{P}$ Interface 203
5.6.4 Reset 206
5.6.5 Undervoltage Detection Characteristics 207
6 Package Outlines 209
7 Appendix: Differences between Q- and T-SMINT,I 211
7.1 Pinning 211
7.2 U-Transceiver 212
7.2.1 U-Interface Conformity 212
7.2.2 U-Transceiver State Machines 213
7.2.3 Command/Indication Codes 216
7.2.4 Interrupt Structure 217
7.2.5 Register Summary U-Transceiver 219
7.3 External Circuitry 222
8 Index 224
List of Figures Page
Figure 1 Pin Configuration 6
Figure 2 Block Diagram 7
Figure 3 Application Example Q-SMINT ${ }^{\circledR}$ I: High Feature Intelligent NT 14
Figure $4 \quad$ Control via μ P Interface 15
Figure 5 Control via IOM,-2 Interface 16
Figure 6 Serial Control Interface Timing 19
Figure 7 Serial Command Structure. 20
Figure 8 Direct/Indirect Register Address Mode 24
Figure 9 Reset Generation of the Q-SMINT ${ }^{\circledR}$ I 25
Figure 10 IOM®-2 Frame Structure of the Q-SMINT,I 28
Figure 11 Architecture of the $I O M ®-2$ Handler 30
Figure 12 Data Access via CDAx0 and CDAx1 register pairs 32
Figure 13 Examples for Data Access via CDAxy Registers 33
Figure 14 Data Access when Looping TSa from DU to DD 34
Figure 15 Data Access when Shifting TSa to TSb on DU (DD) 35
Figure 16 Example for Monitoring Data 36
Figure 17 Interrupt Structure of the Synchronous Data Transfer. 39
Figure 18 Examples for the Synchronous Transfer Interrupt Control with one STIxy enabled 40
Figure 19 Data Strobe Signal Generation 41
Figure 20 MONITOR Channel Protocol (IOM®-2) 44
Figure 21 Monitor Channel, Transmission Abort requested by the Receiver. 47
Figure 22 Monitor Channel, Transmission Abort requested by the Transmitter. 47
Figure 23 Monitor Channel, Normal End of Transmission 47
Figure 24 MONITOR Interrupt Structure 50
Figure 25 CIC Interrupt Structure 51
Figure 26 D-Channel Arbitration: $\mu \mathrm{C}$ with HDLC and Direct Access to TIC Bus 52
Figure 27 D-Channel Arbitration: $\mu \mathrm{C}$ with HDLC and no Access to TIC Bus 53
Figure 28 Structure of Last Octet of Ch2 on DU 54
Figure 29 Structure of Last Octet of Ch2 on DD 55
Figure 30 State Machine of the D-Channel Arbiter (Simplified View) 57
Figure 31 Deactivation of the $I O M^{\circledR}-2$ Clocks 59
Figure 32 U-Superframe Structure. 60
Figure 33 U-Basic Frame Structure 61
Figure 34 U2B1Q Framer - Data Flow Scheme 63
Figure 35 U2B1Q Deframer - Data Flow Scheme 63
Figure 36 Write Access Timing 66
Figure 37 Read Access Timing 67
Figure 38 EOC Message Reception 70
Figure 39 EOC Command/Message Transmission 70
Figure 40 Maintenance Channel Filtering Options 76
Figure 41 M4 Bit Report Timing (Statemachine vs. $\mu \mathrm{C}$). 76

PEF 82912/82913
List of Figures Page
Figure 42 M4, M5, M6 Bit Control in Receive Direction 78
Figure 43 M4, M5, M6 Bit Control in Transmit Direction 78
Figure 44 CRC-Process 80
Figure 45 Block Error Counter Test 83
Figure 46 Explanation of State Diagram Notation 86
Figure 47 Standard NT State Machine (IEC-Q / NTC-Q Compatible) (Footnotes: see "Dependence of Outputs" on Page 92) 87
Figure 48 Simplified NT State Machine 98
Figure 49 Pulse Streams Selecting Quiet Mode 100
Figure 50 Interrupt Structure U-Transceiver 102
Figure 51 S/T -Interface Line Code 103
Figure 52 Frame Structure at Reference Points S and T (ITU I.430). 104
Figure 53 S-Transceiver Control 107
Figure 54 State Diagram Notation 108
Figure 55 State Machine NT Mode 111
Figure 56 State Machine LT-S Mode 115
Figure 57 Interrupt Structure S-Transceiver. 119
Figure 58 Complete Activation Initiated by Exchange 120
Figure 59 Complete Activation Initiated by TE 121
Figure 60 Complete Activation Initiated by Q-SMINT ${ }^{\oplus}$ | 122
Figure 61 Complete Deactivation Initiated by Exchange 123
Figure 62 Loop 2 124
Figure 63 Test Loopbacks 125
Figure 64 External Loop at the S/T-Interface 126
Figure 65 Complete Loopback Options in NT-Mode 127
Figure 66 Loopbacks Featured by Register LOOP 129
Figure 67 Power Supply Blocking 130
Figure 68 External Circuitry U-Transceiver 131
Figure 69 External Circuitry S-Interface Transmitter 133
Figure 70 External Circuitry S-Interface Receiver 134
Figure 71 Crystal Oscillator 134
Figure 72 Address Space. 136
Figure 73 Q-SMINT ${ }^{\text {® }}$ I Interrupt Status Registers 137
Figure 74 Maximum Sinusoidal Ripple on Supply Voltage 198
Figure 75 Input/Output Waveform for AC Tests 199
Figure 76 IOM®-2 Interface - Bit Synchronization Timing 200
Figure $77 \quad 1 \mathrm{IO}^{\circledR}-2$ Interface - Frame Synchronization Timing 200
Figure 78 Serial Control Interface 202
Figure 79 Microprocessor Read Cycle 203
Figure 80 Microprocessor Write Cycle 203
Figure 81 Multiplexed Address Timing 203
Figure 82 Non-Multiplexed Address Timing 204
List of Figures Page
Figure 83 Microprocessor Read Timing 204
Figure 84 Microprocessor Write Cycle 204
Figure 85 Non-Multiplexed Address Timing 205
Figure 86 Reset Input Signal 206
Figure 87 Undervoltage Control Timing 207
Figure 88 INTC-Q Compatible State Machine Q-SMINT ${ }^{\circledR}$ I: 2B1Q 213
Figure 89 Simplified State Machine Q-SMINT ${ }^{\circledR}$ I: 2B1Q 214
Figure 90 IEC-T/NTC-T Compatible State Machine T-SMINT,I: 4B3T 215
Figure 91 Interrupt Structure U-Transceiver Q-SMINT ${ }^{\circledR}$ I: 2B1Q 217
Figure 92 Interrupt Structure U-Transceiver T-SMINT,I: 4B3T. 218
Figure 93 External Circuitry Q- and T-SMINT,I 222
List of Tables Page
Table 1 NT Products of the 2nd Generation 1
Table $2 \quad$ Pin Definitions and Functions 8
Table 3 ACT States. 13
Table 4 Interface Selection for the Q-SMINT,I 17
Table 5 Header Byte Code 20
Table 6 Bus Operation Modes 22
Table 7 MCLK Frequencies 24
Table 8 Reset Source Selection 26
Table 9 Examples for Synchronous Transfer Interrupts 38
Table 10 Transmit Direction 43
Table 11 Receive Direction 43
Table 12 Q-SMINT ${ }^{\circledR}$ I Configuration Settings in Intelligent NT Applications 56
Table 13 Major Differences D-Channel Arbiter INTC-Q and Q-SMINT ${ }^{\circledR}$ | 57
Table 14 U-Superframe Format 61
Table 15 Enabling the Maintenance Channel (Receive Direction) 64
Table 16 Coding of EOC-Commands 68
Table 17 Usage of Supported EOC-Commands. 68
Table 18 EOC Auto Mode 73
Table 19 Transparent mode 6 ms 74
Table 20 Transparent mode '@change' 74
Table 21 Transparent mode TLL 74
Table 22 U - Transceiver C/I Codes 84
Table 23 Timers Used. 89
Table 24 U-Interface Signals 90
Table 25 Signal Output on Uk0 92
Table 26 C/I-Code Output. 92
Table 27 Changes to achieve Simplified NT State Machine 96
Table 28 Appearance of the State Machine to the Software 99
Table 29 ANSI Maintenance Controller States 100
Table 30 S/Q-Bit Position Identification and Multi-Frame Structure 105
Table 31 U-Transformer Parameters 131
Table 32 S-Transformer Parameters 132
Table 33 Crystal Parameters 135
Table 34 Reset of U-Transceiver Functions During Deactivation or with C/I-Code RESET 146
Table 36 Maximum Input Currents 194
Table 37 S-Transceiver Characteristics 195
Table 38 U-Transceiver Characteristics 196
Table 39 Pin Capacitances 197
Table 40 Reset Input Signal Characteristics 206
Table 41 Parameters of the UVD/POR Circuit 207
Table 42 Pin Definitions and Functions 211
List of Tables Page
Table 43 Related Documents to the U-Interface 212
Table 44 C/I Codes 216
Table 45 Dimensions of External Components. 223

Overview

1 Overview

The PEF 82912 / 82913 (Q-SMINT ${ }^{\circledR}$ I) offers U-transceiver, S-transceiver and an IOM $^{\circledR}{ }^{\circledR}$ 2 interface. A microcontroller interface provides access to both transceivers as well as the $\mathrm{IOM}^{\circledR}-2$ interface.
However, as opposed to its bigger brother Q-SMINT ${ }^{\circledR} \mid \mathrm{X}$, the $\mathrm{Q}-\mathrm{SMINT}^{\circledR} \mid$ does not have an HDLC controller. Main target applications of the Q-SMINT ${ }^{\circledR}$ are intelligent NT applications where the HDLC controller(s) is (are) provided by the microcontroller or other additional components. An example for such a microcontroller is the Infineon UTAH chip which features four flexible HDLC controllers.
Table 1 summarizes the 2nd generation NT products.
Table 1 NT Products of the 2nd Generation

	PEF80912 PEF80913		PEF81912	PEF81913	PEF82912	PEF82913
	Q-SMINT ${ }^{\circledR} \mathbf{O}$		Q-SMINT ${ }^{\circledR}$ IX		Q-SMINT ${ }^{\text {® }}$ I	
Package	P-MQFP-44		$\begin{aligned} & \text { P-MQFP-64 } \\ & \text { P-TQFP-64 } \end{aligned}$		$\begin{aligned} & \text { P-MQFP-64 } \\ & \text { P-TQFP-64 } \end{aligned}$	
Register access	no		U+S+HDLC+ $\mathrm{IOM}^{\circledR}-2$		U+S+ $\mathrm{IOM}^{\circledR}-2$	
Access via	n.a.		parallel (or SCI or $10 M^{\circledR}-2$)		parallel (or SCI or $\left.10 M^{\circledR}-2\right)$	
MCLK, watchdog timer, SDS, BCL, Dchannel arbitration, $10 M^{\circledR}$-2 access and manipulation etc. provided	no		yes		yes	
HDLC controller	no		yes		no	
NT1 mode available	yes (only)		no		no	
Extended UPerformance 20kft	no	yes	no	yes	no	yes

Overview

1.1 References

[1] TS 102 080, Transmission and Multiplexing ; ISDN basic rate access; Digital transmission system on metallic local lines, ETSI, November 1998
[2] T1.601-1998 (Revision of ANSI T1.601-1992), ISDN-Basic Access Interface for Use on Metallic Loops for Application on the Network Side of the NT (Layer 1 Specification), ANSI, 1998
[3] ST/LAA/ELR/DNP/822, CNET, France
[4] RC7355E, 2B1Q Generic Physical Layer Specification, British Telecommunications plc., 1997
[5] FZA TS 0095/01:1997-10, Technische Spezifikationen für Netzabschlußgeräte für den ISDN Basisanschluß (NT-BA), Post \& Telekom Austria, 1997
[6] pr ETS 300012 Draft, ISDN; Basic User Network Interface (UNI), ETSI, November 1996
[7] T1.605-1991, ISDN-Basic Access Interface for S and T Reference Points (Layer 1 Specification), ANSI, 1991
[8] I.430, ISDN User-Network Interfaces: Layer 1 Recommendations, ITU, November 1988
[9] IEC-Q, ISDN Echocancellation Circuit, PEB 2091 V4.3, User's Manual 02.95, Siemens AG, 1995
[10] SBCX, S/T Bus Interface Circuit Extended, PEB 2081 V3.4, User's Manual 11.96, Siemens AG, 1996
[11] NTC-Q, Network Termination Controller (2B1Q), PEB / PEF 8091 V1.1, Data Sheet 10.97, Siemens AG, 1997
[12] INTC-Q, Intelligent Network Termination Controller (2B1Q), PEB / PEF 8191 V1.1, Data Sheet 10.97, Siemens AG, 1997
[13] $\quad \mathrm{OM}^{\circledR}-2$ Interface Reference Guide, Siemens AG, 03.91
[14] SCOUT-S(X), Siemens Codec with S/T-Transceiver, PSB 2138x V1.3, Preliminary Data Sheet 8.99, Infineon Technologies, 1999
[15] PITA, PCI Interface for Telephony/Data Applications V0.3, SICAN GmbH, September 1997
[16] Dual Channel SLICOFI-2, HV-SLIC; DUSLIC; PEB3265, 4265, 4266; Data Sheet DS2, Infineon Technologies, July 2000.

Version 1.3

1.2 Features PEF 82912

Features known from the PEB/PEF 8191

- U-transceiver and S-transceiver on one chip
- Perfectly suited for high-end intelligent NTs that require multiple HDLC controllers (which are provided externally)
- U-interface (2B1Q) conform to ETSI [1], ANSI [2] and CNET [3]:
- Meets all transmission requirements on all ETSI, ANSI and CNET loops with margin
- Conform to British Telecom's RC7355E [4]
- Compliant with ETSI 10 ms micro interruptions
- MLT input and decode logic (ANSI [2])
- S/T-interface conform to ETSI [6], ANSI [7] and ITU [8]
- Supports point-to-point and bus configurations
- Meets and exceeds all transmission requirements

P-TQFP-64

- Activation status LED supported
- BCL, SDS1, SDS2, programmable MCLK, watchdog timer,
- Access to $I O M^{\circledR}-2 \mathrm{C} / \mathrm{I}$ and Monitor channels
- Power-down and reset states (e.g. S-transceiver) for individual circuits
- Automatic D-channel arbitration between S-bus and external HDLC controller
- Parallel or serial $\mu \mathrm{P}$-interface

Type	Package	
PEF 82912/82913	P-MQFP-64	
PEF 82912/82913	P-TQFP-64	
		$2001-03-30$

Overview

New Features

- Reduced number of external components for external U-hybrid required
- Optional use of up to $2 \times 20 \Omega$ resistors on the line side of the transformer (e.g. PTCs)
- Pin Uref and the according external capacitor removed
- Improved ESD (2 kV instead of $<850 \mathrm{~V}$)
- Inputs accept 3.3 V and 5 V
- I/O (open drain) accepts pull-up to $3.3 \mathrm{~V}^{1)}$
- LED signal is programmable but can also automatically indicate the activation status (mode select via 1 bit)
- Pin compatible with T-SMINT ${ }^{\circledR}$ (2nd Generation)
- Priority setting (8/10) for off-chip HDLC controller
- Enhanced IOM ${ }^{\circledR}-2$ timeslot access and manipulation (SCOUT)
- MCLK can be disabled (SCOUT)
- External Awake (EAW)
- Optional: All registers can be read and written to via new Monitor channel concept
- Optional: Implementation of S-transceiver statemachine in software
- Indirect Addressing (SCOUT)
- Programmable strobes SDS1/2 are more flexible, e.g. active during several timeslots
- Power-on reset and Undervoltage Detection with no external components
- Lowest power consumption due to:
- Low power CMOS technology (0.35μ)
- Newly optimized low-power libraries
- High output swing on U - and S-line interface leads to minimized power consumption
- Single 3.3 Volt power supply
- 200 mW (INTC-Q: 295 mW) power consumption with random data over ETSI Loop 2 (external loads on the S and U interface only and no additional external loads).
- 15 mW typical power consumption in power down (INTC-Q: 28 mW)

1.3 Features PEF 82913

The Q-SMINT ${ }^{\circledR}$ I PEF 82913 provides all features of the PEF 82912. Additionally, a significantly enhanced performance of the U-interface as compared to ETSI [1], ANSI [2] and CNET [3] requirements is guaranteed:
Transparent transmission on 20kft AWG26 with a BER $<10^{-7}$ (without noise).

[^0]Overview

1.4 Not Supported are ...

- Integrated U-hybrid
- On-chip HDLC controller
- 'Self test request' and 'Self test passed' of U-transceiver
- TE-mode of the S-transceiver
- DECT-link capability
- SRA (capacitive receiver coupling is not suited for S-feeding).
- 'NT-Star' with star point on the $1 O M^{\circledR}-2$ bus (already not supported in INTC-Q).
- No access to S2-5 channels. Access only to S1 and Q channel as in SCOUT. No selection between transparent and non-auto mode provided.
- The oscillator architecture was changed with respect to the INTC-Q to reduce power consumption. As a consequence, the Q-SMINT ${ }^{\circledR}$ I always needs a crystal and pin XIN can not be connected to an external clock as it was possible for IEC-Q and NTC-Q. This does not limit the use of the Q-SMINT ${ }^{\circledR}$ I in NTs since all NT designs use crystals anyway.

PEF 82912/82913

Overview

1.5 Pin Configuration

Figure 1 Pin Configuration

Overview

1.6 Block Diagram

Figure $2 \quad$ Block Diagram

PEF 82912/82913

1.7 Pin Definitions and Functions

Table 2 Pin Definitions and Functions

	Pin	Symbol	Type	Function
	2	VDDa_UR	-	Supply voltage for U-Receiver $(3.3 \mathrm{~V} \pm 5 \%)$
	1	VSSa_UR	-	Analog ground (0 V) U-Receiver
	62	VDDa_UX	-	Supply voltage for U-Transmitter $(3.3 \mathrm{~V} \pm 5 \%)$
	51	VDDa_SR	-	Supply voltage for S-Receiver $(3.3 \mathrm{~V} \pm 5 \%)$
	52	VSSa_SR	-	Analog ground (0 V) S-Receiver
	46	VDDa_SX	-	Supply voltage for S-Transmitter $(3.3 \mathrm{~V} \pm 5 \%)$
	39	VDDD	-	Supply voltage digital circuits $(3.3 \mathrm{~V} \pm 5 \%)$
	13	VDDD	-	Supply voltage digital circuits $(3.3 \mathrm{~V} \pm 5 \%)$
	14	VSSD	-	Ground (0 V) digital circuits

	32	FSC	O	Frame Sync: $8-\mathrm{kHz}$ frame synchronization signal
	31	DCL	O	Data Clock: IOM $^{\circledR}-2$ interface clock signal (double clock): 1.536 MHz
	35	BCL	O	Bit Clock: The bit clock is identical to the $I O M^{\circledR}-2$ data rate $(768 \mathrm{kHz})$
	33	DD	I/O OD	Data Downstream: Data on the IOM ${ }^{\circledR}-2$ interface

Table 2 Pin Definitions and Functions (cont'd)

	Pin	Symbol	Type	Function
	8	SDS1	O	Serial Data Strobe1: Programmable strobe signal for time slot and/ or D-channel indication on IOM -2
	7	SDS2	O	Serial Data Strobe2: Programmable strobe signal for time slot and/ or D-channel indication on IOM

	12	$\overline{\mathrm{CS}}$	I	Chip Select: A low level indicates a microcontroller access to the Q-SMINT ${ }^{\circledR}$ I
26	SCLK	I	Serial Clock: Clock signal of the SCI interface if a serial interface is selected Multiplexed Bus Mode: Address/data bus Address/data line AD5 if the parallel interface is selected Non-Multiplexed Bus Mode: Data bus Data line D5 if the parallel interface is selected	
27	AD6	SDR	I/O	Serial Data Receive: Receive data line of the SCI interface if a serial interface is selected Multiplexed Bus Mode: Address/data bus Address/data line AD6 if the parallel interface is selected Non-Multiplexed Bus Mode: Data bus Data line D6 if the parallel interface is selected

Table 2 Pin Definitions and Functions (cont'd)

	Pin	Symbol	Type	Function
	28	SDX AD7	OD,O $1 / O$	Serial Data Transmit: Transmit data line of the SCI interface if a serial interface is selected Multiplexed Bus Mode: Address/data bus Address/data line AD7 if the parallel interface is selected Non-Multiplexed Bus Mode: Data bus Data line D7 if the parallel interface is selected
	$\begin{aligned} & 21 \\ & 22 \\ & 23 \\ & 24 \\ & 25 \end{aligned}$	AD0 AD1 AD2 AD3 AD4	$\begin{array}{\|l\|} \hline \mathrm{I} / \mathrm{O} \\ \mathrm{I} / \mathrm{O} \\ \mathrm{I} / \mathrm{O} \\ \mathrm{I} / \mathrm{O} \\ \mathrm{I} / \mathrm{O} \end{array}$	Multiplexed Bus Mode: Address/data bus Transfers addresses from the microcontroller to the Q-SMINT ${ }^{\circledR}$ I and data between the microcontroller and the Q-SMINT ${ }^{\circledR}$. Non-Multiplexed Bus Mode: Data bus. Transfers data between the microcontroller and the Q-SMINT ${ }^{\circledR}$ (data lines D0-D4).
	$\begin{aligned} & 36 \\ & 37 \\ & 38 \\ & 39 \\ & 40 \\ & 53 \\ & 54 \end{aligned}$	$\begin{aligned} & \text { A0 } \\ & \text { A1 } \\ & \text { A2 } \\ & \text { A3 } \\ & \text { A4 } \\ & \text { A5 } \\ & \text { A6 } \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	Non-Multiplexed Bus Mode: Address bus transfers addresses from the microcontroller to the Q-SMINT ${ }^{\circledR}$ I. For indirect address mode only A0 is valid. Multiplexed Bus Mode Not used in multiplexed bus mode. In this case A0-A6 should directly be connected to VDD.
	11	$\begin{aligned} & \overline{\mathrm{RD}} \\ & \overline{\mathrm{DS}} \end{aligned}$	1	Read Indicates a read access to the registers (Intel bus mode). Data Strobe The rising edge marks the end of a valid read or write operation (Motorola bus mode).

PEF 82912/82913

Overview

Table 2 Pin Definitions and Functions (cont'd)

	Pin	Symbol	Type	Function
	10	$\overline{\mathrm{WR}}$ R / \bar{W}	I	Write Indicates a write access to the registers (Intel bus mode). Read/Write A HIGH identifies a valid host access as a read operation and a LOW identifies a valid host access as a write operation (Motorola bus mode).
	9	ALE	I	Address Latch Enable An address on the external address/data bus (multiplexed bus type only) is latched with the falling edge of ALE. ALE also selects the microcontroller interface type (multiplexed or non multiplexed).
	5	$\overline{\text { RST }}$	1	Reset: Low active reset input. Schmitt-Trigger input with hysteresis of typical 360 mV . Tie to ' 1 ' if not used.
	6	$\overline{\text { RSTO }}$	OD	Reset Output: Low active reset output.
	15	$\overline{\text { INT }}$	OD	Interrupt Request: $\overline{\mathrm{INT}}$ becomes active if the $\mathrm{Q}-\mathrm{SMINT}{ }^{\circledR} \mathrm{I}$ requests an interrupt.
	18	MCLK	0	Microcontroller Clock: Clock output for the microcontroller
	19			Tie to '1'
	20	$\overline{\text { EAW }}$	I	External Awake: A low level on EAW during power down activates the clock generation of the QSMINT ${ }^{\circledR}$ I, i.e. the $I O M^{\circledR}-2$ interface provides FSC, DCL and BCL for read and write access. ${ }^{1)}$

	43	SX1	O	S-Bus Transmitter Output (positive)
	44	SX2	O	S-Bus Transmitter Output (negative)
	47	SR1	I	S-Bus Receiver Input

PEF 82912/82913

Table 2 Pin Definitions and Functions (cont'd)

	Pin	Symbol	Type	Function
	48	SR2	I	S-Bus Receiver Input
	60	XIN	I	Crystal 1: Connected to a 15.36 MHz crystal
	59	XOUT	O	Crystal 2: Connected to a 15.36 MHz crystal

	64	AOUT	O	Differential U-interface Output
	61	BOUT	O	Differential U-interface Output
	3	AIN	I	Differential U-interface Input
	4	BIN	I	Differential U-interface Input

	49	$\overline{\text { VDDDET }}$	I	VDD Detection: This pin selects if the V ${ }_{\text {DD }}$ detection is active ('0') and reset pulses are generated on pin RSTO or whether it is deactivated ('1') and an external reset has to be applied on pin $\overline{\text { RST. }}$
	16	MTI	I	Metallic Termination Input. Input to evaluate Metallic Termination pulses. Tie to '1' if not used.
	55	PS1	I	Power Status (primary). The pin status is passed to the overhead bit 'PS1' in the U frame to indicate the status of the primary power supply ('1' = ok).
	17	PS2	I	Power Status (secondary). The pin status is passed to the overhead bit 'PS2' in the U frame to indicate the status of the secondary power supply ('1' = ok).
	42	TP1	I	Activation LED. Indicates the activation status of U- and S- transceiver. Can directly drive a LED (4 mA).

Overview

Table 2 Pin Definitions and Functions (cont'd)

	Pin	Symbol	Type	Function
	50	TP2	I	Test Pin 2. Used for factory device test. Tie to V
	56,57, 58	res		Reserved

1) This function of pin EAW is different to that defined in Ref. [14]

I: Input
O: Output (Push-Pull)
OD: Output (Open Drain)

1.7.1 Specific Pins

LED Pin ACT

A LED can be connected to pin $\overline{\mathbf{A C T}}$ to display four different states (off, slow flashing, fast flashing, on). It displays the activation status of the U- and S-transceiver according to Table 3. or it is programmable via two bits (LED1 and LED2 in register MODE2).
Table 3 ACT States

Pin $\overline{\text { ACT }}$	LED	U_Deactivated	U_Activated	S_Activated
V_{DD}	off	1	x	x
8 Hz	8 Hz	0	0	x
1 Hz	1 Hz	0	1	0
GND	on	0	1	1

with:
U_Deactivated: 'Deactivated State' as defined in Chapter 2.4.10.5. If the 'Simplified State Machine' is selected: 'Deactivated State' and ' $I O M^{\circledR}-2$ Awaked'.
U_Activated: 'Synchronized 1', 'Synchronized 2', 'Wait for ACT', 'Transparent', 'Error S/ T', 'Pend. Deact. S/T', 'Pend. Deact. U' as defined in Chapter 2.4.10.5.
S-Activated: 'Activated State' as defined in Chapter 2.5.5.
Note: Optionally, pin $\overline{A C T}$ can drive a second LED with inverse polarity (connect this additional LED to 3.3 V only).

Overview

Test Modes

The test patterns on the S-interface (' 2 kHz Single Pulses‘, ' 96 kHz Continuous Pulses‘) and on the U-interface ('Data Through', 'Send Single Pulses') are invoked via C/I codes (TM1, TM2, DT, SSP). Setting SRES.RES_U to '1' forces the U-transceiver into test mode 'Quiet Mode‘ (QM), i.e. the U-transceiver is hardware reset.

1.8 System Integration

Figure 3 Application Example Q-SMINT ${ }^{\circledR}$ I: High Feature Intelligent NT
The U-transceiver, S-transceiver and the $1 O M^{\circledR}-2$ channels can be controlled and monitored via:
a) the parallel or serial microprocessor interface

- Access of on-chip registers via $\mu \mathrm{P}$ interface Address/Data format
- Activation/Deactivation control of U- and S-transceiver via $\mu \mathrm{P}$ interface and C / I handler
- Q-SMINT ${ }^{\circledR}$ I is Monitor channel master
- TIC bus is transparent on IOM ${ }^{\circledR}$-2-interface and is used for D-channel arbitration between S-transceiver and off-chip HDLC controllers.

Overview

Figure $4 \quad$ Control via $\mu \mathrm{P}$ Interface
Alternatively, the Q-SMINT ${ }^{\circledR}$ I can be controlled via
b) the $1 \mathrm{OM}^{\circledR}-2$ Interface

- Access of on-chip registers via the Monitor channel with Header/Address/Data format (Device is Monitor slave)
- Activation/Deactivation control of U - and S-transceiver via the C / I channels CIO and Cl_{1}
- TIC bus is transparent on IOM ${ }^{\circledR}-2$-interface and is used for D-channel arbitration between S-transceiver and off-chip HDLC controllers.

Overview

Figure $5 \quad$ Control via IOM $^{\circledR}-2$ Interface

2 Functional Description

2.1 Microcontroller Interfaces

The Q-SMINT ${ }^{\circledR}$ I supports either a serial or a parallel microcontroller interface. For applications where no controller is connected to the $\mathrm{Q}-\mathrm{SMINT}^{\circledR} \mid$ microcontroller interface, register programming is done via the $I O M^{\circledR}-2$ MONITOR channel from a master device. In such applications the Q-SMINT ${ }^{\circledR}$ I operates in the $I O M^{\circledR}-2$ slave mode (refer to the corresponding chapter of the $1 O M^{\circledR}-2$ MONITOR handler).
The interface selections are all done by pinstrapping. The possible interface selections are listed in Table 4. The selection pins are evaluated when the reset input $\overline{\text { RST }}$ is released. For the pin levels stated in the tables the following is defined:
'High':dynamic pin value which must be 'High' when the pin level is evaluated $\mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{\mathrm{SS}}$:static 'High' or 'Low' level (tied to $\mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{\mathrm{SS}}$)

Table 4 Interface Selection for the Q-SMINT ${ }^{\circledR}$ I

PINS		Serial/Parallel Interface	PINS		Interface Type/Mode
$\begin{aligned} & \text { WR } \\ & \text { (R/W) } \end{aligned}$	$\begin{gathered} \text { RD } \\ \text { (DS) } \end{gathered}$		CS	ALE	
'High'	'High'	Parallel	'High'	V_{DD}	Motorola
				$\mathrm{V}_{\text {SS }}$	Siemens/Intel Non-Mux
				edge	Siemens/Intel Mux
$\mathrm{V}_{\text {SS }}$	$\mathrm{V}_{\text {SS }}$	Serial	'High'	$\mathrm{V}_{\text {SS }}$	Serial Control Interface(SCI)
			$\mathrm{V}_{\text {SS }}$	$\mathrm{V}_{\text {SS }}$	IOM ${ }^{\circledR}$-2 MONITOR Channel (Slave Mode)

Note: For a selected interface mode which does not require all pins (e.g. address pins) the unused pins must be tied to $V_{D D}$.
The microcontroller interface also consists of a microcontroller clock generation at pin MCLK, an interrupt request at pin $\overline{\mathrm{INT}}$, a reset input pin $\overline{\mathrm{RST}}$ and a reset output pin RSTO.
The interrupt request pin $\overline{\mathrm{NT}}$ (open drain output) becomes active if the $\mathrm{Q}-\mathrm{SMINT}^{\circledR}{ }^{\circledR}$ requests an interrupt.

PEF 82912/82913

Functional Description

2.1.1 Serial Control Interface (SCI)

The serial control interface (SCI) is compatible to the SPI interface of Motorola and to the Siemens C510 family of microcontrollers.
The SCI consists of 4 lines: SCLK, SDX, SDR and $\overline{\mathrm{CS}}$. Data is transferred via the lines SDR and SDX at the rate given by SCLK. The falling edge of $\overline{C S}$ indicates the beginning of a serial access to the registers. The Q-SMINT ${ }^{\circledR}$ latches incoming data at the rising edge of SCLK and shifts out at the falling edge of SCLK. Each access must be terminated by a rising edge of CS. Data is transferred in groups of 8 bits with the MSB first.
Pad mode of SDX can be selected 'open drain' or 'push-pull' by programming MODE2.PPSDX.
Figure 6 shows the timing of a one byte read/write access via the serial control interface.

Figure 6 Serial Control Interface Timing

Functional Description

2.1.1.1 Programming Sequences

The basic structure of a read/write access to the $\mathrm{Q}-\mathrm{SMINT}^{\circledR}{ }^{\circledR}$ registers via the serial control interface is shown in Figure 7.

Figure 7 Serial Command Structure
A new programming sequence starts with the transfer of a header byte. The header byte specifies different programming sequences allowing a flexible and optimized access to the individual functional blocks of the Q-SMINT ${ }^{\circledR}$.
The possible sequences are listed in Table 5 and are described after that.
Table 5 Header Byte Code

Header Byte	Sequence	Sequence Type	Access to
40_{H}	Adr-Data-Adr-Data	non-interleaved	Address Range $00{ }_{H}-7 \mathrm{~F}_{\mathrm{H}}$
48 ${ }_{\text {H }}$		interleaved	
43_{H}	Adr-Data-Data-Data	Read-/Write-only	Address Range $00{ }_{H}-7 \mathrm{~F}_{\mathrm{H}}$
41_{H}		non-interleaved	
49_{H}		interleaved	

Functional Description

Header 40 $_{H}$: Non-interleaved A-D-A-D Sequences

The non-interleaved A-D-A-D sequences give direct read/write access to the address range $00_{\mathrm{H}}-7 \mathrm{~F}_{\mathrm{H}}$ and can have any length. In this mode SDX and SDR can be connected together allowing data transmission on one line.
Example for a read/write access with header 40_{H} :

SDR	header	wradr	wrdata	rdadr		rdadr		wradr	wrdata	
	SDX					rddata		rddata		

Header 48 $_{H}$: Interleaved A-D-A-D Sequences

The interleaved $A-D-A-D$ sequences give direct read/write access to the address range $00_{\mathrm{H}}-7 \mathrm{~F}_{\mathrm{H}}$ and can have any length. This mode allows a time optimized access to the registers by interleaving the data on SDX and SDR.
Example for a read/write access with header 48_{H} :

| SDR | header | wradr | wrdata | rdadr | rdadr | wradr | wrdata | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| SDX | | | | | rddata | rddata | | | |

Header $\mathbf{4 3}_{\mathrm{H}}$: Read-/Write- only A-D-D-D Sequence

Generally, it can be used for any register access to the address range $20_{\mathrm{H}}-7 \mathrm{D}_{\mathrm{H}}$. The sequence can have any length and is terminated by the rising edge of $\overline{\mathrm{CS}}$.
Example for a write access with header 43_{H} :

SDR	header	wradr	wrdata (wradr)						

Example for a read access with header 43_{H} :

	SDR	header	rdadr							
			rddata (rdadr)							

Header 41 $_{H}$: Non-interleaved A-D-D-D Sequence

This sequence (header 41_{H}) allows in front of the A-D-D-D write access a noninterleaved A-D-A-D read access. Generally, it can be used for any register access to the address range $20_{\mathrm{H}}-7 \mathrm{D}_{\mathrm{H}}$. The termination condition of the read access is the reception of the wradr. The sequence can have any length and is terminated by the rising edge of $\overline{\mathrm{CS}}$.

Example for a read/write access with header 41_{H} :

SDR	header	rdadr		rdadr		wradr	wrdata (wradr)	wrdata (wradr)	wrdata (wradr)

Header 49 ${ }_{H}$: Interleaved A-D-D-D Sequence

This sequence (header 49H) allows in front of the A-D-D-D write access an interleaved A-D-A-D read access. Generally, it can be used for any register access to the address range $20_{\mathrm{H}}-7 \mathrm{D}_{\mathrm{H}}$. The termination condition of the read access is the reception of the wradr. The sequence can have any length and is terminated by the rising edge of $\overline{\mathrm{CS}}$.
Example for a read/write access with header 49_{H} :

SDR	header	rdadr	rdadr	wradr	wrdata (wradr)	wrdata (wradr)	wrdata (wradr)		
			rddata	rddata					

2.1.2 Parallel Microcontroller Interface

The 8-bit parallel microcontroller interface with address decoding on chip allows an easy and fast microcontroller access.
The parallel interface of the Q-SMINT ${ }^{\circledR}$ I provides three types of $\mu \mathrm{P}$ busses which are selected via pin ALE. The bus operation modes with corresponding control pins are listed in Table 6.

Table 6 Bus Operation Modes

	Bus Mode	Pin ALE	Control Pins
(1)	Motorola	VDD	$\overline{\mathrm{CS}}, \mathrm{R} / \overline{\mathrm{W}}, \overline{\mathrm{DS}}$
(2)	Siemens/Intel non-multiplexed	VSs	$\overline{\mathrm{CS}}, \overline{\mathrm{WR}}, \overline{\mathrm{RD}}$
(3)	Siemens/Intel multiplexed	Edge	$\overline{\mathrm{CS}}, \overline{\mathrm{WR}}, \overline{\mathrm{RD}}, \mathrm{ALE}$

The occurrence of an edge on ALE, either positive or negative, at any time during the operation immediately selects the interface type (3). A return to one of the other interface types is possible only if a hardware reset is issued.

Functional Description

Note: For a selected interface mode which does not require all pins (e.g. address pins) the unused pins must be tied to $V_{D D}$.
A read/write access to the $\mathrm{Q}-\mathrm{SMINT}^{\circledR} \mid$ registers can be done in multiplexed or nonmultiplexed mode.
In non-multiplexed mode the register address must be applied to the address bus (A0A6) for the data access via the data bus (D0-D7).
In multiplexed mode the address on the address bus (ADO-AD7) is latched in by ALE before a read/write access via the address/data bus is performed.
The Q-SMINT ${ }^{\circledR}$ | provides two different ways to address the register contents which can be selected with the AMOD bit in the MODE2 register. The address mode after reset is the indirect address mode ($\mathrm{AMOD}=$ ' 0 '). Reprogramming into the direct address mode (AMOD = ' 1 ') has to take place in the indirect address mode. Figure 8 illustrates both register addressing modes.
Direct address mode (AMOD = ' 1 '): The register address to be read or written is directly set in the way described above.
Indirect address mode (AMOD = ' ${ }^{\prime}$ '):

- non-muxed: only the LSB of the address bus (AO)
- muxed: only the LSB of the address-data bus (ADO)
gets evaluated to address a virtual ADDRESS $\left(0_{\mathrm{H}}\right)$ and a virtual DATA (1_{H}) register.
Every access to a target register consists of:
- a write access (muxed or non-muxed) to ADDRESS to store the target register's address, as well as
- a read access (muxed or non-muxed) from DATA to read from the target register or
- a write access (muxed or non-muxed) to DATA to write to the target register

PEF 82912/82913

Functional Description

Figure 8 Direct/Indirect Register Address Mode

2.1.3 Microcontroller Clock Generation

The microcontroller clock is derived from the unregulated 15.36 MHz clock from the oscillator and provided by the pin MCLK. Five clock rates are selectable by a programmable prescaler which is controlled by the bits MODE1.MCLK and MODE1.CDS corresponding to the following table.

Table 7 MCLK Frequencies

MODE1. MCLK Bits		MCLK frequency with MODE1.CDS $=$ ' $\mathbf{0}^{\prime}$	MCLK frequency with MODE1.CDS $=$ ' $\mathbf{\prime}$
0	0	3.84 MHz	7.68 MHz
0	1	0.96 MHz	1.92 MHz
1	0	7.68 MHz	15.36 MHz
1	1	disabled	disabled

The clock rate is changed after $\overline{\mathrm{CS}}$ becomes inactive.

Functional Description

2.2 Reset Generation

Figure 9 shows the organization of the reset generation of the $\mathrm{Q}-\mathrm{SMINT}^{\circledR}$. .

Figure 9 Reset Generation of the Q-SMINT ${ }^{\circledR} \mathbf{I}^{1)}$

Reset Source Selection

The internal reset sources C / I code change and Watchdog timer can be output at the low active reset pin RSTO. These reset sources can be selected with the RSS2,1 bits in the MODE1 register according to Table 8.

[^1]
Functional Description

The internal reset sources set the MODE1 register to its reset value.

Table 8 Reset Source Selection

| RSS2
 Bit 1 | RSS1
 Bit 0 | C/I Code
 Change | Watchdog
 Timer | POR/UVD
 1)
 $\overline{\text { RST }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | -- | -- | x |
| 0 | 1 | /RSTO disabled (= high impedance) | | |

1) $\mathrm{POR} / \mathrm{UVD}$ can be enabled/disabled via pin VDDDET

- C/I Code Change (Exchange Awake)

A change in the downstream C/I channel (C/I0) generates a reset pulse of $125 \mu \mathrm{~s} \leq \mathrm{t}$ $\leq 250 \mu \mathrm{~s}$.

- Watchdog Timer

After the selection of the watchdog timer (RSS = '11') an internal timer is reset and started. During every time period of 128 ms the microcontroller has to program the WTC1- and WTC2 bits in the following sequence to reset and restart the watchdog timer:

	WTC1	WTC2
1.	1	0
2.	0	1

Otherwise the timer expires and a WOV-interrupt (ISTA Register) together with a reset out pulse on pin RSTO of $125 \mu \mathrm{~s}$ is generated.
Deactivation of the watchdog timer is only possible with a hardware reset (including expiration of the watchdog timer).
As in the SCOUT-S, the watchdog timer is clocked with the $I O M^{\circledR}-2$ clocks and works only if the internal $I O M^{\circledR}-2$ clocks are active. Hence, the power consumption is minimized in state power down.

Software Reset Register (SRES)

Several main functional blocks of the Q-SMINT ${ }^{\circledR}$ I can be reset separately by software setting the corresponding bit in the SRES register. This is equivalent to a hardware reset of the corresponding functional block. The reset state is activated as long as the bit is set to '1.

External Reset Input

At the $\overline{\mathrm{RST}}$ input an external reset can be applied forcing the $\mathrm{Q}-\mathrm{SMINT}{ }^{\circledR} \mathrm{I}$ in the reset state. This external reset signal is additionally fed to the RSTO output.
After release of an external reset, the $\mu \mathrm{C}$ has to wait for min. $\mathrm{t}_{\mu \mathrm{C}}$ before it starts read or write access to the Q-SMINT ${ }^{\circledR} \mathrm{I}$ (see Table 40).

Reset Ouput

If $\overline{\text { VDDDET }}$ is active, then the deactivation of a reset output on $\overline{\text { RSTO }}$ is delayed by $t_{\text {DEACT }}$ (see Table 41).

Reset Generation

The Q-SMINT ${ }^{\circledR}$ I has an on-chip reset generator based on a Power-On Reset (POR) and Under Voltage Detection (UVD) circuit (see Table 41). The POR/UVD requires no external components.
The POR/UVD circuit can be disabled via pin VDDDET.
The requirements on $V_{D D}$ ramp-up during power-on reset are described in Chapter 5.6.5.

Clocks and Data Lines During Reset

During reset the data clock (DCL), the bit clock (BCL), the microcontroller clock ${ }^{11}$ (MCLK) and the frame synchronization (FSC) keep running.
During reset DD and DU are high; with the exception of:

- The output C/I code from the U-Transceiver on DD IOM ${ }^{\circledR}-2$ channel 0 is 'DR' $=0000$ (Value after reset of register UCIR = ' $00_{\mathrm{H}}{ }^{\prime}$)
- The output C/I code from the S-Transceiver on DU IOM ${ }^{\circledR}-2$ channel 1 is 'TIM' $=0000$.

[^2]
Functional Description

$2.3 \quad$ IOM ${ }^{\circledR}$-2 Interface

The Q-SMINT ${ }^{\circledR}$ | supports the $1 \mathrm{OM}^{\circledR}-2$ interface in terminal mode ($\mathrm{DCL}=1.536 \mathrm{MHz}$) according to the $\mathrm{IOM}^{\circledR}-2$ Reference Guide [13].

2.3.1 $\quad 1 O M^{\circledR}$-2 Functional Description

The $I O M^{\circledR}-2$ interface consists of four lines: FSC, DCL, DD, DU and optionally BCL. The rising edge of FSC indicates the start of an IOM ${ }^{\circledR}-2$ frame. The DCL and the BCL clock signals synchronize the data transfer on both data lines DU and DD. The DCL is twice the bit rate, the BCL rate is equal to the bit rate. The bits are shifted out with the rising edge of the first DCL clock cycle and sampled at the falling edge of the second clock cycle. With BCL the bits are shifted out with the rising edge and sampled with the falling edge of the single clock cycle.
The $1 O M^{\circledR}-2$ interface can be enabled/disabled with the DIS_IOM bit in the IOM_CR register.
The FSC signal is an 8 kHz frame sync signal. The number of PCM timeslots on the receive and transmit lines is determined by the frequency of the DCL clock (or $B C L$), with the $1.536 \mathrm{MHz}(B C L=768 \mathrm{kHz})$ clock 3 channels consisting of 4 timeslots each are available.

IOM ${ }^{\circledR}$-2 Frame Structure of the Q-SMINT ${ }^{\circledR}$ I

The frame structure on the $1 \mathrm{OM}^{\circledR}-2$ data ports (DU,DD) of the Q-SMINT ${ }^{\circledR}$ I with a DCL clock of 1.536 MHz (or BCL= 768 kHz) and if TIC bus is not disabled (IOM_CR.TIC_DIS) is shown in Figure 10.

Figure $10 \quad I^{\infty}{ }^{\circledR}-2$ Frame Structure of the Q-SMINT ${ }^{\circledR} \mid$

PEF 82912/82913

Functional Description

The frame is composed of three channels

- Channel 0 contains $144-\mathrm{kbit} / \mathrm{s}$ of user and signaling data ($2 \mathrm{~B}+\mathrm{D}$), a MONITOR programming channel (MONO) and a command/indication channel (CIO) for control and programming of e.g. the U-transceiver.
- Channel 1 contains two 64-kbit/s intercommunication channels (IC), a MONITOR programming channel (MON1) and a command/indication channel (Cl1) for control and programming of e.g. the S-transceiver.
- Channel 2 is used for D-channel access mechanism (TIC-bus, S/G bit). Additionally, channel 2 supports further IC and MON channels.

2.3.2 \quad IOM $^{\circledR}$-2 Handler

The $1 O M^{\circledR}-2$ handler offers a great flexibility for handling the data transfer between the different functional units of the $\mathrm{Q}-\mathrm{SMINT}^{\circledR} \mathrm{I}$ and voice/data devices connected to the IOM ${ }^{\circledR}-2$ interface. Additionally it provides a microcontroller access to all time slots of the $1 O M^{\circledR}-2$ interface via the four controller data access registers (CDA).
The PCM data of the functional units

- S-transceiver (S) and the
- Controller data access (CDA)
can be configured by programming the time slot and data port selection registers (TSDP). With the TSS bits (Time Slot Selection) the PCM data of the functional units can be assigned to each of the 12 PCM time slots of the $1 \mathrm{IM}^{\circledR}-2$ frame. With the DPS bit (Data Port Selection) the output of each functional unit is assigned to DU or DD respectively. The input is assigned vice versa. With the control registers (CR) the access to the data of the functional units can be controlled by setting the corresponding control bits (EN, SWAP).
The $I O M^{\circledR}-2$ handler also provides access to the
- U and S transceiver
- MONITOR channel
- C/I channels (CI0,Cl1)
- TIC bus (TIC)

The access to these channels is controlled by the registers S_CR, CI_CR and MON_CR. The $1 O M^{\circledR}-2$ interface with the two Serial Data Strobes (SDS1,2) is controlled by the control registers IOM_CR, SDS1_CR and SDS2_CR.
The following Figure 11 shows the architecture of the $I^{\circledR}{ }^{\circledR}-2$ handler.

Figure 11 Architecture of the $I O M^{\circledR}$-2 Handler

Functional Description

2.3.2.1 Controller Data Access (CDA)

The four controller data access registers (CDA10, CDA11, CDA20, CDA21) provide microcontroller access to the $12 I^{(O M}{ }^{\circledR}-2$ time slots and more:

- looping of up to four independent PCM channels from DU to DD or vice versa over the four CDA registers
- shifting or switching of two independent PCM channels to another two independent PCM channels on both data ports (DU, DD). Between reading and writing the data can be manipulated (processed with an algorithm) by the microcontroller. If this is not the case a switching function is performed.
- monitoring of up to four time slots on the $I O M^{\circledR}-2$ interface simultaneously
- microcontroller read and write access to each PCM channel

The access principle, which is identical for the two channel register pairs CDA10/11 and CDA20/21, is illustrated in Figure 12. The index variables x, y used in the following description can be 1 or 2 for x, and 0 or 1 for y. The prefix 'CDA_' from the register names has been omitted for simplification.
To each of the four CDAxy data registers a TSDPxy register is assigned by which the time slot and the data port can be determined. With the TSS (Time Slot Selection) bits a time slot from $0 . . .11$ can be selected. With the DPS (Data Port Selection) bit the output of the CDAxy register can be assigned to DU or DD respectively. The time slot and data port for the output of CDAxy is always defined by its own TSDPxy register. The input of CDAxy depends on the SWAP bit in the control registers CRx.
If the SWAP bit = '0' (swap is disabled) the time slot and data port for the input and output of the CDAxy register is defined by its own TSDPxy register.
If the SWAP bit = '1' (swap is enabled) the input port and time slot of the CDAx0 is defined by the TSDP register of CDAx1 and the input port and time slot of CDAx1 is defined by the TSDP register of CDAx0. The input definition for time slot and data port CDAx0 are thus swapped to CDAx1 and for CDAx1 swapped to CDAx0. The output timeslots are not affected by SWAP.
The input and output of every CDAxy register can be enabled or disabled by setting the corresponding EN (-able) bit in the control register CDAx_CR. If the input of a register is disabled the output value in the register is retained.
Usually one input and one output of a functional unit (transceiver, CDA register) is programmed to a timeslot on $1 \mathrm{IM}^{\circledR}-2$ (e.g. for B-channel transmission in upstream direction the S-transceiver writes data onto $I O M^{\circledR}-2$ and the U-transceiver reads data from $I O M^{\circledR}-2$). For monitoring data in such cases a CDA register is programmed as described below under "Monitoring Data". Besides that none of the IOM ${ }^{\circledR}-2$ timeslots must be assigned more than one input and output of any functional unit.

Figure 12 Data Access via CDAx0 and CDAx1 register pairs

Looping and Shifting Data

Figure 13 gives examples for typical configurations with the above explained control and configuration possibilities with the bits TSS, DPS, EN and SWAP in the registers TSDPxy or CDAx_CR:
a) looping $I O M^{\circledR}-2$ time slot data from DU to DD or vice versa (SWAP = '0')
b) shifting data from TSa to TSb and TSc to TSd in both transmission directions (SWAP = '1')
c) switching data from TSa to TSb and looping from DU to DD or switching TSc to TSd and looping from DD to DU .

TSa is programmed in TSDP10, TSb in TSDP11, TSc in TSDP20 and TSd in TSDP21.
a) Looping Data

b) Shifting Data

c) Switching Data

Figure 13 Examples for Data Access via CDAxy Registers
a) Looping Data
b) Shifting (Switching) Data
c) Switching and Looping Data

Functional Description

Figure 14 shows the timing of looping TSa from DU to DD via CDAxy register. TSa is read in the CDAxy register from DU and is written one frame later on DD.
Figure 15 shows the timing of shifting data from TSa to TSb on DU(DD). In Figure 15a) shifting is done in one frame because TSa and TSb didn't succeed directly one another ($a=0 . . .9$ and $b \geq a+2$). In Figure 15b) shifting is done from one frame to the following frame. This is the case when the time slots succeed one other $(b=a+1)$ or b is smaller than $a(b<a)$.
At looping and shifting the data can be accessed by the controller between the synchronous transfer interrupt (STI) and the status overflow interrupt (STOV). STI and STOV are explained in the section 'Synchronous Transfer'. If there is no controller intervention the looping and shifting is done autonomously.

Figure 14 Data Access when Looping TSa from DU to DD
a) Shifting TSa \rightarrow TSb within one frame

$$
(a, b: 0 \ldots 11 \text { and } b \geq a+2)
$$

b) Shifting TSa \rightarrow TSb in the next frame ($a, b: 0 \ldots 11$ and ($b=a+1$ or $b<a$)

${ }^{*}$) if access by the $\mu \mathrm{C}$ is required

Figure 15 Data Access when Shifting TSa to TSb on DU (DD)

Functional Description

Monitoring Data

Figure 16 gives an example for monitoring of two $I O M^{\circledR}-2$ time slots each on DU or DD simultaneously. For monitoring on DU and/or DD the channel registers with even numbers (CDA10, CDA20) are assigned to time slots with even numbers TS(2n) and the channel registers with odd numbers (CDA11, CDA21) are assigned to time slots with odd numbers $\mathrm{TS}(2 n+1)$. The user has to take care of this restriction by programming the appropriate time slots.
This mode is only valid if two blocks (e.g. both transceivers) are programmed to these timeslots and communicating via $1 O M^{\circledR}-2$.
However, if only one block is programmed to this timeslot the timeslots for CDAx0 and CDAx1 can be programmed completely independently.

Figure 16 Example for Monitoring Data

PEF 82912/82913

Functional Description

Monitoring TIC Bus

Monitoring the TIC bus (TS11) is handled as a special case. The TIC bus can be monitored with the registers CDAx0 by setting the EN_TBM (Enable TIC Bus Monitoring) bit in the control registers CRx. The TSDPx0 must be set to 08_{h} for monitoring from DU or 88_{h} for monitoring from DD. By this it is possible to monitor the TIC bus (TS11) and the odd numbered D-channel (TS3) simultaneously on DU and DD.

Synchronous Transfer

While looping, shifting and switching the data can be accessed by the controller between the synchronous transfer interrupt (STI) and the synchronous transfer overflow interrupt (STOV).
The microcontroller access to each of the CDAxy registers can be synchronized by means of four programmable synchronous transfer interrupts (STIxy) ${ }^{1)}$ and synchronous transfer overflow interrupts (STOV xy$)^{2}{ }^{2}$ in the STI register.
Depending on the DPS bit in the corresponding TSDPxy register the STlxy is generated two (for DPS='0') or one (for DPS='1') BCL clock after the selected time slot (CDA_TSDPxy.TSS). One BCL clock is equivalent to two DCL clocks.
In the following description the index xy_{0} and xy_{1} are used to refer to two different interrupt pairs (STI/STOV) out of the four CDA interrupt pairs (STI10/STOV10, STI11/ STOV11, STI20/STOV20, STI21/STOV21).
A STOVxy ${ }_{0}$ is related to its STIxy $_{0}$ and is only generated if STIxy $_{0}$ is enabled and not acknowledged. However, if STIxy_{0} is masked, the STOVxyO is generated for any other STlxy1 which is enabled and not acknowledged.
Table 9 gives some examples for that. It is assumed that a STOV interrupt is only generated because a STI interrupt was not acknowledged before.
In example 1 only the STIxy ${ }_{0}$ is enabled and thus STIxy_{0} is only generated. If no STI is enabled, no interrupt will be generated even if STOV is enabled (example 2).
In example 3 STIxy $_{0}$ is enabled and generated and the corresponding STOVxy ${ }_{0}$ is disabled. STIxy ${ }_{1}$ is disabled but its STOVxy ${ }_{1}$ is enabled, and therefore STOVxy ${ }_{1}$ is generated due to STIxy_{0}. In example 4 additionally the corresponding $\mathrm{STOV}_{\mathrm{xy}}^{0}$ is enabled, so $S_{5 T O V} x_{0}$ and STOV $^{2} y_{1}$ are both generated due to STIxy $_{0}$.
In example 5 additionally the STIxy_{1} is enabled with the result that $\mathrm{STOV} \mathrm{Sy}_{0}$ is only generated due to STIxy_{0} and $\mathrm{STOV}^{2} y_{1}$ is only generated due to $\mathrm{STI}_{1} \mathrm{y}_{1}$.
Compared to the previous example STOVxy ${ }_{0}$ is disabled in example 6, so $\mathrm{STOV}_{\mathrm{y}}^{0}{ }_{0}$ is not generated and STOV xy_{1} is only generated for STIxy ${ }_{1}$ but not for STIxy_{0}.

[^3]Table 9 Examples for Synchronous Transfer Interrupts

Enabled Interrupts (Register MSTI)		Generated Interrupts (Register STI)		
STI	STOV	STI	STOV	
xy_{0}	-	xy_{0}	-	Example 1
-	xy_{0}	-	-	Example 2
xy_{0}	xy_{1}	xy_{0}	xy_{1}	Example 3
xy_{0}	$x y_{0} ; x y_{1}$	xy_{0}	$x y_{0} ; y_{1}$	Example 4
$x y_{0} ; y_{1}$	$x y_{0} ; y_{1}$	$\begin{array}{r} x y_{0} \\ x y_{1} \\ \hline \end{array}$	$\begin{array}{r} x y_{0} \\ x y_{1} \\ \hline \end{array}$	Example 5
$x y_{0} ; y_{1}$	xy_{1}	$\begin{aligned} & x y_{0} \\ & x y_{1} \end{aligned}$	$x y_{1}$	Example 6
$x y_{0} ; y_{1}$	$x y_{0} ; x y_{1} ; x y_{2}$	$\begin{aligned} & x y_{0} \\ & x y_{1} \end{aligned}$	$\begin{aligned} & x y_{0} ; x y_{2} \\ & x y_{1} ; x y_{2} \end{aligned}$	Example 7

Compared to example 5 in example 7 a third STOVxy_{2} is enabled and thus STOVxy2 is generated additionally for both STIxy ${ }_{0}$ and STIxy $_{1}$.
A STOV interrupt is not generated if all stimulating STI interrupts are acknowledged.
A STIxy must be acknowledged by setting the ACKxy bit in the ASTI register two BCL clock (for DPS='0') or one BCL clocks (for DPS='1') before the time slot which is selected for the appropriate STIxy. The interrupt structure of the synchronous transfer is shown in Figure 17.

Figure 17 Interrupt Structure of the Synchronous Data Transfer
Figure 18 shows some examples based on the timeslot structure. Figure a) shows at which point in time a STI and STOV interrupt is generated for a specific timeslot. Figure b) is identical to example 3 above, figure c) corresponds to example 5 and figure d) shows example 4.
: STI interrupt generated
: STOV interrupt generated for a not acknowledged STI interrupt
a) Interrupts for data access to time slot 0 (B1 after reset), MSTI.STI10 and MSTI.STOV10 enabled

b) Interrupts for data access to time slot 0 (B1 after reset), STOV interrupt used as flag for "last possible CDA access"; MSTI.STI10 and MSTI.STOV20 enabled

xy:	10	11	21	20
CDA_TDSPxy.TSS:	TS0	TS1	TS5	TS11
MSTI.STIxy:	'0'	'1'	'1'	1^{\prime}
MSTI.STOVxy:	'1' 11	$' 1 '$	0^{\prime}	

c) Interrupts for data access to time slot 0 and 1 (B1 and B2 after reset), MSTI.STI10, MSTI.STOV10, MSTI.STI11 and MSTI.STOV11 enabled

xy:	10	11	21	20
CDA_TDSPxy.TSS:	TS0	TS1	TS5	TS11
MSTI.STIxy:	'0'	'0'	11	1^{\prime}
MSTI.STOVxy:	$' 0 '$	$' 0 '$	$' 1 '$	$' 1 '$

d) Interrupts for data access to time slot 0 (B1 after reset), STOV20 interrupt used as flag for "last possible CDA access", STOV10 interrupt used as flag for "CDA access failed"; MSTI.STI10, MSTI.STOV10 and MSTI.STOV20 enabled

xy:	10	11	21	20
CDA_TDSPxy.TSS:	TS0	TS1	TS5	TS11
MSTI.STIxy:	'0'	$1 '^{\prime}$	$' 1 '$	'1'
MSTI.STOVxy:	'0'	'1'	$' 1 '$	

Figure 18 Examples for the Synchronous Transfer Interrupt Control with one STIxy enabled

Functional Description

2.3.2.2 Serial Data Strobe Signal

For time slot oriented standard devices at the $I O M^{\circledR}-2$ interface, the $\mathrm{Q}-\mathrm{SMINT}^{\circledR}{ }^{\circledR}$ provides two independent data strobe signals SDS1 and SDS2.
The two strobe signals can be generated with every $8-\mathrm{kHz}$-frame and are controlled by the registers SDS1/2_CR. By programming the TSS bits and three enable bits (ENS_TSS, ENS_TSS+1, ENS_TSS+3) a data strobe can be generated for the $1 O M^{\circledR}-2$ time slots TS, TS+1 and TS+3 (bit7,6) and the combinations of them.
The data strobes for TS and TS+1 are always 8 bits long (bit7 to bit0) whereas the data strobe for TS+3 is always 2 bits long (bit7, bit6).

Figure 19 Data Strobe Signal Generation

Functional Description

Figure 19 shows three examples for the generation of a strobe signal. In example 1 the SDS is active during channel B 2 on $\mathrm{IOM}^{\circledR}-2$, whereas in the second example during IC2 and MON1. The third example shows a strobe signal for $2 \mathrm{~B}+\mathrm{D}$ channels which is used e.g. at an IDSL ($144 \mathrm{kbit} / \mathrm{s}$) transmission.

2.3.3 \quad IOM ${ }^{\circledR}$-2 Monitor Channel

The $I O M^{\circledR}-2$ MONITOR channel is utilized for information exchange between the QSMINT ${ }^{\circledR}$ I and other devices in the MONITOR channel.
The MONTIOR channel data can be controlled by the bits in the MONITOR control register (MON_CR). For the transmission of the MONITOR data one of the $31 O M^{\circledR}-2$ channels can be selected by setting the MONITOR channel selection bits (MCS) in the MONITOR control register (MON_CR).
The DPS bit in the same register selects between an output on DU or DD respectively and with EN_MON the MONITOR data can be enabled/disabled. The default value is MONITOR channel 0 (MONO) enabled and transmission on DD.
The MONITOR channel of the $\mathrm{Q}-\mathrm{SMINT}^{\circledR}$ I can be used in the following applications (refer also to Figure 4 and Figure 5):

- As a master device the Q-SMINT ${ }^{\circledR}$ I can program and control other devices (e.g. PSB 2161) attached to the $1 \mathrm{OM}^{\circledR}-2$, which therefore, do not need a microcontroller interface.
- As a slave device the Q-SMINT ${ }^{\circledR}$ I is programmed and controlled from a master device on $I^{\text {IOM }}{ }^{\circledR}-2$ (e.g. UTAH). This is used in applications where no microcontroller is connected directly to the $\mathrm{Q}-\mathrm{SMINT}^{\circledR}$. .
The MONITOR channel operates according to the IOM ${ }^{\circledR}-2$ Reference Guide [13].
Note: In contrast to the INTC-Q, the Q-SMINT ${ }^{\circledR}$ I does neither issue nor react on Monitor commands (MONO, 1,2,8). Instead, the $Q-S M I N T^{\circledR}$ I operated in $1 O M^{\circledR}-2$ slave mode must be programmed via new MONITOR channel concept (see Chapter 2.3.3.4), which provides full register access. The Monitor time out procedure is available. Reporting of the $Q-S M I N T^{\circledR} \mid$ is performed via interrupts.

2.3.3.1 Handshake Procedure

The MONITOR channel operates on an asynchronous basis. While data transfers on the bus take place synchronized to frame sync, the flow of data is controlled by a handshake procedure using the MONITOR Channel Receive (MR) and MONITOR Channel Transmit (MX) bits. Data is placed onto the MONITOR channel and the MX bit is activated. This data will be transmitted once per $8-\mathrm{kHz}$ frame until the transfer is acknowledged via the MR bit.

Functional Description

The MONITOR channel protocol is described In the following section and Figure 22 shall illustrate this. The relevant control and status bits for transmission and reception are listed in Table 10 and Table 11.

Table 10 Transmit Direction

Control/ Status Bit	Register	Bit	Function
Control	MOCR	MXC	MX Bit Control
		MIE	Transmit Interrupt (MDA, MAB, MER) Enable
Status	MOSR	MDA	Data Acknowledged
		MAB	Data Abort
	MSTA	MAC	Transmission Active

Table 11 Receive Direction

Control/ Status Bit	Register	Bit	Function
Control	MOCR	MRC	MR Bit Control
		MRE	Receive Interrupt (MDR) Enable
Status	MOSR	MDR	Data Received
		MER	End of Reception

PEF 82912/82913

Functional Description

Figure 20 MONITOR Channel Protocol (IOM ${ }^{\circledR}$-2)
Before starting a transmission, the microprocessor should verify that the transmitter is inactive, i.e. that a possible previous transmission has been terminated. This is indicated by a '0' in the MONITOR Channel Active MAC status bit.

After having written the MONITOR Data Transmit (MOX) register, the microprocessor sets the MONITOR Transmit Control bit MXC to '1'. This enables the MX bit to go active (0), indicating the presence of valid MONITOR data (contents of MOX) in the corresponding frame. As a result, the receiving device stores the MONITOR byte in its MONITOR Receive MOR register and generates a MDR interrupt status.
Alerted by the MDR interrupt, the microprocessor reads the MONITOR Receive (MOR) register. When it is ready to accept data (e.g. based on the value in MOR, which in a point-to-multipoint application might be the address of the destination device), it sets the MR control bit MRC to '1' to enable the receiver to store succeeding MONITOR channel bytes and acknowledge them according to the MONITOR channel protocol.

Functional Description

In addition, it enables other MONITOR channel interrupts by setting MONITOR Interrupt Enable (MIE) to '1'.
As a result, the first MONITOR byte is acknowledged by the receiving device setting the MR bit to '0'. This causes a MONITOR Data Acknowledge MDA interrupt status at the transmitter.
A new MONITOR data byte can now be written by the microprocessor in MOX. The MX bit is still in the active (0) state. The transmitter indicates a new byte in the MONITOR channel by returning the MX bit active after sending it once in the inactive state. As a result, the receiver stores the MONITOR byte in MOR and generates a new MDR interrupt status. When the microprocessor has read the MOR register, the receiver acknowledges the data by returning the MR bit active after sending it once in the inactive state. This in turn causes the transmitter to generate a MDA interrupt status.
This "MDA interrupt - write data - MDR interrupt - read data - MDA interrupt" handshake is repeated as long as the transmitter has data to send. Note that the MONITOR channel protocol imposes no maximum reaction times to the microprocessor.
When the last byte has been acknowledged by the receiver (MDA interrupt status), the microprocessor sets the MONITOR Transmit Control bit MXC to '0'. This enforces an inactive ('1') state in the MX bit. Two frames of MX inactive signifies the end of a message. Thus, a MONITOR Channel End of Reception MER interrupt status is generated by the receiver when the MX bit is received in the inactive state in two consecutive frames. As a result, the microprocessor sets the MR control bit MRC to 0, which in turn enforces an inactive state in the MR bit. This marks the end of the transmission, making the MONITOR Channel Active MAC bit return to '0'.
During a transmission process, it is possible for the receiver to ask a transmission to be aborted by sending an inactive MR bit value in two consecutive frames. This is effected by the microprocessor writing the MR control bit MRC to ' 0 '. An aborted transmission is indicated by a MONITOR Channel Data Abort MAB interrupt status at the transmitter.
The MONITOR transfer protocol rules are summarized in the following section

- A pair of MX and MR in the inactive state for two or more consecutive frames indicates an idle state or an end of transmission.
- A start of a transmission is initiated by the transmitter by setting the MXC bit to '1' enabling the internal MX control. The receiver acknowledges the received first byte by setting the MR control bit to ' 1 ' enabling the internal MR control.
- The internal MX, MR control indicates or acknowledges a new byte in the MON slot by toggling MX, MR from the active to the inactive state for one frame.
- Two frames with the MR-bit set to inactive indicate a receiver request for abort.
- The transmitter can delay a transmission sequence by sending the same byte continuously. In that case the MX-bit remains active in the $I O M^{\circledR}-2$ frame following the first byte occurrence. Delaying a transmission sequence is only possible while the receiver MR-bit and the transmitter MX-bit are active.

Functional Description

- Since a double last-look criterion is implemented the receiver is able to receive the MON slot data at least twice (in two consecutive frames), the receiver waits for the acknowledge of the reception of two identical bytes in two successive frames.
- To control this handshake procedure a collision detection mechanism is implemented in the transmitter. This is done by making a collision check per bit on the transmitted MONITOR data and the MX bit.
- Monitor data will be transmitted repeatedly until its reception is acknowledged or the transmission time-out timer expires.
- Two frames with the MX bit in the inactive state indicates the end of a message (EOM).
- Transmission and reception of monitor messages can be performed simultaneously. This feature is used by the device to send back the response before the transmission from the controller is completed (the device does not wait for EOM from controller).

2.3.3.2 Error Treatment

In case the device does not detect identical monitor messages in two successive frames, transmission is not aborted. Instead the device will wait until two identical bytes are received in succession.
A transmission is aborted by the device if

- an error in the MR handshaking occurs
- a collision on the $I^{(O M}{ }^{\circledR}-2$ bus of the MONITOR data or MX bit occurs
- the transmission time-out timer expires

A reception is aborted by the device if

- an error in the MX handshaking occurs or
- an abort request from the opposite device occurs

MX/MR Treatment in Error Case
In the master mode the MX/MR bits are under control of the microcontroller through MXC or MRC, respectively. An abort is indicated by an MAB interrupt or MER interrupt, respectively.
In the slave mode the MX/MR bits are under control of the device. An abort is always indicated by setting the $M X / M R$ bit inactive for two or more $1 O M^{\circledR}-2$ frames. The controller must react with EOM.
Figure 21 shows an example for an abort requested by the receiver, Figure 22 shows an example for an abort requested by the transmitter and Figure 23 shows an example for a successful transmission.

PEF 82912/82913

Abort Request from Receiver

Figure 21 Monitor Channel, Transmission Abort requested by the Receiver

Figure 22 Monitor Channel, Transmission Abort requested by the Transmitter

Figure 23 Monitor Channel, Normal End of Transmission

2.3.3.3 MONITOR Channel Programming as a Master Device

The master mode is selected by default if one of the microcontroller interfaces is selected. The monitor data is written by the microcontroller in the MOX register and transmitted via $I O M^{\circledR}-2 \mathrm{DD}(\mathrm{DU})$ line to the programmed/controlled device e.g. ARCOFIBA PSB 2161. The transfer of the commands in the MON channel is regulated by the handshake protocol mechanism with MX, MR.

2.3.3.4 MONITOR Channel Programming as a Slave Device

MONITOR slave mode can be selected by pinstrapping the microcontroller interface pins according to Table 4. All programming data required by the device is received in the MONITOR time slot on the $I O M^{\circledR}-2$ and is transferred to the MOR register. The transfer of the commands in the MON channel is regulated by the handshake protocol mechanism with $M X$, MR which is described in the previous Chapter 2.3.3.1.
The first byte of the MONITOR message must contain in the higher nibble the MONITOR channel address code which is ' 1000 ' for the $\mathrm{Q}-\mathrm{SMINT}^{\circledR} \mathrm{I}$. The lower nibble distinguishes between a programming command and an identification command.

Identification Command

In order to be able to identify unambiguously different hardware designs of the QSMINT ${ }^{\circledR}$ I by software, the following identification command is used:

DU 1st byte value
DU 2nd byte value

1	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0

The Q-SMINT ${ }^{\circledR} \mid$ responds to this identification sequence by sending a identification sequence:

DD 1st byte value
DD 2nd byte value

1	0	0	0	0	0	0	0
0	0			DESIGN			
<IDENT>							

DESIGN: six bit code, specific for each device in order to identify differences in operation (see "ID - Identification Register" on Page 164).
This identification sequence is usually done once, when the Q-SMINT ${ }^{\circledR}$ I is connected for the first time. This function is used so that the software can distinguish between different possible hardware configurations. However this sequence is not compulsory.

Programming Sequence

The programming sequence is characterized by a '1' being sent in the lower nibble of the received address code. The data structure after this first byte is equivalent to the structure of the serial control interface described in chapter Chapter 2.1.1.

Functional Description

DU 1st byte value
DU 2nd byte value
DU 3rd byte value

DU 4th byte value
DU (nth +3) byte value

All registers can be read back when setting the R/W bit to ' 1 '. The $\mathrm{Q}-\mathrm{SMINT}^{\circledR} /$ responds by sending his $I O M^{\circledR}-2$ specific address byte $\left(81_{h}\right)$ followed by the requested data.

Note: Application Hint:

It is not allowed to disable the $M X$ - and $M R$-control in the programming device at the same time! First, the MX-control must be disabled, then the μC has to wait for an End of Reception before the MR-control may be disabled. Otherwise, the QSMINT ${ }^{\circledR}$ I does not recognize an End of Reception.

2.3.3.5 Monitor Time-Out Procedure

To prevent lock-up situations in a MONITOR transmission a time-out procedure can be enabled by setting the time-out bit (TOUT) in the MONITOR configuration register (MCONF). An internal timer is always started when the transmitter must wait for the reply of the addressed device or for transmit data from the microcontroller. After $4010 M^{\circledR}-2$ frames (5 ms) without reply the timer expires and the transmission will be aborted with an EOM (End of Message) command by setting the MX bit to '1' for two consecutive IOM ${ }^{\circledR}$-2 frames.

2.3.3.6 MONITOR Interrupt Logic

Figure 24 shows the interrupt structure of the MONITOR handler. The MONITOR Data Receive interrupt status MDR has two enable bits, MONITOR Receive interrupt Enable (MRE) and MR bit Control (MRC). The MONITOR channel End of Reception MER, MONITOR channel Data Acknowledged MDA and MONITOR channel Data Abort MAB interrupt status bits have a common enable bit MONITOR Interrupt Enable MIE.
MRE set to " 0 " prevents the occurrence of MDR status, including when the first byte of a packet is received. When MRE is set to " 1 " but MRC is set to " 0 ", the MDR interrupt status is generated only for the first byte of a receive packet. When both MRE and MRC are set to " 1 ", MDR is always generated and all received MONITOR bytes - marked by a 1-to-0 transition in MX bit - are stored. Additionally, a MRC set to "1" enables the control of the MR handshake bit according to the MONITOR channel protocol.

Figure 24 MONITOR Interrupt Structure

2.3.4 C/I Channel Handling

The Command/Indication channel carries real-time status information between the QSMINT ${ }^{\circledR}$ I and another device connected to the $\mathrm{IOM}^{\circledR}-2$.

1) $\mathrm{C} / I 0$ channel lies in $I O M^{\circledR}-2$ channel 0 and access may be arbitrated via the TIC bus access protocol. In this case the arbitration is done in IOM ${ }^{\circledR}-2$ channel 2.
The C/IO channel is accessed via register CIRO (received C/IO data from DD) and register CIX0 (transmitted C/IO data to DU). The C/IO code is four bits long.
In the receive direction, the code from layer-1 is continuously monitored, with an interrupt being generated any time a change occurs (ISTA.CIC).
C / IO only: a new code must be found in two consecutive $I O M^{\circledR}-2$ frames to be considered valid and to trigger a C/I code change interrupt status (double last look criterion).
In the transmit direction, the code written in CIX0 is continuously transmitted in C / IO.
2) A second C / I channel (called $C / I 1$) lies in $I O M^{\circledR}-2$ channel 1 and is used to convey real time status information of the on-chip S-transceiver or an external device. The C/I1 channel consists of four or six bits in each direction. The width can be changed from 4 bit to 6 bit by setting bit CIX1.CICW.

Functional Description

In 4-bit mode 6-bits are written whereby the higher 2 bits must be set to " 1 " and 6 -bits are read whereby only the 4 LSBs are used for comparison and interrupt generation (i.e. the higher two bits are ignored).
The C/I1 channel is accessed via registers CIR1 and CIX1. The connection of CIR1 and CIX1 to DD and DU, respectively, can be selected by setting bit CI_CR.DPS_CI1. A change in the received C / I code is indicated by an interrupt status without double last look criterion.

CIC Interrupt Logic

Figure 25 shows the CIC interrupt structure.
The two corresponding status bits $\mathrm{CIC0}$ and CIC 1 are read in CIR0 register. CIC 1 can be individually disabled by clearing the enable bit CI1E in the CIX1 register. In this case the occurrence of a code change in CIR1 will not be displayed by CIC1 until the corresponding enable bit has been set to one.
Bits CIC0 and CIC1 are cleared by a read of CIR0.
An interrupt status is indicated every time a valid new code is loaded in CIR0 or CIR1. The CIR0 is buffered with a FIFO size of two. If a second code change occurs in the received C / I channel 0 before the first one has been read, immediately after reading of CIR0 a new interrupt will be generated and the new code will be stored in CIR0. If several consecutive codes are detected, only the first and the last code are obtained at the first and second register read, respectively.
For CIR1 no FIFO is available. The actual code of the received C/I channel 1 is always stored in CIR1.

Figure 25 CIC Interrupt Structure

2.3.5 D-Channel Access Control

The upstream D-channel is arbitrated between the S-bus and external HDLC controllers via the TIC bus (S/G, BAC, TBA bits) according to the $I^{(}{ }^{\circledR}-2$ Reference Guide ${ }^{11}$. Further to the implementation in the INTC-Q it is possible, to set the priority (8 or 10) of all HDLC-controllers connected to $I \mathrm{IO}^{\circledR}-2$, which is particularly useful for use of the QSMINT ${ }^{\circledR}$ I together with the UTAH.

2.3.5.1 Application Examples for D-Channel Access Control

Figure 26 and Figure 27 show different scenarios for the local D-channel arbitration between the S-bus and the microcontroller.

Figure 26 D-Channel Arbitration: $\mu \mathrm{C}$ with HDLC and Direct Access to TIC Bus

[^4]Functional Description

Figure 27
D-Channel Arbitration: μ C with HDLC and no Access to TIC Bus

2.3.5.2 TIC Bus Handling

The TIC bus is implemented to organize the access to the C/IO-channel and to the Dchannel from up to 7 D-channels HDLC controllers. The arbitration mechanism must be activated by setting MODEH.DIM2-0=00x.
The arbitration mechanism is implemented in the last octet in $I O M^{\circledR}-2$ channel 2 of the $1 O M^{\circledR}-2$ interface (see Figure 28). An access request to the TIC bus may either be generated by software ($\mu \mathrm{C}$ access to the C/I0-channel via CIXO register) or by an external D-channel HDLC controller (transmission of an HDLC frame in the D-channel). A software access request to the bus is effected by setting the BAC bit in register CIXO to ' 1 ' (resulting in BAC $=$ ' 0 ' on $\mathrm{IOM}^{\circledR}-2$).
In the case of an access request by the Q-SMINT ${ }^{\circledR}$, the Bus Accessed-bit BAC (bit 5 of last octet of CH 2 on DU, see Figure 28) is checked for the status "bus free", which is indicated by a logical ' 1 '. If the bus is free, the $\mathrm{Q}-\mathrm{SMINT}^{\circledR} \mid$ transmits its individual TIC bus address TAD programmed in the CIXO register (CIX0.TBA2-0). While being transmitted the TIC bus address TAD is compared bit by bit with the value read back on DU. If a sent bit set to ' 1 ' is read back as ' 0 ' because of the access of an external device with a lower TAD, the Q-SMINT ${ }^{\circledR}$ I withdraws immediately from the TIC bus, i.e. the remaining TAD bits are not transmitted. The TIC bus is occupied by the device which sends and reads back its address error-free. If more than one device attempt to seize the bus simultaneously, the one with the lowest address values wins. This one will set $\mathrm{BAC}=0$ on TIC bus and starts D-channel transmission in the same frame.

Functional Description

Figure 28 Structure of Last Octet of Ch2 on DU

When the TIC bus is seized by the Q-SMINT ${ }^{\circledR}$ I, the bus is identified to other devices as occupied via the DU Ch2 Bus Accessed-bit state ' 0 ' until the access request is withdrawn. After a successful bus access, the Q-SMINT ${ }^{\circledR}$ I is automatically set into a lower priority class, that is, a new bus access cannot be performed until the status "bus free" is indicated in two successive frames.
If none of the devices connected to the $I \mathrm{IO}^{\circledR}-2$ interface request access to the D and $\mathrm{C} /$ 10 channels, the TIC bus address 7 will be present. The device with this address will therefore have access, by default, to the D and $\mathrm{C} / 10$ channels.
Note: Bit BAC (CIXO register) should be reset by the $\mu \mathrm{C}$ when access is no more requested, to grant other devices access to the D and C/IO channels.

2.3.5.3 Stop/Go Bit Handling

The availability of the DU D channel is indicated in bit 5 "Stop/Go" (S/G) of the last octet in DD channel 2 (Figure 29). The arbitration mechanism must be activated by setting MODEH.DIM2-0=0x1.
$\mathrm{S} / \mathrm{G}=1$: stop
S/G $=0$: go
The Stop/Go bit is available to other layer-2 devices connected to the IOM ${ }^{\circledR}-2$ interface to determine if they can access the D channel in upstream direction.

Functional Description

Figure 29 Structure of Last Octet of Ch2 on DD

2.3.5.4 D-Channel Arbitration

In intelligent NT applications (selected via register S_MODE.MODE2-0) the Q-SMINT ${ }^{\circledR}$ | has to share the upstream D-channel with one or more D-channel controllers on the $1 O M^{\circledR}-2$ interface and with all connected $T E s$ on the S interface.
The S-transceiver incorporates an elaborate state machine for D-channel priority handling on $\mathrm{IOM}^{\circledR}-2$ (Chapter 2.3.5.5). For the access to the D-channel a similar arbitration mechanism as on the S interface (writing D-bits, reading back E-bits) is performed for all D -channel sources on $\mathrm{IOM}^{\circledR}-2$. Due to this an equal and fair access is guaranteed for all D -channel sources on both the S interface and the $I \mathrm{IM}^{\circledR}-2$ interface. The access to the upstream D-channel is handled via the S/G bit for the HDLC controllers and via E-bit for all connected terminals on S (E-bits are inverted to block the terminals on S). Furthermore, if more than one HDLC source is requesting D-channel access on IOM ${ }^{\circledR}-2$ the TIC bus mechanism is used (see Chapter 2.3.5.2).
The arbiter permanently counts the " 1 s " in the upstream D-channel on IOM ${ }^{\circledR}-2$. If the necessary number of " 1 s " is counted and an HDLC controller on $1 \mathrm{OM}^{\circledR}-2$ requests upstream D-channel access (BAC bit is set to 0), the arbiter allows this D-channel controller immediate access and blocks other TEs on S (E-bits are inverted). Similar as on the S-interface the priority for D-channel access on $\mathrm{IOM}^{\circledR}-2$ can be configured to 8 or 10 (S_CMD.DPRIO).
The configuration settings of the $\mathrm{Q}-\mathrm{SMINT}^{\circledR}{ }^{\circledR}$ in intelligent NT applications are summarized in Table 12.

Table 12 Q-SMINT ${ }^{\circledR}$ I Configuration Settings in Intelligent NT Applications

Functional Block	Configuration Description	Configuration Setting
Layer 1	Select Intelligent NT mode	S-Transceiver Mode Register: S_MODE.MODE0 $=0$ (NT state machine) or S_MODE.MODE0 $=1$ (LT-S state machine)
		S_MODE.MODE1 $=1$
		S_MODE.MODE2 $=1$
Layer 2	Enable S/G bit and	D-channel Mode Register:

Note: For mode selection in the S_MODE register the MODE1/2 bits are used to select intelligent NT mode, MODEO selects NT or LT-S state machine.
With the configuration settings shown above the $\mathrm{Q}-\mathrm{SMINT}^{\circledR}{ }^{\circledR}$ in intelligent NT applications provides for equal access to the D-channel for terminals connected to the S-interface and for D-channel sources on $\mathrm{IOM}^{\circledR}-2$.

2.3.5.5 State Machine of the D-Channel Arbiter

Figure 30 gives a simplified view of the state machine of the D-channel arbiter. CNT is the number of ' 1 ' on the IOM ${ }^{\circledR}$-2 D-channel and BAC corresponds to the BAC-bit on $1 O M^{\circledR}-2$. The number n depends on configuration settings (selected priority 8 or 10) and the condition of the previous transmission, i.e. if an abort was seen ($n=8$ or 10, respectively) or if the last transmission was successful ($n=9$ or 11 , respectively).

Figure 30 State Machine of the D-Channel Arbiter (Simplified View) ${ }^{\text {1) }}$
Table 13 lists the major differences of the D-channel arbiter's state machine between QSMINT ${ }^{\circledR}$ I and INTC-Q [12]

Table 13 Major Differences D-Channel Arbiter INTC-Q and Q-SMINT ${ }^{\circledR}$ I

	INTC-Q	Q-SMINT ${ }^{\circledR} \mathbf{I}$
State 'IDLE' (S/G=0, E=D)	Automatically entered from state 'READY' or 'S ACCESS' after CNT=n	Not available, initial state is 'READY' (S/G=1, E=D)
BAC-bit	Ignored	Local HDLC must tie BAC = '0' to enter state 'LOCAL ACCESS'
D-channel inhibit	Not possible	S-MODE.DCH_INH Alternative to BAC-bit to enter state 'LOCAL ACCESS'

[^5]
Functional Description

1. Local D-Channel Controller Transmits Upstream

In the initial state ('Ready' state) neither the local D-channel sources nor any of the terminals connected to the S-bus transmit in the D-channel.
The Q-SMINT ${ }^{\circledR} \mid$ S-transceiver thus receives $B A C=" 1 "\left(I O M{ }^{\circledR}-2\right.$ DU line) and transmits $S / G=$ "1" (IOM ${ }^{\circledR}-2$ DD line). The access will then be established according to the following procedure:

- Local D-channel source verifies that BAC bit is set to ONE (currently no bus access).
- Local D-channel source issues TIC bus address and verifies that no controller with higher priority requests transmission (TIC bus access must always be performed even if no other D-channel sources are connected to $1 O M^{\circledR}-2$).
- Local D-channel source issues BAC = " 0 " to block other sources on $1 O M^{\circledR}-2$ and to announce D-channel access.
- Q-SMINT ${ }^{\circledR}$ I S-transceiver pulls S/G bit to ZERO ('Local Access' state) as soon as $\mathrm{CNT} \geq \mathrm{n}$ (see note) to allow sending D-channel data from the entitled source.
Q-SMINT ${ }^{\circledR}$ I S-transceiver transmits inverted echo channel (E bits) on the S-bus to block all connected S-bus terminals ($\mathrm{E}=\overline{\mathrm{D}}$).
- Local D-channel source commences with D data transmission on IOM ${ }^{\circledR}-2$ as long as it receives $S / G=$ " 0 ".
- After D-channel data transmission is completed the controller sets the BAC bit to ONE.
- Q-SMINT ${ }^{\circledR}$ I S-transceiver transmits non-inverted echo ($\mathrm{E}=\mathrm{D}$).
- Q-SMINT ${ }^{\circledR}$ I S-transceiver pulls S/G bit to ONE ('Ready' state) to block the D-channel controller on IOM^{\circledR}-2.
Note: If right after D-data transmission the D-channel arbiter goes to state 'Ready' and the local D-channel source wants to transmit again, then it may happen that the leading '0' of the start flag is written into the D-channel before the D-channel source recognizes that the S/G bit is pulled to '1' and stops transmission. In order to prevent unintended transitions to state 'S-Access', the additional condition CNT ≥ 2 is introduced. As soon as CNT $\geq n$, the S / G bit is set to ' 0 ' and the D-channel source may start transmission again (if TIC bus is occupied). This allows an equal access for D-channel sources on $I O M^{\circledR}-2$ and on the S interface.

2. Terminal Transmits D-Channel Data Upstream

The initial state is identical to that described in the last paragraph. When one of the connected S-bus terminals needs to transmit in the D-channel, access is established according to the following procedure:

- S-transceiver recognizes that the D-channel on the S-bus is active via $\mathrm{D}={ }^{\prime} 0$ '.
- S-transceiver transfers S-bus D-channel data transparently through to the upstream IOM ${ }^{\circledR}$-2 bus.

Functional Description

2.3.6 Activation/Deactivation of $I O M^{\circledR}$-2 Interface

The deactivation procedure of the $I \mathrm{OM}^{\circledR}-2$ interface is shown in Figure 31. After detecting the code DI (Deactivation Indication) the $\mathrm{Q}-\mathrm{SMINT}^{\circledR} \mathrm{I}$ responds by transmitting DC (Deactivation Confirmation) during subsequent frames and stops the timing signals after the fourth frame. The clocks stop at the end of the C / I-code in $\mathrm{IOM}^{\circledR}-2$ channel 0 .

Figure 31 Deactivation of the $\mathrm{IOM}^{\circledR}-2$ Clocks

Conditions for Power-Down

If none of the following conditions is true, the $1 \mathrm{OM}^{\circledR}-2$ interface can be switched off, reducing power consumption to a minimum.

- S-transceiver is not in state 'Deactivated'
- Signal INFOO on the S-interface
- Uk0-transceiver is not in state 'Deactivated'
- Pin DU is low (either at the $I O M^{\circledR}-2$ interface or via IOM_CR.SPU)
- External pin EAW External Awake is low
- Bit MODE 1.CFS = '0'
- Stop on the correct place in the $\mathrm{IOM}^{\circledR}-2$ frame. DCL must be low during power down (stop on falling edge of DCL) (see Figure 31).

Functional Description

A deactivated $I \mathrm{IOM}^{\circledR}-2$ can be reactivated by one of the following methods:

- Pulling pin DU line low:
- directly at the $1 O M^{\circledR}-2$ interface
- via the μ P interface with "Software Power Up" (IOM_CR:SPU bit)
- Pulling pin EAW 'External Awake' low
- Setting ‘Configuration Select' MODE1:CFS bit = '0'
- Level detection at the S-interface
- Activation from the U-interface

2.4 U-Transceiver

The state machine of the U-Transceiver is based on the NT state machine in the PEB / PEF 8191 documentation [12].

Note: 'Self test request' and 'Self test passed' are not executed by the U-transceiver
The U-transceiver is configured and controlled via the registers described in Chapter 4.11. The U-transceiver is always in $I O M^{\circledR}-2$ channel 0 . It is possible to select between a state machine that simplifies programming (see Chapter 2.4.10.6) and the state machine as known from the PEB / PEF 8091 (see Chapter 2.4.10.2).

2.4.1 2B1Q Frame Structure

Transmission on the $U_{2 B 1 Q}$-interface is performed at a rate of 80 kbaud. The code used is reducing two bits to one quaternary symbol (2B1Q).
Data is grouped together into U-superframes of 12 ms each. Each superframe consists of eight basic frames which begin with a synchronization word and contain 222 bits of information. The first basic frame of a superframe starts with an inverted synchword (ISW) compared to the other basic frames (SW). The structure of one U-superframe is illustrated in Figure 32 and Figure 33.

ISW	1. Basic Frame	SW	2. Basic Frame	\ldots	SW	8. Basic Frame
$<---12 \mathrm{~ms}-->$						

Figure 32 U-Superframe Structure

(I) SW (Inverted) Synch Word 18 Bit (9 Quat)	12×2 2 + D User Data 216 Bits (108 Quat)	M1 - M6 Maintenance Data 6 Bits (3 Quat)
$<---1,5$ ms--->		

Figure 33 U-Basic Frame Structure

Out of the 222 information bits 216 contain $2 B+D$ data from $121 O M^{\circledR}$-frames, the remaining 6 bits are used to transmit maintenance information. Thus 48 maintenance bits are available per U-superframe. They are used to transmit two EOC-messages (24 bit), 12 Maintenance (overhead) bits and one checksum (12 bit).

Table 14 U-Superframe Format

Table 14 U-Superframe Format (cont'd)

- ISW Inverted Synchronization Word (quad): $\quad-3-3+3+3+3-3+3-3-3$
- SW Synchronization Word (quad): $\quad+3+3-3-3-3+3-3+3+3$
- CRC Cyclic Redundancy Check
- EOC Embedded Operation Channel a = address bit
$\mathrm{d} / \mathrm{m}=$ data / message bit
i = information (data / message)
- ACT Activation bit

ACT $=(1) \rightarrow$ Layer 2 ready for communication

- DEA Deactivation bit

DEA $=(0) \rightarrow$ LT informs NT that it will turn off

- CSO Cold Start Only
- UOA U-Only Activation
- SAI S-Activity Indicator
- FEBE Far-end Block Error

CSO $=(1) \rightarrow$ NT-activation with cold start only
UOA $=(0) \rightarrow$ U-only activated
SAI $=(0) \rightarrow$ S-interface is deactivated
FEBE $=(0) \rightarrow$ Far-end block error occurred

- PS1 Power Status Primary Source PS1 = (1) \rightarrow Primary power supply ok
- PS2 Power Status Secondary Source PS2 = (1) \rightarrow Secondary power supply ok
- NTM NT-Test Mode

NTM $=(0) \rightarrow$ NT busy in test mode

- AIB Alarm Indication Bit

AIB $=(0) \rightarrow$ Interruption (according to ANSI)

- NIB Network Indication Bit

NIB $=(1) \rightarrow$ no function (reserved for network use)

- SCO Start on Command only bit
- 1 (currently not defined by ANSI/ETSI)
can be accessed by the system interface for proprietary use

The principle signal flow is depicted in Figure 34 and Figure 35. The data is first grouped in bits that are covered by the CRC and bits that are not. After the CRC generation the bits are arranged in the proper sequence according to the 2B1Q frame format, encoded and finally transmitted.
In receive direction the data is first decoded, descrambled, deframed and handed over for further processing.

PEF 82912/82913

Functional Description

Figure $34 \quad \mathrm{U}_{2 \mathrm{~B} 1 \mathrm{Q}}$ Framer - Data Flow Scheme

Figure $35 \quad \mathrm{U}_{2 \mathrm{~B} 1 Q}$ Deframer - Data Flow Scheme

2.4.2 Maintenance Channel

The last three symbols (6 bits) of each basic frame are used as M (Maintenance)channel for the exchange of operation and maintenance data between the network and the NT. Approved M-bit data is first processed and then reported to the $\mu \mathrm{C}$ by interrupt requests. The verification method is programmed in the MFILT register (see Chapter 4.11.2).
EOC-data is inserted into the U-frame at the positions M1, M2 and M3 (Table 14) thereby permitting the transmission of two complete EOC-messages (2×12 bits) within one U-superframe (see Chapter 2.4.3).
M4 bits are used to communicate status and maintenance functions between the transceivers. The meaning of a bit position is dependent upon the direction of transmission (upstream/downstream) and the operation mode (NT/LT). See Table 14 for the different meaning of the M4 bits. For details see Chapter 2.4.4.
The M5 and M6 bits contain the FEBE bit and the CRC bits. For details see Chapter 2.4.6.

2.4.2.1 Reporting to the $\mu \mathrm{C}$ Interface

The maintenance channel information is exchanged with external devices via the appropriate registers. Received maintenance channel information is reported to the $\mu \mathrm{C}$ by an interrupt.

2.4.2.2 Access from the $\mu \mathrm{C}$ Interface

The maintenance data to be transmitted can be programmed by writing the internal EOCW/M4W/M56W registers.

2.4.2.3 Availability of Maintenance Channel Information

Transmission of the Maintenance channel data is only possible if a superframe is transmitted and the M-bits are transparent (M-Bits are "normal" in Table 24). In other states all maintenance bits are clamped to high.
Reception of the Maintenance channel data is enabled by the state machine in the following states:
Table 15 Enabling the Maintenance Channel (Receive Direction)

Synchronized1
Synchronized2
Wait for ACT
Transparent
Error S/T

Functional Description

Table 15 Enabling the Maintenance Channel (Receive Direction)

Pend. Deac. S/T
Pend. Deac. U
Analog Loop Back

Reporting and execution of maintenance information is only sensible if the Q-SMINT ${ }^{\circledR}$ | is synchronous. Filters are provided to avoid meaningless reporting.
Reset values are applied to the maintenance bits before the state machine enters one of the states in Table 15.

2.4.2.4 M-Bit Register Access Timing

Since the maintenance data must be put into and read from the U-frame in time there is the need for synchronization if M-Bit data is exchanged via the $\mu \mathrm{C}$-interface. Below the timing is given for the access to the M-Bit read and write registers.
The write access timing is depicted in Figure 36. Timing references for a write access are the 6 ms and 12 ms interrupts which are accommodated in the ISTAU register. An active 6 ms interrupt signals that from this event there is a time frame of 3 basic frames duration (4.5 ms) for the write access to the EOCW register.
The 12 ms interrupt serves as time reference for the write access to the M4W and M56W registers. From the point of time the 12 ms interrupt goes active there is a time window of 7 basic frames to overwrite the register values. The programmed data will be sent out with the next U-superframe.
Note that the point of time when the 6 ms and 12 ms interrupts are generated within basic frame \#1 and \#5 is not fixed and may vary.

PEF 82912/82913

Figure 36 Write Access Timing
The read access timing is illustrated in Figure 37. An interrupt source of the same name is associated with each read register (EOCR, M4R, M56R). An EOC interrupt indicates that the value of the EOCR register has been changed and updated. So do the M4 and M56 interrupts. Note that unlike the 6 ms and 12 ms interrupts the 'read' interrupts are only generated on change of the register value and do not occur periodically.
The EOC, M4 and M56 interrupt bits are all accommodated in the ISTAU register.

Figure 37 Read Access Timing

2.4.3 Processing of the EOC

2.4.3.1 EOC Commands

The EOC command consists of an address field, a data/message indicator and an eightbit information field. With the address field the destination of the transmitted message/ data is defined. Addresses are defined for the NT, 6 repeater stations and broadcasting.

PEF 82912/82913

Functional Description

The data/message indicator needs to be set to (1) to indicate that the information field contains a message. If set to (0), numerical data is transferred to the NT. Currently no numerical data transfer to or from the NT is required.

Table 16 Coding of EOC-Commands

Table 17 Usage of Supported EOC-Commands

Hex- code			Function
$\mathbf{I 1 - i 8}$	\mathbf{D}	\mathbf{U}	
00	H	H	Hold. Provokes no change. The device issues Hold if no NT or broadcast address is used or if the d / m indicator is set to (0).
50	LBBD		Close complete loop-back (B1, B2, D). If this command is detected in NT EOC auto mode the C/I-code ARL is issued by the Q-SMINT ${ }^{\circledR}$ I U-transceiver.

Table 17 Usage of Supported EOC-Commands(cont'd)

Hexcode			Function
i1-i8	D	U	
51	LB1		Closes B1 loop-back in NT. All B1-channel data will be looped back within the Q-SMINT ${ }^{\circledR}$ I U-transceiver. The bits LB1 and $\mathrm{U} / \mathrm{IOM}^{\circledR}$ are set in the register LOOP.
52	LB2		Closes B2 loop-back in NT. All B2-channel data will be looped back within the Q-SMINT ${ }^{\circledR}$ I U-transceiver. The bits LB2 and $\mathrm{U} / \mathrm{IOM}^{\circledR}$ are set in the register LOOP.
53	RCC		Request corrupt CRC. Upon receipt the Q-SMINT ${ }^{\circledR}$ I transmits corrupted ($=$ inverted) CRCs upstream. This allows to test the near end block error counter on the LT-side. The far end block error counter at the Q-SMINT ${ }^{\circledR} \mid$-side is stopped and QSMINT ${ }^{\circledR}$--error indications are retained.
54	NCC		Notify of corrupt CRC. Upon receipt of NCC the Q-SMINT ${ }^{\circledR}$ block error counters (near-end only) are disabled and error indications are retained. This prevents wrong error counts while corrupted CRCs are sent.
AA		UTC	Unable to comply. Message sent instead of an acknowledgment if an undefined EOC-command or d / m bit=0 was received by the Q-SMINT ${ }^{\circledR}$.
FF	RTN		Return to normal. With this command all previously sent EOC-commands will be released. The EOCW register is reset to its initial state $\left(\mathrm{FF}_{\mathrm{H}}\right)$.
XX		ACK	Acknowledge. If a defined and correctly addressed EOCcommand was received by the Q-SMINT ${ }^{\circledR}$, the Q-SMINT ${ }^{\circledR}$ I replies by echoing back the received command.

2.4.3.2 EOC Processor

The on-chip EOC-processor is responsible for the correct insertion and extraction of EOC-data on the U-interface. The EOC-processor can be programmed either to auto mode or to transparent modes (see Chapter 2.4.3.3).
Figure 38 shows the registers and pins that are involved when EOC data is transmitted and received.

Figure 38 EOC Message Reception

Figure 39
EOC Command/Message Transmission

Functional Description

2.4.3.3 EOC Operating Modes

The EOC operating modes are programmable in the MFILT register (see Chapter 4.11.2)

EOC Auto Mode

- Acknowledgement: All received EOC-frames are echoed back to the exchange immediately without triple-last-look. If an address other than $(000)_{B}$ or $(111)_{B}$ is received, a HOLD message with address $(000)_{B}$ is returned. However there is an exception: The Q-SMINT ${ }^{\circledR}$ I will send a 'UTC' after three consecutive receptions of $\mathrm{d} /$ $\mathrm{m}=0$ or after an undefined command.
- Latching: All detected EOC-commands, i.e. LBBD, RCC etc., are latched. Multiple subsequent valid EOC-commands are executed in parallel, as long as they are not disabled with the EOC 'RTN' command or a deactivation.
- Reporting: With the triple-last-look criterion fulfilled the new EOC-command will be reported by an interrupt, independently of the address used and the status of the d / m indicator. The triple last look criterion implies that the new verified message is different to the last TLL-verified message.
- Execution: The EOC-commands listed in Table 16 will be executed automatically by the U-transceiver if they were addressed correctly $\left(000_{B}\right.$ or $\left.111_{\mathrm{B}}\right)$ and the d / m bit was set to message (1). The execution of a command is performed only after the "triple-last-look" criterion is met.

EOC Transparent Mode 6 ms

- Acknowledgement: There is no automatic acknowledgement in transparent mode. Therefore the external $\mu \mathrm{C}$ has to perform the EOC-Procedure. 2 msec must be available for the report and the subsequent access of the transmit EOC data of the next outgoing EOC-frame.
- Latching: No latching is performed due to no execution.
- Reporting: The received EOC-frame is reported to the μ C by an interrupt every 6 ms . Verification, acknowledgment and execution of the received command have to be initiated by an external controller. The $\mu \mathrm{C}$ can program back all defined test functions (close/open loops, send corrupted CRCs). In the transmit direction, the last written EOC-code from the $\mu \mathrm{C}$ is used.
- Execution: No automatic execution in transparent modes. The appropriate actions can be programmed by the $\mu \mathrm{C}$.

Functional Description

Transparent mode with 'On Change bit' active

- Acknowledgment: There is no automatic acknowledgement in transparent mode. For details see above.
- Latching: No latching is performed due to no execution.
- Reporting: This mode is almost identical to the Transparent Mode 6 ms. But a report to the $\mu \mathrm{C}$ by an interrupt takes place only, if a change in the EOC message has been detected.
- Execution: No automatic execution in transparent modes. The appropriate actions can be programmed by the $\mu \mathrm{C}$.

Transparent mode with TLL active

- Acknowledgement: There is no automatic acknowledgment in transparent mode. For details see above.
- Latching: No latching is performed due to no execution.
- Reporting: This mode is almost identical to the Transparent Mode 6 ms . But a report to the $\mu \mathrm{C}$ by an interrupt takes place only, if the new EOC command has been detected in at least three consecutive EOC messages.
- Execution: No automatic execution in transparent modes. The appropriate actions can be programmed by the $\mu \mathrm{C}$.

2.4.3.4 Examples for different EOC modes

General

In the following examples some letters like A,B,C are used to symbolize EOC command. There are also particular EOC commands mentioned which indicate special system behavior (e.g. UTC, H). The examples are shown in tables.

EOC Automode

Table 18 EOC Auto Mode

remarks								I											
input from $\mu \mathrm{C}$		es	to	,								D	d	On	-	A			
EOC TX	A	A	A	B	A	A	A	H		H	H	D	D	$\stackrel{\bigcirc}{5}$	$\begin{aligned} & 0 \\ & \hline \end{aligned}$	A	D	D	\bigcirc
EOC RX	A	A	A	B	A	A	A	C		C	C	D	D	D	D	A	D	D	D
report to $\mu \mathrm{C}$			A								C			D					D

- A, B: EOC commands with correct address, d / m bit = 1 and defined command.
- C: EOC command with wrong address. Immediately acknowledged with H.
- D: EOC command which is not defined or d / m bit $=0$. Acknowledgement after TLL with UTC.

Transparent mode 6 ms)
Table 19 Transparent mode 6 ms

remarks													
input from $\mu \mathrm{C}$	A				B								
EOC TX	A	A	A	A	B	B	B	C	C	C	D	D	D
EOC RX	C	A	B	C	C	A	A	A	A	B	B	B	B
report to $\mu \mathrm{C}$	C	A	B	C	C	A	A	A	A	B	B	B	B

Transparent mode '@change'
Table 20 Transparent mode '@change'

remarks													
input from μ C	A				B			C					
EOC TX	A	A	A	A	B	B	B	C	C	C	C	D	D
EOC RX	C	A	B	C	C	A	A	A	A	A	B	B	B
report to μ C		A	B	C		A					B		

Transparent mode TLL
Table 21 Transparent mode TLL

remarks																	
input from $\mu \mathrm{C}$	A				B					C				D			
EOC TX	A	A	A	A	B	B	B	B	B	C	C			D	D	D	D
EOC RX	C	C	C	C	C	A	A	A	B	A	A				B	B	B
report to $\mu \mathrm{C}$			C					A							B		

Functional Description

2.4.4 Processing of the Overhead Bits M4, M5, M6

2.4.4.1 M4 Bit Reporting to the $\mu \mathrm{C}$

Four different validation modes can be selected and take effect on a per bit base. Only if the received M4 bit change has been approved by the programmed filter algorithm a report to the $\mu \mathrm{C}$ is triggered. The following filter algorithms are provided and can be programmed in the MFILT register:

- On Change
- Triple-Last-Look (TLL) coverage
- CRC coverage

Note that unlike the M4 bits the M56 bits are not included in the CRC generation!

- CRC and TLL coverage

2.4.4.2 M4 Bit Reporting to State Machine

Some M4 bits, ACT, DEA and UOA, have two destinations, the state machine and the $\mu \mathrm{C}$. Regarding these bits Triple-Last-Look (TLL) is applied by default before the changed status is input to the state machine. Via the MFILT register the user can decide whether the M4 bits which are input to the state machine shall be approved

- by TLL (default setting, since TLL is a Bellcore requirement) or
- by the same verification mode as selected for reporting to the $\mu \mathrm{C}$.

The reset values before activation are $A C T=0, D E A=1, U O A=0$.

2.4.4.3 M5, M6 Bit Reporting to the $\mu \mathrm{C}$

By default changes in the received spare bits M51, M52, and M61 are reported to the $\mu \mathrm{C}$ only if no CRC violation has been detected. However the user has the choice to program one of the following two options in the MFILT register (for details see Chapter 4.11.2):

- Same validation algorithm is applied to M5 and M6 bits as programmed for M4 bits
- On Change

In transmit direction these bits are set by default to '1' if they are not explicitly set by an $\mu \mathrm{C}$ access (via M56W register).

2.4.4.4 Summary of M4, M5, M6 Bit Reporting

Figure 40 summarizes again the various filtering options that are provided for the several maintenance channel bits.

Figure 40 Maintenance Channel Filtering Options
Figure 41 illustrates the point of time when a detected M4, M5, M6 bit change is reported to the $\mu \mathrm{C}$ and when it is reported to the state machine:

- towards the $\boldsymbol{\mu} \mathbf{C}$ reports are always sent after one complete U-superframe was received,
- whereas towards the state machine M4-bit changes (ACT, DEA, UOA, SAI) are instantly passed on as soon as they were approved. In context of Figure 41 this means that a verified ACT bit change is already reported at the end of basic frame \#1 instead of the end of basic frame \#8.

Figure $41 \quad$ M4 Bit Report Timing (Statemachine vs. $\mu \mathrm{C}$)

Functional Description

However, if the same filter is selected towards the state machine as programmed towards the $\mu \mathrm{C}$, the user has to be aware that if CRC mode is active, the state machine is informed at the end of the next U-superframe.

2.4.5 M4, M5, M6 Bit Control Mechanisms

Figure 42 and Figure 43 show the control mechanisms that are provided for M4, M5 and M6 bit data:

Via the M4WMASK register the user can selectively program which M4 bits are externally controlled and which are set by the internal state machine or dedicated pins (PS1, PS2). If one M4WMASK bit is set to '0' then the M4 bit value in the U-transmit frame is determined by the bit value at the corresponding bit position in the M4W register.
Note: By bit 6 in the M4WMASK register it can be selected whether SAI is set by the state machine or by μC access and whether the value of the received UOA bit is reported to the state machine or UOA = '1' is signalled.

Via the M4RMASK register the user can selectively program which M4 bit changes shall cause an report to the $\mu \mathrm{C}$.
The M4W register latches the M4 bits that are sent with the next available U-superframe.
The M4R register contains the last validated M4 bit data.
The default value of M51, M52 and M61 can be overwritten at any time by use of register M56W. M56R latches the last received and verified M5, M6 bit data.
The control of the FEBE bit is performed by the CRC-Processor, see Chapter 2.4.6.

Figure 42 M4, M5, M6 Bit Control in Receive Direction

Figure 43 M4, M5, M6 Bit Control in Transmit Direction

PEF 82912/82913

Functional Description

2.4.6 Cyclic Redundancy Check / FEBE bit

An error monitoring function is implemented covering the $2 B+D$ and $M 4$ data transmission of a U-superframe by a Cyclic Redundancy Check (CRC).
The computed polynomial is:

$$
\begin{aligned}
G(u)= & u^{12}+u^{11}+u^{3}+u^{2}+u+1 \\
& (+ \text { modulo } 2 \text { addition })
\end{aligned}
$$

The check digits (CRC bits CRC1, CRC2, ..., CRC12) generated are transmitted in the U-superframe. The receiver will compute the CRC of the received $2 B+D$ and $M 4$ data and compare it with the received CRC-bits generated by the transmitter.
A CRC-error will be indicated to both sides of the U-interface, as a NEBE (Near-end Block Error) on the side where the error is detected, as a FEBE (Far-end Block Error) on the remote side. The FEBE-bit will be placed in the next available U-superframe transmitted to the originator.
Figure 44 illustrates the CRC-process.

*0.0625 of a SFR is the 60 Quats offset of the NT transmit data.

Figure 44 CRC-Process

Functional Description

2.4.7 Block Error Counters

The U-transceiver provides internal counters for far-end and near-end block errors. This allows a comfortable surveillance of the transmission quality at the U-interface. In addition, the occurrence of near-end errors, far-end errors, and the simultaneous occurrence of both errors are reported to the $\mu \mathrm{C}$ by an interrupt at the beginning of the following receive-superframe.
A block error is detected each time when the calculated checksum (CRC) of the received data does not correspond to the control checksum transmitted in the successive superframe. One block error thus indicates that one U-superframe has not been transmitted correctly. No conclusion with respect to the number of bit errors is therefore possible.

2.4.7.1 Near-End and Far-End Block Error Counter

A near-end block error (NEBE) indicates that the error has been detected in the receive direction (i.e. NEBE in the NT $=L T=>$ NT error). Each detected NEBE-error increments the 8 -bit NEBE-counter. When reaching the maximum count, counting is stopped and the counter value reads $\left(\mathrm{FF}_{\mathrm{H}}\right)$.
A far-end block error identifies errors in transmission direction (i.e. FEBE in the NT = NT => LT-error). FEBE errors are processed in the same manner as NEBE-errors.
The FEBE and NEBE counter values can be read in registers FEBE and NEBE. The counter is cleared after read. The counters are also reset to 00_{H} in all states except the states listed in Table 15.

2.4.7.2 Testing Block Error Counters

Figure 45 illustrates how near- and far-end block error counters can be tested. Transmission errors are simulated with artificially corrupted CRCs. With two commands the cyclic redundancy checksum can be inverted in the upstream and downstream direction. A third command offers to invert single FEBE-bits.

- EOC Command NCC:

Requests the Q-SMINT ${ }^{\circledR}$ I to notify corrupted CRCs.
The functional behavior of the Q-SMINT ${ }^{\circledR}$ I and the NEBE-counter depends on the mode selected:

- EOC auto mode:

NEBE-detection stopped: no NEBE interrupt generated and NEBE-counter disabled

- EOC transparent mode

NEBE-detection enabled: NEBE interrupt generated and NEBE-counter enabled

Functional Description

- EOC Command RCC:

Requests the Q-SMINT ${ }^{\circledR}$ I to send corrupt CRCs. After issuing RCC near-end block errors will be registered on the LT-side.
The functional behavior of the Q-SMINT ${ }^{\circledR}$ I and the FEBE-counter depends on the mode selected:

- EOC auto mode:

The Q-SMINT ${ }^{\circledR}$ I will react with a permanently inverted upstream CRC.
FEBE-detection stopped: no FEBE interrupt generated and FEBE-counter disabled

- EOC transparent mode

The external $\mu \mathrm{C}$ must react on RCC by programming TEST.CCRC = ' 1 '.
FEBE-detection enabled: FEBE interrupt generated and FEBE-counter enabled

- EOC command RTN:

Disables all previously sent EOC commands.

- M56W.FEBE

By setting / resetting M56W.FEBE (M56W.FEBE can only be set and controlled externally if OPMODE.FEBE is set to ' 1 '), the FEBE bit of the next available U-frame can be set / reset . Therefore, it is possible to predict exactly the FEBE-counter value.

PEF 82912/82913

Figure 45 Block Error Counter Test

2.4.8 Scrambling/ Descrambling

The scrambling algorithm ensures that no sequences of permanent binary 0s or 1s are transmitted. The scrambling / descrambling process is controlled fully by the QSMINT ${ }^{\circledR}$ I. Hence, no influence can be taken by the user.

2.4.9 C/l Codes

The operational status of the U-transceiver is controlled by the Control/Indicate channel (C/l-channel).

PEF 82912/82913

Functional Description

Table 22 presents all defined C / l codes. A new command or indication will be recognized as valid after it has been detected in two successive $10 M^{\circledR}$-2-frames (double last-look criterion).
Note: Unconditional C/I-Commands must be applied for at least $4 I O M^{\circledR}-2$ frames for reliable recognition by the U-transceiver.

Commands have to be applied continuously on DU until the command is validated by the U-transceiver and the desired action has been initiated. Afterwards the command may be changed.
An indication is issued permanently by the U-transceiver on DD until a new indication needs to be forwarded. Because a number of states issue identical indications it is not possible to identify every state individually.

Table 22 U - Transceiver C/I Codes

Code	IN	OUT
0000	TIM	DR
0001	RES	-
0010	-	-
0011	-	-
0100	El1	El1
0101	SSP	-
0110	DT	-
0111	-	PU
1000	AR	AR
1001	-	-
1010	ARL	ARL
1011	-	-
1100	AI	AI
1101	-	-
1110	-	AIL
1111	DI	DC

AI: Activation Indication
AIL: Activation Indication Loop
AR: Activation Request
ARL: Activation Request Local Loop

DC: Deactivation Confirmation
DI: Deactivation Indication
DR: Deactivation Request
DT: Data Through test mode
El1: Error Indication 1
PU: Power-Up
RES: Reset
SSP: Send Single Pulses test mode
TIM: Timing request

2.4.10 State Machines for Line Activation / Deactivation

2.4.10.1 Notation

The state machines control the sequence of signals at the U-interface that are generated during the start-up procedure. The informations contained in the following state diagrams are:

- State name
- U-signal transmitted
- Overhead bits transmitted
- C/l-code transmitted
- Transition criteria
- Timers

Figure 46 shows how to interpret the state diagrams.

Figure 46 Explanation of State Diagram Notation
Combinations of transition criteria are possible. Logical "AND" is indicated by "\&" (TN \& DC), logical "OR" is written "or" and for a negation "/" is used. The start of a timer is indicated with "TxS" ("x" being equivalent to the timer number). Timers are always started when entering the new state. The action resulting after a timer has expired is indicated by the path labelled "TxE".

Functional Description

2.4.10.2 Standard NT State Machine (IEC-Q / NTC-Q Compatible)

Figure 47 Standard NT State Machine (IEC-Q / NTC-Q Compatible) (Footnotes: see "Dependence of Outputs" on Page 92)

Functional Description

Note: The test modes 'Data Through' (DT) and 'Send Single Pulses' (SSP) are invoked via C/I codes 'DT' and 'SSP' according to Table 22. Setting SRES.RES_U to '1' forces the U-transceiver into test mode 'Quiet Mode‘ (QM), i.e. the U-transceiver is hardware reset.
If the Metallic Loop Termination is used, then the U-transceiver is forced into the states 'Reset' and 'Transparent' by valid pulse streams on pin MTI according to Table 29.
Note: If the state machine is in state 'Deactivated' and the IOM ${ }^{\circledR}-2$ clocks are not running, then the transitions to 'IOM ${ }^{\circledR}-2$ Awaked' or 'Alerting' can be invoked by writing directly the corresponding C/I-code to register UCIW via the $\mu \mathrm{C}$ interface.

2.4.10.3 Inputs to the U-Transceiver:

C/I-Commands:

AI	Activation Indication The downstream device issues this indication to announce that its layer-1 is available. The U-transceiver informs the LT side by setting the "ACT" bit to " 1 ".
AR	Activation Request The U-transceiver is requested to start the activation process by sending the wakeup signal TN.
ARL	Activation Request Local Loop-back The U-transceiver is requested to operate an analog loop-back (close to the Uinterface) and to begin the start-up sequence by sending SN1 (without starting timer T1). This command may be issued only after the U-transceiver has been HW- or SWreset. This eases that the EC- and EQ-coefficient updating algorithms converge correctly. The ARL-command has to be issued continuously as long as the loop-back is required.
DI	Deactivation Indication This indication is used during a deactivation procedure to inform the U-transceiver that it may enter the deactivated (power-down) state.
DT	Data Through This unconditional command is used for test purposes only and forces the Utransceiver into the "Transparent" state.
El1	Error Indication 1 The downstream device indicates an error condition (loss of frame alignment or loss of incoming signal). The U-transceiver informs the LT-side by setting the ACT-bit to " 0 " thus indicating that transparency has been lost.
RES	Reset Unconditional command which resets the U-transceiver.
SSP	Send Single Pulses Unconditional command which requests the transmission of single pulses on the U-interface.

Functional Description

TIM Timing
The U-transceiver is requested to enter state ' $1 \mathrm{OM}^{\circledR}-2$ Awaked'.

U-Interface Events:

$A C T=0 / 1 \quad$ ACT-bit received from LT-side.

- ACT = 1 requests the U-transceiver to transmit transparently in both directions. In the case of loop-backs, however, transparency in both directions of transmission is established when the receiver is synchronized.
- ACT = 0 indicates that layer-2 functionality is not available.

DEA $=0 / 1 \quad$ DEA-bit received from the LT-side

- DEA $=0$ informs the U-transceiver that a deactivation procedure has been started by the LT-side.
- DEA = 1 reflects the case when DEA = 0 was detected by faults due to e.g. transmission errors and allows the U-transceiver to recover from this situation.
UOA $=0 / 1 \quad$ UOA-bit received from network side
- UOA $=0$ informs the U-transceiver that only the U-interface is to be activated. The S/T-interface must be deactivated.
$-U O A=1$ requests the S / T-interface (if present) to activate.

Timers

The start of timers is indicated by TxS, the expiry by TxE. Table 23 shows which timers are used:

Table 23 Timers Used

Timer	Duration $(\mathbf{m s})$	Function	State
T1	15000	Supervisor for start-up	
T7	40	Hold time	Receive reset
T11	9	TN-transmission	Alerting
T12	5500	Supervisor EC-converge	EC-training
T13	15000	Frame synchronization	Pend. receive reset
T14	0.5	Hold time	Pend. timing
T20	10	Hold time	Wait for SF

2.4.10.4 Outputs of the U-Transceiver:

The following signals and indications are issued on $1 O M^{\circledR}-2$ (C / l-indications) and on the U-interface (predefined U-signals):

Functional Description

C/I-Indications

AI	Activation Indication The U-transceiver has established transparency of transmission. The downstream device is requested to establish layer-1 functionality.
AIL	Activation Indication Loopback The U-transceiver has established transparency of transmission. The downstream device is requested to establish a loopback \#2.
AR	
Activation Request	
The downstream device is requested to start the activation procedure.	

Signals on U-Interface

The signals SNx, TN and SP transmitted on the U-interface are defined in Table 24.

Table 24 U-Interface Signals

Signal	Synch. Word $($ SW $)$	Superframe $($ ISW $)$	2B + D	M-Bits	
TN ${ }^{1)}$	± 3	± 3	± 3	± 3	
SN0	no signal	no signal	no signal	no signal	
SN1	present	absent	1	1	
SN2	present	absent	1	1	
SN3	present	present	1	normal	
SN3T	present	present	normal	normal	
Test Mode					
SP $^{2)}$	test signal	test signal	test signal	test signal	

Note: ${ }^{1)}$ Alternating ± 3 symbols at 10 kHz .
Note: ${ }^{2)} 4$ Options for the test signal can be selected by register TEST:
A 40 kHz signal composed by alternating +/-3 or +/-1 transmit pulses.
A series of single pulses spaced at intervals of 1.5 ms ; Either alternating $+/-1$ or +/-3 pulses can be selected.

Input Signals of the State Machine and related U-Signals

The table below summarizes the input signals that control the NT state machine and that are extracted from the U-interface signal sequences.

LOF	Loss of framing This condition is fulfilled if framing is lost for 573 ms.
LSEC	Loss of signal behind echo canceller Internal Signal which indicates that the echo canceller has converged
LSU	Loss of Signal on U-Interface This signal indicates that a loss of signal level for a duration of 3 ms has been detected on the U-interface. This short response time is relevant in all cases where the NT waits for a response (no signal level) from the LT- side.
LSUE	Loss of Signal on U-Interface - Error condition After a loss of signal has been noticed, a 588 ms timer is started. When it has elapsed, the LSUE-criterion is fulfilled. This long response time (see also LSU) is valid in all cases where the NT is not prepared to lose signal level i.e. the LT has stopped transmission because of loss of framing, an unsuccessful activation, or the transmission line is interrupted.
FD	Frame Detected SFD SBD0 / Super Frame Detected BBD0/1 Detected These signals are set if either '1' (BBD1) or '0' (BBD0) were detected in 4 subsequent basic frames. It is used as a criterion that the receiver has acquired frame synchronization and both its EC- and EQ-coefficients have converged. BBD0 corresponds to the received signal SL2 in case of a normal activation, BBD1 corresponds to the internally received signal SN3 in case of analog loop back. TL Awake tone detected The U-transceiver is requested to start an activation procedure.

PEF 82912/82913

Functional Description

Signals on IOM ${ }^{\circledR}$-2

The Data ($B+B+D$) is set to all '1's in all states besides the states listed in Table 15.

Dependence of Outputs

- Outputs denoted with ${ }^{1)}$ in Figure 47:

Signal output on $U_{k 0}$ depends on the received EOC command and on the history of the state machine according to Table 25:

Table 25 Signal Output on $\mathrm{U}_{\mathrm{k} 0}$

EOC Command	History of the State Machine	Signal output on $\mathbf{U}_{\mathbf{k 0}}$
received 'LBBD'	no influence	SN3T
received no 'LBBD' or 'RTN' after an 'LBBD'	state 'Transparent' has not been reached previously during this activation procedure	SN3
state 'Transparent' has been reached previously during this activation procedure	SN3T	

- Outputs denoted with ${ }^{2)}$ in Figure 47:

C/l-code output depends on received EOC-command 'LBBD' according to Table 26:
Table 26 C/l-Code Output

EOC Command	Synchroni zed 2	Wait for Act	Transparent	Error S/T
received no 'LBBD' or 'RTN' after an 'LBBD'	AR	AR	AI	AR
received 'LBBD'	ARL	ARL	AIL	ARL

- Outputs denoted with ${ }^{3)}$ in Figure 47:

In States 'Pend. Deact. S/T' and 'Pend. Deact. U' the ACT-bit output depends on its value in the previous state.

- The value of the issued SAI-bit depends on the received C/I-code: DI and TIM lead to SAI = 0, any other C/I-code sets the SAI-bit to 1 indicating activity of the downstream device.
- If state Alerting is entered from state Deactivated, then C/l-code 'PU' is issued, else C/I-code 'DC' is issued.

2.4.10.5 Description of the NT-States

The following states are used:

Alerting

The wake-up signal TN is transmitted for a period of T11 either in response to a received wake-up signal TL or to start an activation procedure on the LT-side.

Alerting 1

"Alerting 1" state is entered when a wake-up tone was received in the "Receive Reset" state and the deactivation procedure on the NT-side was not yet finished. The transmission of wake-up tone TN is started.

Analog Loop-Back

Transparency is achieved in both directions of transmission. This state can be left by making use of any unconditional command.

Deactivated

Only in state Deactivated the device may enter the power-down mode.

EC Training

The signal SN1 is transmitted on the U-interface to allow the NT-receiver to update the EC-coefficients. The automatic gain control (AGC), the timing recovery and the EQ updating algorithm are disabled.

EC-Training 1

The "EC-Training 1" state is entered if transmission of signal SN1 has to be started and the deactivation procedure on the NT-side is not yet finished.

EC-Training AL

The signal SN1 is transmitted on the U-interface to allow the NT-receiver to update the EC-coefficients. The automatic gain control (AGC), the timing recovery and the EQ updating algorithm are disabled.

EQ-Training

The receiver waits for signal SL1 or SL2 to be able to update the AGC, to recover the timing phase, to detect the synch-word (SW), and to update the EQ-coefficients.

Functional Description

Error S/T

The downstream device is in an error condition (El1). The LT-side is informed by setting the ACT-bit to "0" (loss of transparency on the NT-side).

IOM ${ }^{\circledR}$-2-Awaked

The U-transceiver is deactivated, but may not enter the power-down mode.

Pending Deactivation of S/T

The U-transceiver has received the UOA-bit at zero after a complete activation of the S / T-interface. The U-transceiver requests the downstream device to deactivate by issuing DR.

Pending Deactivation of U-Interface

The U-transceiver waits for the receive signal level to be turned off (LSU) to start the deactivation procedure.

Pending Receive Reset

The "Pending Receive Reset" state is entered upon detection of loss of framing on the U-interface or expiry of timer T1. This failure condition is signalled to the LT-side by turning off the transmit level (SN0). The U-transceiver then waits for a response (no signal level LSU) from the LT-side.

Pending Timing

In the NT-mode the pending timing state assures that the C/I-channel code DC is issued four times before entering the 'Deactivated' state.

Receive Reset

In state 'Receive Reset' a reset of the Uk0-receiver is performed, except in case that state 'Receive Reset' was entered from state 'Pend. Deact. U'. Timer T7 assures that no activation procedure is started from the NT-side for a minimum period of time of T7. This gives the LT a chance to activate the NT.

Reset

In state 'Reset' a software-reset is performed.

Synchronized 1

State 'Synchronized 1' is the fully active state of the U-transceiver, while the downstream device is deactivated.

Functional Description

Synchronized 2

In this state the U-transceiver has received $\mathrm{UOA}=1$. This is a request to activate the downstream device.

Test

The test signal SP is issued as long as C/l=SSP is applied. For further details see Table 24.

Transparent

This state is entered upon the detection of ACT = 1 received from the LT-side and corresponds to the fully active state.

Wait for ACT

Upon the receipt of AI, the NT waits for a response $(A C T=1)$ from the LT-side.

Wait for SF

The signal SN2 is sent on the U-interface and the receiver waits for detection of the superframe.

Wait for SF AL

This state is entered in the case of an analog loop-back and allows the receiver to update the AGC, to recover the timing phase, and to update the EQ-coefficients.

2.4.10.6 Simplified NT State Machine

As an alternative to the activation/deactivation state machine of the U-transceiver known from the IEC-Q [9], a more software friendly state machine can be selected.
In the early days of ISDN, the activation and deactivation procedure in a NT was completely determined by the U - and S-transceiver state machines without a microcontroller being necessary. Intelligent NTs or U-terminals require a microcontroller and software. In this case the software controls both the S -and the U-transceiver state machine.
The simplified U-transceiver state machine was developed to better address the needs and requirements of software running on the microcontroller. The simplified state machine offers the following advantages:

- the software can tell whether the $I \mathrm{OM}^{\circledR}-2$ clocks are active or powered down via the received C/I code
- From the received C/l code the software always knows, what it is expected to do and what options it has. The software does not have to backtrack older C/I codes.

PEF 82912/82913

Functional Description

- unnecessary C/I changes at irrelevant state transitions are omitted, hence the number of interrupts is reduced.
All advantages can be offered by the following minor changes to the existing state machine:

Table 27 Changes to achieve Simplified NT State Machine

Change	State	Standard NT State Machine	Simplified NT State Machine

Change of Transmitted C/I -Code

Alerting	DC/PU	PU
EC-Training	DC	PU
EQ-Training	DC	PU
Wait for SF	DC	PU
Synchronized 1	DC	PU
Pend. Receive Res.	El1	DR
Pend. Deact. U.	DC	DR
Wait for SF AL	DC	DR
EC-Training AL	DC	DR
all other States	no changes	

Changed State Transition Criteria

	Alerting 1 to Alerting	DI	DI or TIM
	EC-Training 1 to EC-Training	DI	DI or TIM
	Pend. Deact. S/T to Synchron. 1	DI	DI or TIM
	all other transition criterias	no changes	
New State Transitions			
	Receive Reset to $10 M^{\circledR}$-2 Awaked	none	T7E \& TIM
	Reset to $\mathrm{IOM}^{\circledR}-2$ Awaked	none	TIM

Table 27 Changes to achieve Simplified NT State Machine(cont'd)

Change	State	Standard NT State Machine	Simplified NT State Machine
	Test to $\mathrm{IOM}^{\circledR}-2$ Awaked	none	TIM

Not Supported State Transitions

	Reset to Alerting	DI \& NTAUTO	none
	all other transitions	no changes	

Figure 48 Simplified NT State Machine

Table 28 Appearance of the State Machine to the Software

C/I ind.	Meaning	Options		Utransp arent
DR	LT has decided to deactivate or activation was lost: - after an activation or - after an activation attempt or - after reset	DI TIM	Acknowledge and give permission to turn off the clocks Acknowledge, clocks will stay active	no
$\overline{\text { DC }}$	four $I \mathrm{IM}^{\circledR}$-2 frames with C / l code DC are issued before permission to turn off the clocks	TIM AR any other C/Icode	turn on clocks start U-activation no action, permission to turn off the clocks will be given	no
PU	clocks are on; U-interface is not transparent but may be synchronous (e.g. U-only activation)	any C/Icode	no action, clocks will remain on	no
AR	used during activation. Uinterface is synchronous and is waiting for an ok from the downstream device	AI	accept that activation can continue, layer 2 of the downstream device is ready. Then wait for $\mathrm{Cl} /$ indication Al	no
AI	U-interface transparent	El1 or act=0	no action, transmit data report problem on downstream device	yes

2.4.11 Metallic Loop Termination

For North American applications a maintenance controller according to ANSI T1.601 section 6.5 is implemented. The maintenance pulse stream from the U-interface Metallic Loop Termination circuit (MLT) is fed to pin MTI, usually via an optocoupler. It is digitally filtered for 20 ms and decoded independently on the polarity by the maintenance controller according to Table 29. Therefore, the maintenance controller is capable of detecting the DC and AC signaling format. The Q-SMINT ${ }^{\circledR}$ I automatically sets the U transceiver in the proper state and issues an interrupt. The state selected by the MLT is indicated via two bits.
The $\mathrm{Q}-\mathrm{SMINT}^{\circledR}{ }^{\circledR}$ reacts on a valid pulse stream independently of the current U transceiver state. This includes the power-down state.

Functional Description

A test mode is valid for 75 seconds. If during the 75 seconds a valid pulse sequence is detected the 75 s timer starts again. After expiry of the 75 s timer the MLT maintenance controller goes back to normal operation.

Table 29 ANSI Maintenance Controller States

Number of counted pulses	ANSI maintenance controller state	U-transceiver State Machine
$<=5$	ignored	no impact
6	Quiet Mode	transition to state 'Reset' start timer 75s
7	ignored	no impact
8	Insertion Loss Measurement	transition to state 'Transparent' start timer 75s
9	ignored	no impact
10	normal operation	transition to state 'Reset'
$>=11$	ignored	no impact

Figure 49 shows examples for pulse streams with inverse polarity selecting Quiet Mode.

Figure 49 Pulse Streams Selecting Quiet Mode

2.4.12 U-Transceiver Interrupt Structure

The U-Interrupt Status register (ISTAU) contains the interrupt sources of the UTransceiver (Figure 50). Each source can be masked by setting the corresponding bit of the U-Interrupt Mask register (MASKU) to '1'. Such masked interrupt status bits are not indicated when ISTAU is read and do not generate an interrupt request.
The ISTAU register is cleared on read access. The interrupt sources of the ISTAU register (UCIR, EOCR, M4R, M56R) need not be evaluated.
When at time t1 an interrupt source generates an interrupt, all further interrupts are collected. Reading the ISTAU register clears all interrupts set before t1, even if masked. All interrupts, which are flagged after t1 remain active. After the ISTAU read access, the next unmasked interrupt will generate the next interrupt at time t2. After t2 it is possible to reprogram the MASKU register, so that all interrupts, which arrived between t1 and t2 are accessible.

Figure 50 Interrupt Structure U-Transceiver

2.5 S-Transceiver

The S-Transceiver offers the NT and LT-S mode state machines described in the User's Manual V3.4 [10].
The S-transceiver lies in $1 \mathrm{IOM}^{\circledR}$-2 channel 1 (default) and is configured and controlled via the registers described in Chapter 4.7. The state machine is set to NT mode (default) but can be set to LT-S mode via register programming.
The TE mode (S-transceiver TE mode, U-transceiver disabled) is not supported.

2.5.1 Line Coding, Frame Structure

Line Coding

The following figure illustrates the line code. A binary ONE is represented by no line signal. Binary ZEROs are coded with alternating positive and negative pulses with two exceptions:
For the required frame structure a code violation is indicated by two consecutive pulses of the same polarity. These two pulses can be adjacent or separated by binary ONEs. In bus configurations a binary ZERO always overwrites a binary ONE.

Figure 51 S/T -Interface Line Code

Frame Structure

Each S/T frame consists of 48 bits at a nominal bit rate of 192 kbit/s. For user data ($\mathrm{B} 1+\mathrm{B} 2+\mathrm{D}$) the frame structure applies to a data rate of $144 \mathrm{kbit} / \mathrm{s}$ (see Figure 51).
In the direction TE \rightarrow NT the frame is transmitted with a two bit offset. For details on the framing rules please refer to ITU I. 430 section 6.3. The following figure illustrates the standard frame structure for both directions (NT \rightarrow TE and $\mathrm{TE} \rightarrow \mathrm{NT}$) with all framing and maintenance bits.

Figure 52 Frame Structure at Reference Points S and T (ITU I.430)

- F	Framing Bit	$\mathrm{F}=(\mathrm{Ob}) \rightarrow$ identifies new frame (always positive pulse, always code violation)
- L.	D.C. Balancing Bit	L . $=(0 \mathrm{~b}) \rightarrow$ number of binary ZEROs sent after the last L . bit was odd
- D	D-Channel Data Bit	Signaling data specified by user
- E	D-Channel Echo Bit	$\mathrm{E}=\mathrm{D} \rightarrow$ received E -bit is equal to transmitted D-bit
- F_{A}	Auxiliary Framing Bit	See section 6.3 in ITU I. 430
- N		$N=\overline{F_{A}}$
- B1	B1-Channel Data Bit	User data
- B2	B2-Channel Data Bit	User data
- A	Activation Bit	$\begin{aligned} & A=(0 b) \rightarrow \text { INFO } 2 \text { transmitted } \\ & A=(1 b) \rightarrow \text { INFO } 4 \text { transmitted } \end{aligned}$
-S	S-Channel Data Bit	S_{1} channel data (see note below)
- M	Multiframing Bit	$M=$ (1b) \rightarrow Start of new multi-frame

Note: The ITU I. 430 standard specifies S1-S5 for optional use.

2.5.2 S/Q Channels, Multiframing

According to ITU recommendation I. 430 a multi-frame provides extra layer-1 capacity in the TE-to-NT direction through the use of an extra channel between the TE and NT (Qchannel). The Q bits are defined to be the bits in the F_{A} bit position.
In the NT-to-TE direction the S-channel bits are used for information transmission.
The S- and Q-channels are accessed via $\mu \mathrm{C}$ by reading/writing the SQR or SQX bits in the S/Q channel registers (SQRR, SQXR).
Table 30 shows the S and Q bit positions within the multi-frame.

Table 30 S/Q-Bit Position Identification and Multi-Frame Structure

Frame Number	NT-to-TE F_{A} Bit Position	NT-to-TE M Bit	$\begin{aligned} & \text { NT-to-TE } \\ & \text { S Bit } \end{aligned}$	$\begin{aligned} & \text { TE-to-NT } \\ & \text { F }_{\mathrm{A}} \text { Bit Position } \end{aligned}$
1	ONE	ONE	S11	Q1
2	ZERO	ZERO	S21	ZERO
3	ZERO	ZERO	S31	ZERO
4	ZERO	ZERO	S41	ZERO
5	ZERO	ZERO	S51	ZERO
6	ONE	ZERO	S12	Q2
7	ZERO	ZERO	S22	ZERO
8	ZERO	ZERO	S32	ZERO
9	ZERO	ZERO	S42	ZERO
10	ZERO	ZERO	S52	ZERO
11	ONE	ZERO	S13	Q3
12	ZERO	ZERO	S23	ZERO
13	ZERO	ZERO	S33	ZERO
14	ZERO	ZERO	S43	ZERO
15	ZERO	ZERO	S53	ZERO
16	ONE	ZERO	S14	Q4
17	ZERO	ZERO	S24	ZERO
18	ZERO	ZERO	S34	ZERO
19	ZERO	ZERO	S44	ZERO
20	ZERO	ZERO	S54	ZERO
1	ONE	ONE	S11	Q1
2	ZERO	ZERO	S21	ZERO

The S-transceiver starts multiframing if SQXR1.MFEN is set.
After multi-frame synchronization has been established in the TE, the Q data will be inserted at the upstream (TE \rightarrow NT) F_{A} bit position by the TE in each 5th S / T frame, the S data will be inserted at the downstream (NT \rightarrow TE) S bit position in each 5th S/T frame (see Table 30). Access to S2-S5-channel is not supported.

Interrupt Handling for Multi-Framing

To trigger the microcontroller for a multi-frame access an interrupt can be generated once per multi-frame (SQW) or if the received Q-channel have changed (SQC).
In both cases the microcontroller has access to the multiframe within the duration of one multiframe (5 ms).
The start of a multiframe can not be synchronized to an external signal.

2.5.3 Data Transfer between IOM ${ }^{\circledR}$-2 and S_{0}

In the state G3 (Activated) or if the internal layer-1 statemachine is disabled and XINF of register S_CMD is programmed to '011' the B1, B2 and D bits are transferred transparently from the S / T to the $I O M^{\circledR}-2$ interface and vice versa. In all other states '1's are transmitted to the $1 O M^{\circledR}-2$ interface.
Note: In intelligent NT or intelligent LT-S mode the D-channel access can be blocked by the $I O M^{\circledR}-2$ D-channel handler.

2.5.4 Loopback 2

C/I commands ARL and AIL close the analog loop as close to the S-interface as possible. ETSI refers to this loop under 'loopback 2'. ETSI requires, that B1, B2 and D channels have the same propagation delay when being looped back.
The D-channel Echo bit is set to bin. 0 during an analog loopback (i.e. loopback 2). The loop is transparent.
Note: After C/l-code AIL has been recognized by the S-transceiver, zeros are looped back in the B and D-channels (DU) for four frames.

2.5.5 Control of S-Transceiver / State Machine

The S-transceiver activation/ deactivation can be controlled by an internal statemachine via the $I O M{ }^{\circledR}-2 \mathrm{C} / \mathrm{l}$-channel or by software via the $\mu \mathrm{C}$ interface directly. In the default state the internal layer-1 statemachine of the S-transceiver is used. By setting the L1SW bit in the S_CONF0 register the internal statemachine can be disabled and the layer-1 transmit commands, which are normally generated by the internal statemachine can be written directly into the S_CMD register or the received status read out from the S_STA register, respectively. The S-transceiver layer-1 control flow is shown in Figure 53.

Functional Description

Figure 53 S-Transceiver Control
The state diagram notation is given in Figure 54.
The information contained in the state diagrams are:

- state name
- Signal received from the line interface (INFO)
- Signal transmitted to the line interface (INFO)
- C/I code received (commands)
- C/I code transmitted (indications)
- transition criteria

The transition criteria are grouped into:

- C/I commands
- Signals received from the line interface (INFOs)
- Reset

macro_17.vsd

Figure 54 State Diagram Notation

As can be seen from the transition criteria, combinations of multiple conditions are possible as well. A "*" stands for a logical AND combination. And a " + " indicates a logical OR combination.

Test Signals

- 2 kHz Single Pulses (TM1)

One pulse with a width of one bit period per frame with alternating polarity.

- 96 kHz Continuous Pulses (TM2)

Continuous pulses with a pulse width of one bit period.
Note: The test signals TM1 and TM2 are invoked via C/l codes 'TM1' and 'TM2' according to Chapter 2.5.5.1.

External Layer-1 Statemachine

Instead of using the integrated layer-1 statemachine it is also possible to implement the layer-1 statemachine completely in software.
The internal layer-1 statemachine can be disabled by setting the L1SW bit in the S_CONF0 register to '1'.
The transmitter is completely under control of the microcontroller via register S_CMD.
The status of the receiver is stored in register S_STA and has to be evaluated by the microcontroller. This register is updated continuously. If not masked a RIC interrupt is generated by any change of the register contents. The interrupt is cleared after a read access to this register.

Reset States

After an active signal on the reset pin $\overline{\text { RST }}$ the S-transceiver state machine is in the reset state.

Functional Description

C/I Codes in Reset State

In the reset state the C / I code 0000 (TIM) is issued. This state is entered either after a hardware reset ($\overline{\mathrm{RST}}$) or with the C / I code RES.

C/I Codes in Deactivated State

If the S-transceiver is in state 'Deactivated' and receives $\overline{\mathrm{i}}$, the C / l code 0000 (TIM) is issued until expiration of the 8 ms timer. Otherwise, the C / I code 1111 (DI) is issued.

2.5.5.1 C/l Codes

The table below presents all defined C / IO codes. A command needs to be applied continuously until the desired action has been initiated. Indications are strictly state orientated. Refer to the state diagrams in the following sections for commands and indications applicable in various states.

Code				LT-S		NT	
				Cmd	Ind	Cmd	Ind
0	0	0	0	DR	TIM	DR	TIM
0	0	0	1	RES	-	RES	-
0	0	1	0	TM1	-	TM1	-
0	0	1	1	TM2	-	TM2	-
0	1	0	0	-	RSY	RSY	RSY
0	1	0	1	-	-	-	-
0	1	1	0	-	-	-	-
0	1	1	1	-	-	-	-
1	0	0	0	AR	AR	AR	AR
1	0	0	1	-	-	-	-
1	0	1	0	ARL	-	ARL	-
1	0	1	1	-	CVR	-	CVR
1	1	0	0	-	AI	AI	AI
1	1	0	1	-	-	-	-
1	1	1	0	-	-	AIL	-
1	1	1	1	DC	DI	DC	DI

PEF 82912/82913

Receive Infos on S/T

$10 \quad$ INFO 0 detected
$\overline{10} \quad$ Level detected (signal different to IO)
I3 INFO 3 detected
$\overline{13} \quad$ Any INFO other than INFO 3

Transmit Infos on S/T

$10 \quad$ INFO 0
$12 \quad$ INFO 2
$14 \quad$ INFO 4
It \quad Send Single Pulses (TM1).
Send Continuous Pulses (TM2).

2.5.5.2 State Machine NT Mode

Figure 55 State Machine NT Mode
Note: State 'Test Mode' can be entered from any state except from state 'Test Mode' itself, i.e. C/I-code 'TMi' must not be followed by C/I-code 'TMj' directly.

Functional Description

G1 Deactivated

The S-transceiver is not transmitting. There is no signal detected on the S / T-interface, and no activation command is received in the C / I channel. Activation is possible from the S / T interface and from the $I \mathrm{OM}^{\circledR}-2$ interface.

G1 $\overline{\mathbf{1 0}}$ Detected

An $\overline{\mathrm{NFO} 0}$ is detected on the S/T-interface, translated to an "Activation Request" indication in the C / I channel. The S -transceiver is waiting for an AR command, which normally indicates that the transmission line upstream is synchronized.

G2 Pending Activation

As a result of the ARD command, an INFO 2 is sent on the S/T-interface. INFO 3 is not yet received. In case of ARL command, loop 2 is closed.

G2 wait for AID

INFO 3 was received, INFO 2 continues to be transmitted while the S-transceiver waits for a "switch-through" command AID from the device upstream.

G3 Activated

INFO 4 is sent on the S/T-interface as a result of the "switch through" command AID: the B and D-channels are transparent. On the command AIL, loop 2 is closed.

G2 Lost Framing S/T

This state is reached when the transceiver has lost synchronism in the state G3 activated.

G3 Lost Framing U

On receiving an RSY command which usually indicates that synchronization has been lost on the transmission line, the S-transceiver transmits INFO 2.

G4 Pending Deactivation

This state is triggered by a deactivation request DR, and is an unstable state. Indication DI (state "G4 wait for DR") is issued by the transceiver when:
either INFOO is received for a duration of 16 ms
or an internal timer of 32 ms expires.

Functional Description

G4 wait for $\overline{\mathrm{DR}}$

Final state after a deactivation request. The S-transceiver remains in this state until DC is issued.

Unconditional States

Test Mode TM1

Send Single Pulses

Test Mode TM2

Send Continuous Pulses

C/I Commands

Command	Abbr.	Code	Remark
Deactivation Request	DR	0000	Deactivation Request. Initiates a complete deactivation by transmitting INFO 0.
Reset	RES	0001	Reset of state machine. Transmission of Info0. No reaction to incoming infos. RES is an unconditional command.
Send Single Pulses Send Continuous Pulses Receiver not Synchronous TM1	TM2	0010	Send Single Pulses.
Activation Request	AR	1000	Send Continuous Pulses. Activation Request. This command is used to activation. start an
Activation Request Loop	ARL	1010	Activation request loop. The transceiver is requested to operate an analog loop-back close to the S/T-interface.
Activation Indication	AI	1100	Activation Indication. Synchronous receiver, i.e. activation completed.

Functional Description

Command	Abbr.	Code	Remark
Activation Indication Loop	AIL	1110	Activation Indication Loop
Deactivation Confirmation	DC	1111	Deactivation Confirmation. Transfers the transceiver into a deactivated state in which it can be activated from a terminal (detection of $\overline{\text { INFO 0 enabled). }}$

Indication	Abbr.	Code	Remark
Timing	TIM	0000	Interim indication during deactivation procedure.
Receiver not Synchronous	RSY	0100	Receiver is not synchronous.
Activation Request	AR	1000	INFO 0 received from terminal. Activation proceeds.
Illegal Code Ciolation	CVR	1011	Illegal code violation received. This function has to be enabled in S_CONF0.EN_ICV.
Activation Indication	AI	1100	Synchronous receiver, i.e. activation completed.
Deactivation Indication	DI	1111	Timer (32 ms) expired or INFO 0 received for a duration of 16 ms after deactivation request.

2.5.5.3 State Machine LT-S Mode

1): $A R D=A R$ or $A R L$

Figure 56 State Machine LT-S Mode
Note: State 'Test Mode' can be entered from any state except from state 'Test Mode' itself, i.e. C/I-code 'TMi' must not be followed by C/I-code 'TMj 'directly.

G1 deactivated

The S-transceiver is not transmitting. There is no signal detected on the S/T-interface, and no activation command is received in the C/I channel. Activation is possible from the S / T interface and from the $I \mathrm{IM}^{\circledR}-2$ interface.

G2 pending activation

As a result of an INFO 0 detected on the S/T line or an ARD command, the S-transceiver begins transmitting INFO 2 and waits for reception of INFO 3. The timer to supervise reception of INFO 3 is to be implemented in software. In case of an ARL command, loop 2 is closed.

G3 activated

Normal state where INFO 4 is transmitted to the S/T-interface. The transceiver remains in this state as long as neither a deactivation nor a test mode is requested, nor the receiver looses synchronism.
When receiver synchronism is lost, INFO 2 is sent automatically. After reception of INFO 3, the transmitter keeps on sending INFO 4.

G2 lost framing

This state is reached when the S-transceiver has lost synchronism in the state G3 activated.

G4 pending deactivation

This state is triggered by a deactivation request DR. It is an unstable state: indication DI (state "G4 wait for DR.") is issued by the S-transceiver when:
either INFO0 is received for a duration of 16 ms ,
or an internal timer of 32 ms expires.

G4 wait for $\overline{\mathrm{DR}}$

Final state after a deactivation request. The transceiver remains in this state until DC is issued.

Unconditional States

Test mode - TM1

Single alternating pulses are sent on the S/T-interface.

PEF 82912/82913

Functional Description

Test mode - TM2

Continuous alternating pulses are sent on the S/T-interface.

Command	Abbr.	Code	Remark
Deactivation Request	DR	0000	DR - Deactivation Request. Initiates a complete deactivation by transmitting INFO 0.
Reset	RES	0001	Reset of state machine. Transmission of Info0. No reaction to incoming infos. RES is an unconditional command.
Send Single Pulses	TM1	0010	Send Single Pulses.
Send Continuous Pulses	TM2	0011	Send Continuous Pulses. Activation Request SR Activation Request Loop ARL 1000Activation Request. This command is used to start an activation.
Deactivation Confirmation	DC	1111	Activation request loop. The transceiver is requested to operate an analog loop-back close to the S/T-interface.
Deactivation Confirmation. Transfers the transceiver into a deactivated state in which it can be activated from a terminal (detection of INFO 0 enabled).			

Indication	Abbr.	Code	Remark
Timing	TIM	0000	Interim indication during activation procedure in G1.
Receiver not Synchronous	RSY	0100	Receiver is not synchronous
Activation Request	AR	1000	$\overline{\text { NFO }} \mathbf{l}$ proceeds.
Illegal Code Ciolation	CVR	1011	lllegal code violation received. This function has to be enabled in S_CONF0.EN_ICV.
Activation Indication	AI	1100	Synchronous receiver, i.e. activation completed.
Deactivation Indication	DI	1111	Timer (32 ms) expired or INFO 0 received for a duration of 16 ms after deactivation request

Functional Description

2.5.6 S-Transceiver Enable / Disable

The layer-1 part of the S-transceiver can be enabled/disabled with the two bits S_CONF0.DIS_TR and S_CONF2.DIS_TX.
If DIS_TX='1' the transmit buffers are disabled. The receiver will monitor for incoming data in this configuration. By default the transmitter is disabled (DIS_TX = '1'). If the transceiver is disabled (DIS_TR = '1', DIS_TX = don't care) all layer-1 functions are disabled including the level detection circuit of the receiver. In this case the power consumption of the S-transceiver is reduced to a minimum.

2.5.7 Interrupt Structure S-Transceiver

Figure 57 Interrupt Structure S-Transceiver

Operational Description

3 Operational Description

3.1 Layer 1 Activation/Deactivation

3.1.1 Complete Activation Initiated by Exchange

Figure 58 depicts the procedure if activation has been initiated by the exchange side (LT).

Figure 58 Complete Activation Initiated by Exchange

Operational Description

3.1.2 Complete Activation Initiated by TE

Figure 59 depicts the procedure if activation has been initiated by the terminal side (TE).

Figure 59 Complete Activation Initiated by TE

Operational Description

3.1.3 Complete Activation Initiated by NT

Figure 60 depicts the procedure if activation has been initiated by the Q-SMINT ${ }^{\circledR}$ / itself (e.g. after hook-off of a local analog phone).

Figure 60 Complete Activation Initiated by Q-SMINT ${ }^{\circledR}$ I

PEF 82912/82913

Operational Description

3.1.4 Complete Deactivation

Figure 61 depicts the procedure if deactivation has been initiated. Deactivation of layer 1 is always initiated by the exchange.

Figure 61 Complete Deactivation Initiated by Exchange

PEF 82912/82913

Operational Description

3.1.5 Loop 2

Figure 62 depicts the procedure if loop 2 is closed and opened.

Figure 62 Loop 2

Operational Description

3.2 Layer 1 Loopbacks

Test loopbacks are specified by the national PTTs in order to facilitate the location of defect systems. Four different loopbacks are defined. The position of each loopback is illustrated in Figure 63.

Figure 63 Test Loopbacks
Loopbacks \#1, \#1A and \#2 are controlled by the exchange. Loopback \#3 is controlled locally on the remote side. All four loopback types are transparent. This means all bits that are looped back will also be passed onwards in the normal manner. Only the data looped back internally is processed; signals on the receive pins are ignored. The propagation delay of actually looped B and D channels data must be identical in all loopbacks.
Besides the remote controlled loopback stimulation via the EOC channel, the QSMINT ${ }^{\circledR}$ I features also direct loopback control via its register set.

3.2.1 Analog Loopback U-Transceiver (No. 3)

Loopback \#3 is closed by the U-transceiver as near to the U-interface as possible, i.e. the loop is closed in the analog part by short circuiting the output to the input. The signal on the line is ignored in this state. For this reason it is also called analog loopback. All analog signals will still be passed on to the U-interface.
Before an analog loopback is closed by the appropriate C/l-command ARL (activation request loopback 3), the U-transceiver shall have been reset.

Operational Description

In order to open an analog loopback correctly, force the U-transceiver into the RESET state. This ensures that the echo coefficients and equalizer coefficients will converge correctly when activating anew.

3.2.2 Analog Loop-Back S-Transceiver

The Q-SMINT ${ }^{\circledR}$ I provides test and diagnostic functions for the $\mathrm{S} /$ T interface:
The internal local loop (internal Loop A) is activated by a C/l command ARL or by setting the bit LP_A (Loop Analog) in the S_CMD register if the layer-1 statemachine is disabled.
The transmit data of the transmitter is looped back internally to the receiver. The data of the IOM ${ }^{\circledR}-2$ input B- and D-channels are looped back to the output B- and D-channels. The S/T interface level detector is enabled, i.e. if a level is detected this will be reported by the Resynchronization Indication (RSY) but the loop function is not affected.
Depending on the DIS_TX bit in the S_CONF2 register the internal local loop can be transparent or non transparent to the S / T line.
The external local loop (external Loop A) is activated in the same way as the internal local loop described above. Additionally the EXLP bit in the S_CONFO register has to be programmed and the loop has to be closed externally as described in Figure 64.
The S/T interface level detector is disabled.

Figure 64 External Loop at the S / T-Interface

PEF 82912/82913

Operational Description

3.2.3 Loopback No. 2

For loopback \#2 several alternatives exist. Both the type of loopback and the location may vary. The following loopback types belong to the loopback-\#2 category:

- complete loopback (B1,B2,D), in the U-transceiver
- complete loopback (B1,B2,D), in a downstream device
- B1-channel loopback, always performed in the U-transceiver
- B2-channel loopback, always performed in the U-transceiver

All loop variations performed by the U-transceiver are closed as near to the internal $1 O M^{\circledR}-2$ interface as possible.
Normally loopback \#2 is controlled by the exchange. The maintenance channel is used for this purpose. All loopback functions are latched. This allows channel B1 and channel B2 to be looped back simultaneously.

3.2.3.1 Complete Loopback

When receiving the request for a complete loopback, the U transceiver passes it on to the downstream device, e.g. the S-bus transceiver. This is achieved by issuing the C/lcode AIL in the "Transparent" state or C/I = ARL in states different than "Transparent" (note: this holds true only for the EOC automode). The U transceiver may be commanded to close the complete loopback itself.
Figure 65 illustrates the two options.

Figure 65 Complete Loopback Options in NT-Mode

The complete loopback is either opened under control of the exchange via the maintenance channel or locally controlled via the $\mu \mathrm{C}$. No reset is required for loopback \#2. The line stays active and is ready for data transmission.

Operational Description

3.2.3.2 Loopback No.2-Single Channel Loopbacks

Single channel loopbacks are always performed directly in the U-Transceiver. No difference between the B1-channel and the B2-channel loopback control procedure exists.

3.2.4 Local Loopbacks Featured By the LOOP Register

Besides the standardized remote loopbacks the U-transceiver features additional local loopbacks for enhanced test and debugging facilities. The local loopbacks that are featured by register LOOP are shown in Figure 66. They are closed in the U-transceiver itself and can be activated regardless of the current operational status.
By the LOOP register it can be configured whether the loopback is closed only for the B1 and/or B2 or for 2B+D channels and whether the loopback is closed towards the internal $1 O M^{\circledR}-2$ interface or towards the U-Interface.

By default the loopbacks are set to transparent mode. In transparent mode the data is both passed on and looped back. In non-transparent mode the data is not forwarded but substituted by 1 s (idle code).
Besides the loopbacks in the system interface an additional digital loopback (DLB), the Framer/ Deframer loopback, is featured. It allows to test most digital functions of the Utransceiver besides the signal processing blocks.

Operational Description

Figure 66 Loopbacks Featured by Register LOOP

Operational Description

3.3 External Circuitry

3.3.1 Power Supply Blocking Recommendation

The following blocking circuitry is suggested.

Figure 67 Power Supply Blocking

3.3.2 U-Transceiver

The Q-SMINT ${ }^{\circledR}$ I is connected to the twisted pair via a transformer. Figure 68 shows the recommended external circuitry. The recommended protection circuitry is not displayed.
Note: The integrated hybrid as specified for Version 1.1 is no more available in Version 1.3 and an external hybrid is required.

Operational Description

Figure 68 External Circuitry U-Transceiver

U-Transformer Parameters

The following Table 31 lists parameters of typical U-transformers:
Table 31 U-Transformer Parameters

U-Transformer Parameters	Symbol	Value	Unit
U-Transformer ratio; Device side : Line side	n	$1: 2$	
Main inductance of windings on the line side	L_{H}	14.5	mH
Leakage inductance of windings on the line side	L_{S}	<75	$\mu \mathrm{H}$
Coupling capacitance between the windings on the device side and the windings on the line side	C_{K}	100	pF
DC resistance of the windings on device side	R_{B}	$2.5^{1)}$	Ω
DC resistance of the windings on line side	R_{L}	$5^{1)}$	Ω

${ }^{1)} R_{B} / R_{L}$ according to equation[2]

PEF 82912/82913

Operational Description

Resistors of the External Hybrid R3, R4 and $\mathbf{R}_{\mathbf{T}}$

$R 3=1.3 \mathrm{k} \Omega$
$\mathrm{R} 4=1.0 \mathrm{k} \Omega$
$R_{T}=9.5 \Omega$

Resistors on the Line Side $\mathbf{R}_{\text {PTC }}$ / Chip Side $\mathbf{R}_{\mathbf{T}}$

Optional use of up to $2 \times 20 \Omega$ resistors ($2 \times R_{\text {PTC }}$) on the line side of the transformer requires compensation resistors $\mathrm{R}_{\text {COMP }}$ depending on $\mathrm{R}_{\text {PTC }}$:

$$
\begin{align*}
& 2 R_{\text {PTC }}+8 R_{\text {COMP }}=40 \Omega \tag{1}\\
& 2 R_{\text {PTC }}+4\left(2 R_{\text {COMP }}+2 R_{T}+R_{\text {OUT }}+R_{B}\right)+R_{L}=135 \Omega \tag{2}
\end{align*}
$$

R_{B}, R_{L} : see Table 31
$R_{\text {OUT }}$: see Table 38

27 nF Capacitor C

To achieve optimum performance the 27 nF capacitor should be MKT. A Ceramic capacitor is not recommended.

Tolerances

- Rs: $\pm 1 \%$
- $\mathrm{C}=27 \mathrm{nF}: \pm 10-20 \%$
- $\mathrm{L}=14.5 \mathrm{mH}: \pm 10 \%$

3.3.3 S-Transceiver

In order to comply to the physical requirements of ITU recommendation 1.430 and considering the national requirements concerning overvoltage protection and electromagnetic compatibility (EMC), the S-transceiver needs some additional circuitry.

S-Transformer Parameters

The following Table 32 lists parameters of a typical S-transformer:
Table 32 S-Transformer Parameters

Transformer Parameters	Symbol	Value	Unit
Transformer ratio; Device side $:$ Line side	n	$2: 1$	
Main inductance of windings on the line side	L_{H}	typ. 30	mH
Leakage inductance of windings on the line side	L_{S}	typ. <3	$\mu \mathrm{H}$

PEF 82912/82913

Operational Description

Transformer Parameters	Symbol	Value	Unit
Coupling capacitance between the windings on the device side and the windings on the line side	C_{K}	typ. <100	pF
DC resistance of the windings on device side	R_{B}	typ. 2.4	Ω
DC resistance of the windings on line side	R_{L}	typ. 1.4	Ω

Transmitter

The transmitter requires external resistors $\mathrm{R}_{\text {stx }}=47 \Omega$ in order to adjust the output voltage to the pulse mask (nominal 750 mV according to ITU I.430, to be tested with the test mode "TM1") on the one hand and in order to meet the output impedance of minimum 20Ω on the other hand (to be tested with the testmode 'Continuous Pulses') on the other hand.
Note: The resistance of the S-transformer must be taken into account when dimensioning the external resistors $R_{s t x}$. If the transmit path contains additional components (e.g. a choke), then the resistance of these additional components must be taken into account, too.

Figure 69 External Circuitry S-Interface Transmitter

Operational Description

Receiver

The receiver of the S -transceiver is symmetrical. $10 \mathrm{k} \Omega$ overall resistance are recommended in each receive path. It is preferable to split the resistance into two resistors for each line. This allows to place a high resistance between the transformer and the diode protection circuit (required to pass 96 kHz input impedance test of ITU I. 430 [8] and ETS 300012-1). The remaining resistance ($1.8 \mathrm{k} \Omega$) protects the Stransceiver itself from input current peaks.

Figure 70 External Circuitry S-Interface Receiver

3.3.4 Oscillator Circuitry

Figure 71 illustrates the recommended oscillator circuit.
\square
Figure $71 \quad$ Crystal Oscillator

Operational Description

Table 33 Crystal Parameters

Parameter	Symbol	Limit Values	Unit
Frequency	f	15.36	MHz
Frequency calibration tolerance		$+/-60$	ppm
Load capacitance	C_{L}	20	pF
Max. resonance resistance	R 1	20	Ω
Max. shunt capacitance	C_{0}	7	pF
Oscillator mode		fundamental	

External Components and Parasitics

The load capacitance C_{L} is computed from the external capacitances $C_{L D}$, the parasitic capacitances $\mathrm{C}_{\text {Par }}$ (pin and PCB capacitances to ground and V_{DD}) and the stray capacitance C_{IO} between XIN and XOUT:

$$
\mathrm{C}_{\mathrm{L}}=\frac{\left(\mathrm{C}_{\mathrm{LD}}+\mathrm{C}_{\mathrm{Par}}\right) \times\left(\mathrm{C}_{\mathrm{LD}}+\mathrm{C}_{\mathrm{Par}}\right)}{\left(\mathrm{C}_{\mathrm{LD}}+\mathrm{C}_{\mathrm{Par}}\right)+\left(\mathrm{C}_{\mathrm{LD}}+\mathrm{C}_{\mathrm{Par}}\right)}+\mathrm{C}_{\mathrm{IO}}
$$

For a specific crystal the total load capacitance is predefined, so the equation must be solved for the external capacitances $C_{L D}$, which is usually the only variable to be determined by the circuit designer. Typical values for the capacitances C_{LD} connected to the crystal are 22-33 pF.

3.3.5 General

- Iow power LEDs
- MLT input supports
- APC13112
- AT\&T LH1465AB
- discrete as proposed by Infineon

4 Register Description

4.1 Address Space

Figure 72 Address Space

Register Description

4.2 Interrupts

Special events in the Q-SMINT ${ }^{\circledR}$ I are indicated by means of a single interrupt output, which requests the host to read status information from the Q-SMINT ${ }^{\circledR}$ I or transfer data from/to the $\mathrm{Q}-\mathrm{SMINT}^{\circledR}{ }^{(1}$.
Since only one $\overline{\mathrm{NT}}$ request output is provided, the cause of an interrupt must be determined by the host reading the interrupt status registers of the Q-SMINT ${ }^{\circledR}$.
The structure of the interrupt status registers is shown in Figure 73.

Figure 73 Q-SMINT ${ }^{\circledR}$ I Interrupt Status Registers

Register Description

After the Q-SMINT ${ }^{\circledR}$ I has requested an interrupt by setting its $\overline{\mathrm{INT}}$ pin to low, the host must read first the Q-SMINT ${ }^{\circledR}$ I interrupt status register (ISTA) in the associated interrupt service routine. The $\overline{\mathrm{INT}}$ pin of the Q-SMINT ${ }^{\circledR}$ I remains active until all interrupt sources are cleared. Therefore, it is possible that the INT pin is still active when the interrupt service routine is finished.
Each interrupt indication of the interrupt status registers can selectively be masked by setting the respective bit in the MASK register.
For some interrupt controllers or hosts it might be necessary to generate a new edge on the interrupt line to recognize pending interrupts. This can be done by masking all interrupts at the end of the interrupt service routine (writing FF_{H} into the MASK register) and writing back the old mask to the MASK register.

PEF 82912/82913

Register Description

4.3 Register Summary

$r(0)=$ reserved, implemented as zero.

CI Handler

Name	7	6	5	4	3	2	1	0	ADDR	R/W	RES
MODEH	reserved								$\begin{aligned} & 00_{\mathrm{H}} \\ & -21_{\mathrm{H}} \end{aligned}$		
	1	1	0	r(0)	0	DIM2	DIM1	DIMO	$22_{\text {H }}$	R/W	CO_{H}
	reserved								$\begin{aligned} & 23_{\mathrm{H}^{-}} \\ & 2 \mathrm{D}_{\mathrm{H}} \end{aligned}$		
CIR0	CODRO				CICO	CIC1	S/G	BAS	$2 \mathrm{E}_{\mathrm{H}}$	R	$\mathrm{F}_{3} \mathrm{H}$
CIXO	CODX0				TBA2	TBA1	TBAO	BAC	$2 \mathrm{E}_{\mathrm{H}}$	W	FE_{H}
CIR1	CODR1						CICW	Cl1E	$2 \mathrm{~F}_{\mathrm{H}}$	R	FE_{H}
CIX1	CODX1						CICW	CI1E	$2 \mathrm{~F}_{\mathrm{H}}$	W	FE_{H}

S-Transceiver

Name	7	6	5	4	3	2	1	0	ADDR	R/W	RES
$\begin{aligned} & \mathrm{S} \\ & \mathrm{CONFO} \end{aligned}$	$\begin{gathered} \text { DIS_ } \\ \text { TR } \end{gathered}$	BUS	$\begin{aligned} & \mathrm{EN} \\ & \mathrm{ICV} \end{aligned}$	0	L1SW	0	EXLP	0	30_{H}	R/W	40_{H}
	reserved								31_{H}		
$\begin{aligned} & \mathrm{S} \\ & \mathrm{CONF} 2 \end{aligned}$	$\begin{gathered} \text { DIS_ } \\ \text { TX } \end{gathered}$	0	0	0	0	0	0	0	32^{H}	R/W	80_{H}
S_STA	RINF		0	ICV	0	FSYN	0	LD	33_{H}	R	00_{H}
S_CMD	XINF			DPRIO	1	PD	LP_A	0	34_{H}	R/W	08_{H}
SQRR	MSYN	MFEN	0	0	SQR1	SQR2	SQR3	SQR4	35_{H}	R	00_{H}
SQXR	0	MFEN	0	0	SQX1	SQX2	SQX3	SQX4	35_{H}	W	00_{H}
	reserved								$36_{\mathrm{H}}{ }^{-37}{ }_{\mathrm{H}}$		
ISTAS	0	x	x	x	LD	RIC	SQC	SQW	38_{H}	R	00_{H}
MASKS	1	1	1	1	LD	RIC	SQC	SQW	39_{H}	R/W	FF_{H}
$\begin{aligned} & \mathrm{S} \\ & \mathrm{MODE} \end{aligned}$	0	0	0	0	$\begin{aligned} & \mathrm{DCH} \\ & \mathrm{INH}_{-} \end{aligned}$	MODE2-0			$3 A_{H}$	R/W	02 ${ }^{\text {H }}$
	reserved								$3 B_{H}$		

Register Description

Interrupt, General Configuration

Name	7	6	5	4	3	2	1	0	ADDR	R/W	RES
ISTA	U	ST	CIC	0	WOV	S	MOS	0	$3 \mathrm{C}_{\mathrm{H}}$	R	00_{H}
MASK	U	ST	CIC	1	WOV	S	MOS	1	$3 \mathrm{C}_{\mathrm{H}}$	W	FF_{H}
MODE1	MCLK		CDS	WTC1	WTC2	CFS	RSS2	RSS1	$3 \mathrm{D}_{\mathrm{H}}$	R/W	$0^{4} \mathrm{H}$
MODE2	LED2	LED1	LEDC	0	0	0	AMOD	PPSDX	$3 \mathrm{E}_{\mathrm{H}}$	R/W	00_{H}
ID	0	0	DESIGN						$3 \mathrm{~F}_{\mathrm{H}}$	R	01_{H}
SRES	0	0	$\begin{aligned} & \text { RES } \\ & \mathrm{CI} / \mathrm{TIC} \end{aligned}$	0	0	0	$\begin{gathered} \text { RES_ } \\ \mathrm{S} \end{gathered}$	$\begin{gathered} \text { RES } \\ \mathrm{U} \end{gathered}$	$3 \mathrm{~F}_{\mathrm{H}}$	W	00_{H}

PEF 82912/82913

IOM Handler (Timeslot, Data Port Selection, CDA Data and CDA Control Register)

Name	7	6	5	4	3	2	1	0	ADDR	R/W	RES
CDA10	Controller Data Access Register								$40_{\text {H }}$	R/W	FF_{H}
CDA11	Controller Data Access Register								41_{H}	R/W	FF_{H}
CDA20	Controller Data Access Register								42_{H}	R/W	FF_{H}
CDA21	Controller Data Access Register								43_{H}	R/W	FF_{H}
$\begin{aligned} & \text { CDA } \\ & \text { TSDP10 } \end{aligned}$	DPS	0	0	0	TSS				44_{4}	R/W	00_{H}
CDA TSDP11	DPS	0	0	0	TSS				$45_{\text {H }}$	R/W	01_{H}
$\begin{aligned} & \text { CDA- } \\ & \text { TSDP20 } \end{aligned}$	DPS	0	0	0	TSS				46_{H}	R/W	80_{H}
CDA TSDP21	DPS	0	0	0	TSS				$4^{4} \mathrm{H}$	R/W	81_{H}
	reserved								$\begin{aligned} & 48_{\mathrm{H}^{-}} \\ & 4 \mathrm{~B}_{\mathrm{H}} \end{aligned}$		
$S_{-} \bar{S}^{2} P_{-}$ B1	DPS	0	0	0	TSS				$4 \mathrm{C}_{\mathrm{H}}$	R/W	84_{H}
$\begin{aligned} & \mathrm{S}_{-} \\ & \mathrm{TSDP} \\ & \mathrm{~B} 2 \end{aligned}$	DPS	0	0	0	TSS				$4 \mathrm{D}_{\mathrm{H}}$	R/W	85_{H}
$\begin{aligned} & \text { CDA1_ } \\ & \text { CR } \end{aligned}$	0	0	$\begin{aligned} & \mathrm{EN} \\ & \mathrm{TBM} \end{aligned}$	EN_11	EN_I0	EN_O1	EN_O0	SWAP	$4 \mathrm{E}_{\mathrm{H}}$	R/W	00_{H}
$\begin{aligned} & \text { CDA2_ } \\ & \text { CR } \end{aligned}$	0	0	$\begin{aligned} & \mathrm{EN} \\ & \mathrm{TBM} \end{aligned}$	EN_I1	EN_I0	EN_O1	EN_OO	SWAP	$4 \mathrm{~F}_{\mathrm{H}}$	R/W	00_{H}

Register Description

IOM Handler (Control Registers, Synchronous Transfer Interrupt Control)

Name	7	6	5	4	3	2	1	0	ADDR	R/W	RES
	reserved								50_{H}		
S_CR	1	CI_CS	$\begin{gathered} \mathrm{EN} \\ \mathrm{D} \end{gathered}$	$\begin{aligned} & \mathrm{EN} \\ & \mathrm{~B} 2 \mathrm{R} \end{aligned}$	$\begin{aligned} & \mathrm{EN} \\ & \mathrm{~B} 1 \overline{\mathrm{R}} \end{aligned}$	$\begin{aligned} & \mathrm{EN} \\ & \mathrm{~B} 2 \overline{\mathrm{X}} \end{aligned}$	$\begin{aligned} & \mathrm{EN} \\ & \mathrm{~B} 1 \mathrm{X} \end{aligned}$	D_CS	51_{H}	R/W	FF_{H}
CI_CR	$\begin{gathered} \text { DPS } \\ \mathrm{Cl}_{1} \end{gathered}$	$\begin{aligned} & \mathrm{EN} \\ & \mathrm{Cl} 11 \end{aligned}$	0	0	0	1	0		52,	R/W	04 ${ }_{H}$
$\begin{aligned} & \text { MON_ } \\ & \text { CR } \end{aligned}$	DPS	$\begin{aligned} & \mathrm{EN} \\ & \mathrm{MON} \end{aligned}$	0	0	0	0	MCS		53_{H}	R/W	40_{H}
$\begin{aligned} & \text { SDS1_ } \\ & \text { CR } \end{aligned}$	$\begin{aligned} & \text { ENS } \\ & \text { TSS } \end{aligned}$	$\begin{aligned} & \text { ENS_ } \\ & \text { TSS+1 } \end{aligned}$	$\begin{aligned} & \text { ENS_ } \\ & \text { TSS+3 } \end{aligned}$	0	TSS				54_{H}	R/W	$0^{0} \mathrm{H}$
$\begin{aligned} & \text { SDS2_ } \\ & \text { CR } \end{aligned}$	$\begin{aligned} & \text { ENS } \\ & \text { TSS } \end{aligned}$	$\begin{aligned} & \text { ENS_ } \\ & \text { TSS+1 } \end{aligned}$	$\begin{aligned} & \text { ENS_- } \\ & \text { TSS+3 } \end{aligned}$	0	TSS				$55_{\text {H }}$	R/W	00_{H}
IOM_CR	SPU	0	0	$\begin{gathered} \text { TIC_ } \\ \text { DIS } \end{gathered}$	$\begin{aligned} & \mathrm{EN}- \\ & \mathrm{BCL} \end{aligned}$	0	$\begin{gathered} \text { DIS_ } \\ \text { OD } \end{gathered}$	$\begin{aligned} & \text { DIS } \\ & \text { IOM } \end{aligned}$	56_{H}	R/W	08 ${ }_{\text {H }}$
MCDA	MCDA21		MCDA20		MCDA11		MCDA10		57_{H}	R	FF_{H}
STI	$\begin{gathered} \text { STOV } \\ 21 \end{gathered}$	$\begin{array}{\|c} \hline \text { STOV } \\ 20 \end{array}$	$\begin{gathered} \text { STOV } \\ 11 \end{gathered}$	$\begin{gathered} \text { STOV } \\ 10 \end{gathered}$	$\begin{aligned} & \text { STI } \\ & 21 \end{aligned}$	$\begin{aligned} & \text { STI } \\ & 20 \end{aligned}$	$\begin{gathered} \text { STI } \\ 11 \end{gathered}$	$\begin{gathered} \text { STI } \\ 10 \end{gathered}$	58_{H}	R	00_{H}
ASTI	0	0	0	0	$\begin{gathered} \text { ACK } \\ 21 \end{gathered}$	$\begin{gathered} \text { ACK } \\ 20 \end{gathered}$	ACK 11	$\begin{gathered} \text { ACK } \\ 10 \end{gathered}$	58_{H}	W	00_{H}
MSTI	$\begin{gathered} \text { STOV } \\ 21 \end{gathered}$	$\begin{array}{\|c} \hline \text { STOV } \\ 20 \end{array}$	$\begin{gathered} \text { STOV } \\ 11 \end{gathered}$	$\begin{gathered} \text { STOV } \\ 10 \end{gathered}$	$\begin{aligned} & \text { STI } \\ & 21 \end{aligned}$	$\begin{aligned} & \text { STI } \\ & 20 \end{aligned}$	$\begin{gathered} \text { STI } \\ 11 \end{gathered}$	$\begin{gathered} \text { STI } \\ 10 \end{gathered}$	59_{H}	R/W	FF_{H}
	reserved								$\begin{aligned} & 5 \mathrm{~A}_{\mathrm{H}^{-}} \\ & 5 \mathrm{~B}_{\mathrm{H}} \end{aligned}$		

MONITOR Handler

Name	7	6	5	4	3	2	1	0	ADDR	R/W	RES
MOR	MONITOR Receive Data								$5 \mathrm{C}_{\mathrm{H}}$	R	FF_{H}
MOX	MONITOR Transmit Data								$5 \mathrm{C}_{\mathrm{H}}$	W	FF_{H}
MOSR	MDR	MER	MDA	MAB	0	0	0	0	$5 \mathrm{D}_{\mathrm{H}}$	R	$0^{0} \mathrm{H}$
MOCR	MRE	MRC	MIE	MXC	0	0	0	0	$5 \mathrm{E}_{\mathrm{H}}$	R/W	$0^{\text {H }}$
MSTA	0	0	0	0	0	MAC	0	TOUT	$5 \mathrm{~F}_{\mathrm{H}}$	R	00_{H}
MCONF	0	0	0	0	0	0	0	TOUT	$5 \mathrm{~F}_{\mathrm{H}}$	W	$0^{\text {H }}$

PEF 82912/82913

Register Description

Register Summary U-Transceiver

Name	7	6	5	4	3	2	1	0	ADDR	R/W	RES
OPMODE	0	UCI	FEBE	MLT	0	$\begin{aligned} & \mathrm{Cl}- \\ & \mathrm{SEL} \end{aligned}$	0	0	60_{H}	R*/W	14_{H}
MFILT	M56 FILTER		M4 FILTER			EOC FILTER			61_{H}	R*/W	14_{H}
	reserved								62_{H}		
EOCR	0	0	0	0	a1	a2	a3	d / m	63_{H}	R	$0 \mathrm{~F}_{\mathrm{H}}$
	i1	i2	i3	i4	i5	i6	i7	i8	64_{4}		FF_{H}
EOCW	0	0	0	0	a1	a2	a3	d / m	65_{H}	W	01_{H}
	i1	i2	i3	i4	i5	i6	i7	i8	66_{H}		00_{H}
M4RMASK	M4 Read Mask Bits								67_{H}	R*/W	0^{+}
M4WMASK	M4 Write Mask Bits								$68_{\text {H }}$	R*/W	$\mathrm{A8}_{\mathrm{H}}$
M4R	verified M4 bit data of last received superframe								69_{H}	R	BE_{H}
M4W	M4 bit data to be send with next superframe								$6 \mathrm{~A}_{\mathrm{H}}$	R*/W	BE_{H}
M56R	0	MS2	MS1	NEBE	M61	M52	M51	FEBE	$6 \mathrm{~B}_{\mathrm{H}}$	R	$1 \mathrm{~F}_{\mathrm{H}}$
M56W	1	1	1	1	M61	M52	M51	FEBE	$6 \mathrm{C}_{\mathrm{H}}$	W	FF_{H}
UCIR	0	0	0	0	C/I code output				$6 \mathrm{D}_{\mathrm{H}}$	R	00_{H}
UCIW	0	0	0	0	C/I code input				$6 \mathrm{E}_{\mathrm{H}}$	W	$0^{01} \mathrm{H}$
TEST	0	0	0	0	CCRC	$\begin{gathered} +-1 \\ \text { Tones } \end{gathered}$	0	$\begin{gathered} 40 \\ \mathrm{KHz} \end{gathered}$	$6 \mathrm{~F}_{\mathrm{H}}$	R*/W	00_{H}
LOOP	0	DLB	TRANS	U/IOM	1	LBBD	LB2	LB1	70_{H}	R*/W	08H
FEBE	FEBE Counter Value								71_{H}	R	00_{H}
NEBE	NEBE Counter Value								72_{H}	R	0^{H}
	reserved								$\begin{aligned} & 73_{\mathrm{H}^{-}} \\ & 79_{\mathrm{H}} \end{aligned}$		

Register Description

ISTAU	MLT	Cl	FEBE/ NEBE	M56	M4	EOC	6 ms	12 ms	$7 \mathrm{~A}_{\mathrm{H}}$	R	00_{H}
MASKU	MLT	Cl	$\begin{aligned} & \text { FEBE/ } \\ & \text { NEBE } \end{aligned}$	M56	M4	EOC	6 ms	12ms	$7 \mathrm{~B}_{\mathrm{H}}$	R*/W	FF_{H}
	reserved								$7 \mathrm{C}_{\mathrm{H}}$		
FW VER̄SION	FW Version Number								$7 \mathrm{D}_{\mathrm{H}}$	R	$6 \mathrm{x}_{\mathrm{H}}$
	reserved								$\begin{aligned} & 7 \mathrm{E}_{\mathrm{H}^{-}} \\ & 7 \mathrm{~F}_{\mathrm{H}} \end{aligned}$		

${ }^{*}$) read back function for test use

Note: Registers, which are denoted as 'reserved', may not be accessed by the $\mu \mathrm{C}$, neither for read nor for write operations.

4.4 Reset of U-Transceiver Functions During Deactivation or with C/I-Code RESET

The following U-transceiver registers are reset during deactivation or with software reset:
Table 34 Reset of U-Transceiver Functions During Deactivation or with C/ICode RESET

Register	Reset to	Affected Bits
EOCR	$0 F F F_{H}$	all bits
EOCW	0100_{H}	all bits
M4R	BE_{H}	all bits
M4W	BE_{H}	all bits
M56R	$1 \mathrm{~F}_{\mathrm{H}}$	all bits are reset besides MS2 and MS1
M56W	FF_{H}	all bits
TEST		only bit CCRC is reset
LOOP		only the bits LBBD, LB2 and LB1 are reset

Register Description

4.5 U-Transceiver Mode Register Evaluation Timing

The point of time when mode settings are detected and executed differs with the mode register type. Two different behaviors can be classified:

- evaluation and execution after SW-reset (C/I= RES) or upon transition out of state 'Deactivated'
Note: Write access to these registers/bits is allowed only, while the state machine is in state Reset or Deactivated.
- immediate evaluation and execution

Below the mode registers are listed and grouped according to the different evaluation times as stated above.

Table 35 U-Transceiver Mode Register Evaluation Timing

Register	Affected Bits
Registers Evaluated After SW-Reset or Upon Transition Out of State Deactivated	
OPMODE	bit UCI, MLT
MFILT	complete register

Immediate Evaluation and Execution

OPMODE	bit FEBE, CI_SEL
M4RMASK	complete register
M4WMASK	complete register
TEST	complete register
LOOP	complete register
MASKU	complete register

Register Description

4.6 Detailed C/I Registers

4.6.1 MODEH - Mode Register IOM-2

MODEH read/write

Address: $\quad 22_{H}$
Value after reset: CO_{H}

7 0

1	1	0	$\mathrm{r}(0)$	0	DIM2	DIM1	DIM0

DIM2-0 Digital Interface Modes
These bits define the characteristics of the IOM Data Ports (DU, DD). The DIM0 bit enables/disables the stop/go bit (S/G) evaluation. The DIM1 bit enables/disables the TIC bus access. The effect of the individual DIM bits is as follows:
$0-0=$ Stop/go bit evaluation is disabled
$0-1=$ Stop/go bit evaluation is enabled
00- = TIC bus access is enabled
01- = TIC bus access is disabled
$1 \mathrm{xx}=$ Reserved

4.6.2 CIRO - Command/Indication Receive 0

CIR0 read Address: 2E E_{H}

Value after reset: $\mathrm{F}_{3} \mathrm{H}$

7 0

CODR0	CIC0	CIC1	S/G	BAS

Register Description

CODRO C/IO Code Receive
Value of the received Command/Indication code. A C/I-code is loaded in CODRO only after being the same in two consecutive IOM-frames and the previous code has been read from CIRO.

CICO C/IO Code Change

$0=$ No change in the received Command/Indication code has been recognized
$1=$ A change in the received Command/Indication code has been recognized. This bit is set only when a new code is detected in two consecutive IOM-frames. It is reset by a read of CIRO.

CIC1 C/I1 Code Change
$0=$ No change in the received Command/Indication code has been recognized
$1=$ A change in the received Command/Indication code in IOM-channel 1 has been recognized. This bit is set when a new code is detected in one IOM-frame. It is reset by a read of CIRO.
S/G Stop/Go Bit Monitoring
Indicates the availability of the upstream D-channel;
$0=$ Go
$1=$ Stop
BAS Bus Access Status
Indicates the state of the TIC-bus:
$0=$ the Q-SMINT ${ }^{\circledR}$ | itself occupies the D - and C / I-channel
$1=$ another device occupies the D - and C / l-channel
Note: The CODR0 bits are updated every time a new C/l-code is detected in two consecutive IOM-frames. If several consecutive valid new codes are detected and CIRO is not read, only the first and the last C / I code are made available in CIRO at the first and second read of that register.

Register Description

4.6.3 CIXO - Command/Indication Transmit 0

CIXO write Address: 2E E_{H}

Value after reset: FE_{H}

7

CODX0	TBA2	TBA1	TBA0	BAC

CODXO C/I0-Code Transmit
Code to be transmitted in the C/l-channel 0 . The code is only transmitted if the TIC bus is occupied, otherwise " 1 s " are transmitted.

TBA2-0 TIC Bus Address
Defines the individual address for the Q-SMINT ${ }^{\circledR}$ I on the IOM bus.
This address is used to access the C/I- and D-channel on the IOM interface.
Note: If only one device is liable to transmit in the C/I- and D-channels of the IOM it should always be given the address value ' 7 '.
BAC Bus Access Control
Only valid if the TIC-bus feature is enabled (MODE:DIM2-0).
$0=\quad$ inactive
$1=\quad$ The Q-SMINT ${ }^{\circledR} \mid$ will try to access the TIC-bus to occupy the C/Ichannel even if no D-channel frame has to be transmitted. It should be reset when the access has been completed to grant a similar access to other devices transmitting in that IOM-channel.
Note: Access is always granted by default to the Q-SMINT ${ }^{\circledR}$, with TIC-Bus Address (TBA2-0, CIX0 register) ' 7 ', which has the lowest priority in a bus configuration.

4.6.4 CIR1 - Command/Indication Receive 1

CIR1 read
Address: $\quad 2 \mathrm{~F}_{\mathrm{H}}$

Value after reset: FE_{H}

7
0

CODR1	CICW	CIIE

CODR1 C/I1-Code Receive

CICW C/I-Channel Width
Contains the read back value from CIX1 register (see below)
$0=4 \mathrm{bit} \mathrm{C} / 11$ channel width
$1=6$ bit C//1 channel width
CI1E C/l1-channel Interrupt Enable
Contains the read back value from CIX1 register (see below)
$0=\quad$ Interrupt generation ISTA.CIC of CIR0.CIC1is masked
$1=\quad$ Interrupt generation ISTA.CIC of CIRO.CIC1 is enabled

4.6.5 CIX1 - Command/Indication Transmit 1

CIX1 write Address: FF_{H}
Value after reset: FE_{H}

7

CODX1	CICW	CI1E

CODX1 C/11-Code Transmit
Bits 5-0 of C/I-channel 1
CICW C/I-Channel Width
$0=4$ bit C/l1 channel width

Register Description

$1=6$ bit C/l1 channel width
The C/I1 handler always reads and writes 6-bit values but if 4-bit is selected, the higher two bits are ignored for interrupt generation. However, in write direction the full CODX1 code is transmitted, i.e. the host must write the higher two bits to " 1 ".

CI1E C/I1-channel Interrupt Enable
$0=\quad$ Interrupt generation ISTA.CIC of CIR0.CIC1is masked
$1=\quad$ Interrupt generation ISTA.CIC of CIRO.CIC1 is enabled

4.7 Detailed S-Transceiver Registers

4.7.1 S_CONFO - S-Transceiver Configuration Register 0

S_CONFO
read/write
Address: 30_{H}

Value after reset: 40_{H}

7

DIS_TR	BUS	EN_ ICV	0	L1SW	0	EXLP	0

DIS_TR Disable Transceiver

$0=\quad$ All S-transceiver functions are enabled.
$1=\quad$ All S-transceiver functions are disabled and powered down (analog and digital parts).

BUS Point-to-Point / Bus Selection
$0=\quad$ Adaptive Timing (Point-to-Point, extended passive bus).
$1=\quad$ Fixed Timing (Short passive bus), directly derived from transmit clock.

EN_ICV Enable Far End Code Violation
$0=$ normal operation.

Register Description

$1=\quad$ ICV enabled. The receipt of at least one illegal code violation within one multi-frame according to ANSI T1.605 is indicated by the C/I indication '1011' (CVR) in two consecutive IOM frames.

L1SW Enable Layer 1 State Machine in Software
$0=\quad$ Layer 1 state machine of the Q-SMINT ${ }^{\circledR} \mathrm{I}$ is used.
$1=\quad$ Layer 1 state machine is disabled. The functionality must be realized in software.
The commands are written to register S_CMD and the status read in the S_STA.

EXLP External Loop
In case the analog loopback is activated with $\mathrm{C} / \mathrm{I}=\mathrm{ARL}$ or with the LP_A bit in the S_CMD register the loop is a
$0=\quad$ internal loop next to the line pins
$1=\quad$ external loop which has to be closed between SR1/SR2 and SX1/ SX2
Note: For the external loop the transmitter must be enabled (S_CONF2:DIS_TX = 0).

4.7.2 S_CONF2-S-Transmitter Configuration Register 2

S_CONF2
read/write \quad Address: $\quad 32_{\mathrm{H}}$
Value after reset: 80_{H}

7
0

DIS_TX	0	0	0	0	0	0	0

DIS_TX Disable Line Driver
$0=\quad$ Transmitter is enabled
$1=\quad$ Transmitter is disabled

Register Description

4.7.3 S_STA - S-Transceiver Status Register

S_STA
read
Address: $\quad 33_{\mathrm{H}}$

Value after reset: 00_{H}

7

RINF	0	ICV	0	FSYN	0	LD

Important: This register is used only if the Layer 1 state machine of the device is disabled (S _CONF0:L1SW = 1) and implemented in software! With the layer 1 state machine enabled, the signals from this register are automatically evaluated.

RINF Receiver INFO
$00=$ Received INFO 0 (no signal)
$01=$ Received any signal except INFO 0 or INFO 3
$10=$ reserved
$11=\quad$ Received INFO 3

ICV Illegal Code Violation
$0=\quad$ No illegal code violation is detected.
$1=\quad$ Illegal code violation (ANSI T1.605) in data stream is detected.

FSYN Frame Synchronization State
$0=\quad$ The S / T receiver is not synchronized .
$1=\quad$ The S / T receiver has synchronized to the framing bit F.

LD Level Detection
$0=\quad$ No receive signal has been detected on the line.
$1=\quad$ Any receive signal has been detected on the line.

Register Description

4.7.4 S_CMD - S-Transceiver Command Register

S_CMD
Value after reset: 08_{H}
read/write
Address: $\quad 34_{\mathrm{H}}$

7

XINF	DPRIO	1	PD	LP_A	0

Important: This register - except bit DPRIO - is writable only if the Layer 1 state machine of the device is disabled (S_CONF0.L1SW = 1) and implemented in software! With the device layer 1 state machine enabled, the signals from this register are automatically generated. DPRIO can also be written in intelligent NT mode.

XINF Transmit INFO

$000=$ Transmit INFO 0
$001=$ reserved
$010=$ Transmit INFO 2
$011=$ Transmit INFO 4
$100=$ Send continuous pulses at $192 \mathrm{kbit} / \mathrm{s}$ alternating or 96 kHz rectangular, respectively (TM2)
$101=$ Send single pulses at $4 \mathrm{kbit} / \mathrm{s}$ with alternating polarity corresponding to 2 kHz fundamental mode (TM1)
$11 x=$ reserved

DPRIO D-Channel Priority
$0=\quad$ Priority class 1 for D channel access on IOM
$1=\quad$ Priority class 2 for D channel access on IOM

PD Power Down
$0=\quad$ The transceiver is set to operational mode
$1=\quad$ The transceiver is set to power down mode

LP_A Loop Analog
The setting of this bit corresponds to the C/I command ARL.

Register Description
$0=\quad$ Analog loop is open
$1=\quad$ Analog loop is closed internally or externally according to the EXLP bit in the S_CONFO register

4.7.5 SQRR - S/Q-Channel Receive Register

SQRR
read
Address: $\quad 35_{\mathrm{H}}$

Value after reset: 00_{H}

7 0

MSYN	MFEN	0	0	SQR1	SQR2	SQR3	SQR4

MSYN Multi-frame Synchronization State
$0=\quad$ The S / T receiver has not synchronized to the received F_{A} and M bits
$1=\quad$ The S / T receiver has synchronized to the received F_{A} and M bits

MFEN Multiframe Enable
Read-back of the MFEN bit of the SQXR register
$0=\quad \mathrm{S} / \mathrm{T}$ multiframe is disabled
$1=\quad S / T$ multiframe is enabled

SQR1-4 Received S/Q Bits
Received Q bits in frames 1, 6, 11 and 16

4.7.6 SQXR- S/Q-Channel Transmit Register

SQXR write Address: 35_{H}
Value after reset: 00_{H}
7

0							
0	MFEN	0	0	SQX1	SQX2	SQX3	SQX4

Register Description

MFEN Multiframe Enable
Used to enable or disable the multiframe structure.
$0=\quad S / T$ multiframe is disabled
$1=\quad S / T$ multiframe is enabled

SQX1-4 Transmitted S/Q Bits
Transmitted S bits in frames 1, 6, 11 and 16

4.7.7 ISTAS - Interrupt Status Register S-Transceiver

ISTAS read Address: 38_{H}
Value after reset: 00_{H}

x	x	x	x	LD	RIC	SQC	SQW

These bits are set if an interrupt status occurs and an interrupt signal is activated if the corresponding mask bit is set to " 0 ". If the mask bit is set to " 1 " no interrupt is generated, however the interrupt status bit is set in ISTAS. RIC, SQC and SQW are cleared by reading the corresponding source register S_STA, SQRR or writing SQXR, respectively.
x Reserved

LD Level Detection
$0=\quad$ inactive
$1=\quad$ Any receive signal has been detected on the line. This bit is set to " 1 " (i.e. an interrupt is generated if not masked) as long as any receive signal is detected on the line.

RIC Receiver INFO Change
$0=\quad$ inactive
$1=\quad$ RIC is activated if one of the S_STA bits RINF or ICV has changed.

SQC S/Q-Channel Change
$0=\quad$ inactive
$1=\quad$ A change in the received 4-bit Q-channel has been detected. The new code can be read from the SQRx bits of registers SQRR within the next multiframe ${ }^{1)}$. This bit is reset by a read access to the SQRR register.

SQW S/Q-Channel Writable
$0=\quad$ inactive
$1=\quad$ The S channel data for the next multiframe is writable.
The register for the S bits to be transmitted has to be written within the next multiframe. This bit is reset by writing register SQXR.
This timing signal is indicated with the start of every multiframe. Data which is written right after SQW-indication will be transmitted with the start of the following multiframe. Data which is written before SQW-indication is transmitted in the multiframe which is indicated by SQW.
SQW and SQC could be generated at the same time.

1) Register SQRR stays valid as long as no code change has been received.

4.7.8 MASKS - Mask S-Transceiver Interrupt

MASKS read/write Address: 39 ${ }_{\mathrm{H}}$
Value after reset: FF_{H}

7 0

1	1	1	1	LD	RIC	SQC	SQW

Bit 3..0 Mask bits

$0=$ The transceiver interrupts LD, RIC, SQC and SQW are enabled
$1=$ The transceiver interrupts LD, RIC, SQC and SQW are masked

Register Description

4.7.9 S_MODE - S-Transceiver Mode

S_MODE
read/write
Address: $\quad 3 A_{H}$

Value after reset: 02_{H}

7 0

0	0	0	0	DCH_INH	MODE

DCH_D-Channel Inhibit
INH
$0=\quad$ inactive
$1=\quad$ The S-transceiver blocks the access to the D-channel on S by inverting the E-bits.

MODE Mode Selection
$000=$ reserved
001 = reserved
$010=$ NT (without D-channel handler)
$011=\quad$ LT-S (without D-channel handler)
110 Intelligent NT mode (with NT state machine and with D-channel handler)
111 Intelligent NT mode (with LT-S state machine and with D-channel handler)
100 reserved
101 reserved

Register Description

4.8 Interrupt and General Configuration Registers

4.8.1 ISTA - Interrupt Status Register

ISTA
read
Address: $\quad 3 \mathrm{C}_{\mathrm{H}}$
Value after reset: 00_{H}

7 0

U	ST	CIC	0	WOV	S	MOS	0

U U-Transceiver Interrupt
$0=\quad$ inactive
$1=\quad$ An interrupt was generated by the U-transceiver. Read the ISTAU register.

ST Synchronous Transfer
$0=\quad$ inactive
$1=\quad$ This interrupt enables the microcontroller to lock on to the $I O M^{\circledR}-2$ timing, for synchronous transfers.

CIC C/I Channel Change
$0=\quad$ inactive
$1=\quad$ A change in C/IO channel or C/I1 channel has been recognized. The actual value can be read from CIR0 or CIR1.
$0=\quad$ inactive

WOV Watchdog Timer Overflow
$0=\quad$ inactive
$1=\quad$ Signals the expiration of the watchdog timer, which means that the microcontroller has failed to set the watchdog timer control bits WTC1 and WTC2 (MODE1 register) in the correct manner. A reset out pulse on pin $\overline{\mathrm{RSTO}}$ has been generated by the Q-SMINT ${ }^{\circledR}$ I.

S S-Transceiver Interrupt

Register Description

$0=\quad$ inactive
$1=\quad$ An interrupt was generated by the S-transceiver. Read the ISTAS register.

MOS MONITOR Status

$0=\quad$ inactive
$1=\quad$ A change in the MONITOR Status Register (MOSR) has occurred.
$0=\quad$ inactive

Note: A read of the ISTA register clears only the WOV interrupt. The other interrupts are cleared by reading the corresponding status register.

4.8.2 MASK - Mask Register

MASK write Address: $3 \mathrm{C}_{\mathrm{H}}$

Value after reset: FF $_{\mathrm{H}}$

7 0

U	ST	CIC	1	WOV	S	MOS	1

Bit 7..0 Mask bits
$0=\quad$ Interrupt is not masked
$1=\quad$ Interrupt is masked
Each interrupt source in the ISTA register can be selectively masked by setting the corresponding bit in MASK to '1'. Masked interrupt status bits are not indicated when ISTA is read. Instead, they remain internally stored and pending, until the mask bit is reset to ' 0 '.
Note: In the event of a C/I channel change, CIC is set in ISTA even if the corresponding mask bit in MASK is active, but no interrupt is generated.

Register Description

4.8.3 MODE1 - Mode1 Register

MODE1
read/write
Address: $3 \mathrm{D}_{\mathrm{H}}$

Value after reset: 04_{H}

7
0

MCLK	CDS	WTC1	WTC2	CFS	RSS2	RSS1

MCLK Master Clock Frequency

The Master Clock Frequency bits control the microcontroller clock output depending on MODE1.CDS = '0' or '1' (Table Table 2.1.3).

MODE1.CDS = '0' MODE1.CDS = '1'
$00=\quad 3.84 \mathrm{MHz} \quad 7.68 \mathrm{MHz}$
$01=\quad 0.96 \mathrm{MHz} \quad 1.92 \mathrm{MHz}$
$10=\quad 7.68 \mathrm{MHz} \quad 15.36 \mathrm{MHz}$
$11=$ disabled disabled

CDS Clock Divider Selection
$0=\quad$ The 15.36 MHz oscillator clock divided by two is input to the MCLK prescaler
$1=\quad$ The 15.36 MHz oscillator clock is input to the MCLK prescaler.

WTC1, 2 Watchdog Timer Control 1, 2
After the watchdog timer mode has been selected (RSS = '11') the watchdog timer is started. During every time period of 128 ms the microcontroller has to program the WTC1 and WTC2 bit in the following sequence (Chapter 2.2):
10 first step
01 second step
to reset and restart the watchdog timer.
If not, the timer expires and a WOV-interrupt (ISTA Register) together with a reset out pulse on pin RSTO is generated.
The watchdog timer runs only when the internal $\mathrm{IOM}^{\circledR}-2$ clocks are active, i.e. the watchdog timer is dead when bit CFS $=1$ and the U and S transceivers are in state power down.

Register Description

CFS Configuration Select

$0=\quad$ The $1 O M^{\circledR}-2$ interface clock and frame signals are always active, "Deactivated State" of the U-transceiver and the S-transceiver included.
$1=\quad$ The $I O M^{\circledR}-2$ interface clocks and frame signals are inactive in the "Deactivated State" of the U-transceiver and the S-transceiver.

RSS2, Reset Source Selection 2,1
RSS1
The Q-SMINT ${ }^{\circledR} I$ reset sources can be selected according to the table below.
C/I Code Change Watchdog Timer POR/UVD and RST
$00=$-- -- x
$01=\quad \overline{\text { RSTO }}$ disabled (high impedance)
$10=x$
$11=\quad--$

4.8.4 MODE2 - Mode2 Register

MODE2 read/write Address: 3E E_{H}
Value after reset: 00_{H}

7

LED2	LED1	LEDC	0	0	0	AMOD	PPSDX

LED2,1 LED Control on pin ACT

$00=$
High
$01=\quad$ flashing at 8 Hz
$10=\quad$ flashing at 1 Hz
11 = Low

LEDC LED Control Enable

$0=\quad$ LED is controlled by the state machines as defined in Table 3.
$1=\quad$ LED is controlled via bits LED2,1.

Register Description

AMOD Address Mode
Selects between direct and indirect register access of the parallel microcontroller interface.
$0=\quad$ Indirect address mode is selected. The address line A0 is used to select between address ($A 0=$ ' 0 ') and data $(A 0=11$ ') register
$1=\quad$ Direct address mode is selected. The address is applied to the address bus (A0-A6)

PPSDX Push/Pull Output for SDX

$0=\quad$ The SDX pin has open drain characteristic
$1=\quad$ The SDX pin has push/pull characteristic

4.8.5 ID - Identification Register

ID read

Address: $\quad 3 F_{H}$
Value after reset: 01_{H}

7

0	0	DESIGN

DESIGN Design Number

The design number (DESIGN) allows to identify different hardware designs ${ }^{1)}$ of the Q-SMINT ${ }^{\circledR}$ I by software.
000000: Version 1.1
000001: Version 1.2
000001: Version 1.3

1) Distinction of different firmware versions is also possible by reading register (7D) $)_{H}$ in the address space of the U-transceiver (see Chapter 4.11.19).

Register Description

4.8.6 SRES - Software Reset Register

SRES
write
Address: $\quad 3 F_{H}$
Value after reset: 00_{H}

7 0

0	0	RES_- CI/TIC	0	0	0	RES_S	RES_U

RES_xx Reset_xx
$0=$ Deactivates the reset of the functional block $x x$
$1=$ Activates the reset of the functional block $x x$.
The reset state is activated as long as the bit is set to ' 1 '

4.9 Detailed $I M^{\circledR}$-2 Handler Registers

4.9.1 CDAxy - Controller Data Access Register xy

These registers are used for microcontroller access to the $I O M^{\circledR}-2$ timeslots as well as for timeslot manipulations. (e.g. loops, shifts, ... see also "Controller Data Access (CDA)" on Page 31).

CDAxy read/write

Address: $40-43_{\mathrm{H}}$

7
Controller Data Access Register

Data register CDAxy which can be accessed by the controller.

Register	Value after Reset	Register Address
CDA10	FF_{H}	40_{H}
CDA11	FF_{H}	41_{H}
CDA20	FF_{H}	42_{H}
CDA21	FF_{H}	43_{H}

PEF 82912/82913

4.9.2 XXX_TSDPxy - Time Slot and Data Port Selection for CHxy

XXX_TSDPxy read/write Address: 44-4D ${ }_{H}$

7

DPS	0	0	0	TSS

Register	Value after Reset	Register Address
CDA_TSDP10	00_{H} (= output on B1-DD)	44_{H}
CDA_TSDP11	$01_{\mathrm{H}}(=$ output on B2-DD $)$	45_{H}
CDA_TSDP20	$80_{\mathrm{H}}(=$ output on B1-DU $)$	46_{H}
CDA_TSDP21	$81_{\mathrm{H}}(=$ output on B2-DU $)$	47_{H}
	reserved	$48-4 \mathrm{~B}_{\mathrm{H}}$
S_TSDP_B1	$84_{\mathrm{H}}(=$ output on TS4-DU $)$	$4 \mathrm{C}_{\mathrm{H}}$
S_TSDP_B2	$85_{\mathrm{H}}(=$ output on TS5-DU $)$	$4 \mathrm{D}_{\mathrm{H}}$

This register determines the time slots and the data ports on the $\mathrm{IOM}^{\circledR}-2$ Interface for the data channels xy of the functional units XXX (Controller Data Access (CDA) and Stransceiver (S)).
Note: The U-transceiver is always in IOM-2 channel 0 .

DPS Data Port Selection

$0=\quad$ The data channel $x y$ of the functional unit XXX is output on DD. The data channel $x y$ of the functional unit XXX is input from DU.
$1=\quad$ The data channel $x y$ of the functional unit $X X X$ is output on DU. The data channel xy of the functional unit XXX is input from DD.
Note: For the CDA (controller data access) data the input is determined by the CDAx_CR.SWAP bit. If SWAP = ' 0 ' the input for the CDAxy data is vice versa to the output setting for CDAxy. If the SWAP = ' 1 ' the input from CDAx0 is vice versa to the output setting of CDAx1 and the input from CDAx1 is vice versa to the output setting of CDAxO.

TSS Timeslot Selection
Selects one of the 12 timeslots from $0 \ldots 11$ on the $I \mathrm{IM}^{\circledR}-2$ interface for the data channels.

Register Description

4.9.3 CDAx_CR - Control Register Controller Data Access CH1x

0	0	EN_TBM	EN_11	EN_I0	EN_O1	EN_O0	SWAP

Register	Value after Reset	Register Address
CDA1_CR	00_{H}	$4 \mathrm{E}_{\mathrm{H}}$
CDA2_CR	00_{H}	$4 \mathrm{~F}_{\mathrm{H}}$

EN_TBM Enable TIC Bus Monitoring
$0=\quad$ The TIC bus monitoring is disabled
$1=\quad$ The TIC bus monitoring with the CDAx0 register is enabled. The TSDPx0 register must be set to 08_{H} for monitoring from DU, or 88_{H} for monitoring from DD.

EN_I1, Enable Input CDAx1, CDAx0
EN_10
$0=\quad$ The input of the CDAx1, CDAx0 register is disabled
$1=\quad$ The input of the CDAx1, CDAx0 register is enabled

EN_01, Enable Output CDAx1, CDAx0
EN_OO
$0=\quad$ The output of the CDAx1, CDAx0 register is disabled
$1=\quad$ The output of the CDAx1, CDAx0 register is enabled

PEF 82912/82913

Register Description

SWAP Swap Inputs

$0=\quad$ The time slot and data port for the input of the CDAxy register is defined by its own TSDPxy register. The data port for the CDAxy input is vice versa to the output setting for CDAxy.
$1=\quad$ The input (time slot and data port) of the CDAx0 is defined by the TSDP register of CDAx1 and the input of CDAx1 is defined by the TSDP register of CDAx0. The data port for the CDAx0 input is vice versa to the output setting for CDAx1. The data port for the CDAx1 input is vice versa to the output setting for CDAx0. The input definition for time slot and data port CDAx0 are thus swapped to CDAx1 and for CDAx1 to CDAx0. The outputs are not affected by the SWAP bit.

4.9.4 S_CR - Control Register S-Transceiver Data

S_CR read/write Address: 51_{H}

Value after reset: FF_{H}

7 0

1	CI_CS	EN_D	EN_B2R	EN_B1R	EN_B2X	EN_B1X	D_CS

CI_CS C/I Channel Selection
This bit is used to select the IOM channel to which the S-transceiver C/Ichannel is related to.
$0=\quad$ C/I-channel in IOM-channel 0
$1=\quad$ C/I-channel in IOM-channel 1

EN_D Enable Transceiver D-Channel Data
$0=\quad$ The corresponding data path to the transceiver is disabled
$1=\quad$ The corresponding data path to the transceiver is enabled.
EN_B2R Enable Transceiver B2 Receive Data (transmitter receives from IOM)
$0=\quad$ The corresponding data path to the transceiver is disabled

Register Description

$1=\quad$ The corresponding data path to the transceiver is enabled.

EN_B1R Enable Transceiver B1 Receive Data (transmitter receives from IOM)
$0=\quad$ The corresponding data path to the transceiver is disabled
$1=\quad$ The corresponding data path to the transceiver is enabled.

EN_B2X Enable Transceiver B2 Transmit Data (transmitter transmits to IOM) $0=\quad$ The corresponding data path to the transceiver is disabled $1=\quad$ The corresponding data path to the transceiver is enabled.

EN_B1X Enable Transceiver B1 Transmit Data (transmitter transmits to IOM) $0=\quad$ The corresponding data path to the transceiver is disabled $1=\quad$ The corresponding data path to the transceiver is enabled.
These bits are used to individually enable/disable the D-channel and the receive/transmit paths for the B-channels for the S-transceiver.

D_CS D Channel Selection
This bit is used to select the IOM channel to which the S-transceiver Dchannel is related to.
$0=\quad$ D-channel in IOM-channel 0
$1=\quad$ D-channel in IOM-channel 1

4.9.5 Cl_CR - Control Register for Cl1 Data

CI_CR
read/write
Address: ${ }^{52}{ }_{H}$
Value after reset: 0^{04}

7

DPS_CI1	EN_Cl1	0	0	0	1	0

DPS_Cl1 Data Port Selection Cl1 Handler

$0=\quad$ The CI1 data is output on DD and input from DU
$1=\quad$ The CII data is output on DU and input from DD

EN_Cl1 Enable Cl1 Handler
$0=\quad$ Cl1 data access is disabled
$1=\quad$ Cl1 data access is enabled
Note: The timeslot for the C/I1 handler cannot be programmed but is fixed to IOM channel 1.

4.9.6 MON_CR - Control Register Monitor Data

MON_CR read/write Address: 53_{H}
Value after reset: 40_{H}

7
0

DPS	EN_MON	0	0	0	0	MCS

DPS Data Port Selection
$0=\quad$ The Monitor data is output on DD and input from DU
$1=$ The Monitor data is output on DU and input from DD

EN_MON Enable Output
$0=\quad$ The Monitor data input and output is disabled
$1=$ The Monitor data input and output is enabled

MCS MONITOR Channel Selection
$00=$ The MONITOR data is output on MONO
$01=$ The MONITOR data is output on MON1
$10=$ The MONITOR data is output on MON2
$11=$ Not defined

4.9.7 SDS1_CR - Control Register Serial Data Strobe 1

SDS1_CR
Address: ${ }^{54}{ }_{H}$

Value after reset: 00_{H}

7

ENS_	ENS	ENS	0	TSS
TSS	TSS +1	TSS +3		

This register is used to select position and length of the strobe signal 1. The length can be any combination of two 8 -bit timeslot (ENS_TSS, ENS_TSS+1) and one 2-bit timeslot (ENS_TSS+3).
ENS \quad Enable Serial Data Strobe of timeslot TSS
TSS
$0=\quad$ The serial data strobe signal SDS1 is inactive during TSS
$1=\quad$ The serial data strobe signal SDS1 is active during TSS

ENS_- Enable Serial Data Strobe of timeslot TSS +1
TSS +1
$0=\quad$ The serial data strobe signal SDS1 is inactive during TSS +1
$1=\quad$ The serial data strobe signal SDS1 is active during TSS +1

ENS_ Enable Serial Data Strobe of timeslot TSS+3 (D-Channel)
TSS+3
$0=\quad$ The serial data strobe signal SDS1 is inactive during the D-channel (bit7, 6) of TSS+3
$1=\quad$ The serial data strobe signal SDS1 is active during the D-channel (bit7, 6) of TSS+3

TSS Timeslot Selection
Selects one of 12 timeslots on the $1 O M^{\circledR}-2$ interface (with respect to FSC) during which SDS1 is active high. The data strobe signal allows standard data devices to access a programmable channel.

PEF 82912/82913

Register Description

4.9.8 SDS2_CR - Control Register Serial Data Strobe 2

SDS2_CR
read/write
Address: $\quad 5_{H}$

Value after reset: 00_{H}

7

ENS_	ENS TSS	ENS TSS +1	0	TSS

This register is used to select position and length of the strobe signal 2 . The length can be any combination of two 8 -bit timeslot (ENS_TSS, ENS_TSS+1) and one 2-bit timeslot (ENS_TSS+3).

ENS_	Enable Serial Data Strobe of timeslot TSS	
TSS		
	$0=$	The serial data strobe signal SDS2 is inactive during TSS
	$=$	The serial data strobe signal SDS2 is active during TSS

ENS_
TSS +1 \quad Enable Serial Data Strobe of timeslot TSS +1
$0=\quad$ The serial data strobe signal SDS2 is inactive during TSS +1
$1=\quad$ The serial data strobe signal SDS2 is active during TSS +1

ENS_ Enable Serial Data Strobe of timeslot TSS+3 (D-Channel)
TSS+3
$0=\quad$ The serial data strobe signal SDS2 is inactive during the D-channel (bit7, 6) of TSS+3
$1=\quad$ The serial data strobe signal SDS2 is active during the D-channel (bit7, 6) of TSS+3

TSS Timeslot Selection
Selects one of 12 timeslots on the $1 O M^{\circledR}-2$ interface (with respect to FSC) during which SDS2 is active high. The data strobe signal allows standard data devices to access a programmable channel.

Register Description

4.9.9 IOM_CR - Control Register IOM Data

IOM_CR
read/write
Address: ${ }^{56}{ }_{H}$

Value after reset: $0^{0}{ }_{H}$

7

SPU	0	0	TIC_DIS	EN_BCL	0	DIS_OD	DIS_IOM

SPU Software Power UP
$0=\quad$ The DU line is normally used for transmitting data.
$1=\quad$ Setting this bit to ' 1 ' will pull the DU line to low. This will enforce the Q-SMINT ${ }^{\circledR}$ I and other connected layer 1 devices to deliver IOMclocking.

TIC_DIS TIC Bus Disable
$0=\quad$ The last octet of the last IOM time slot (TS 11) is used as TIC bus.
$1=\quad$ The TIC bus is disabled. The last octet of the last IOM time slot (TS 11) can be used like any other time slot. This means that the timeslots TIC, A/B, S/G and BAC are not available any more.

EN_BCL Enable Bit Clock BCL
$0=\quad$ The BCL clock is disabled (output is high impedant)
$1=\quad$ The BCL clock is enabled

DIS_OD Disable Open Drain

$0=\quad$ IOM outputs are open drain driver
$1=\quad$ IOM outputs are push pull driver
DIS_IOM Disable IOM
DIS_IOM should be set to ' 1 ' if external devices connected to the IOM interface should be "disconnected" e.g. for power saving purposes.
However, the Q-SMINT ${ }^{\circledR}$ I internal operation is independent of the DIS_IOM bit.
$0=\quad$ The IOM interface is enabled
$1=\quad$ The IOM interface is disabled (FSC, DCL, clock outputs have high impedance; DU, DD data line inputs are switched off and outputs are high impedant)

4.9.10 MCDA - Monitoring CDA Bits

MCDA read Address: 57_{H}
Value after reset: FF_{H}

7
0

MCDA21		MCDA20		MCDA11		MCDA10	
Bit7	Bit6	Bit7	Bit6	Bit7	Bit6	Bit7	Bit6

MCDAxy Monitoring CDAxy Bits
Bit 7 and Bit 6 of the CDAxy registers are mapped into the MCDA register.
This can be used for monitoring the D-channel bits on DU and DD and the "Echo bits" on the TIC bus with the same register.

4.9.11 STI - Synchronous Transfer Interrupt

STI
read
Address: $\quad 58_{\mathrm{H}}$
Value after reset: 00_{H}

7

STOV21	STOV20	STOV11	STOV10	STI21	STI20	STI11	STI10

For all interrupts in the STI register the following logical states are applied
$0=\quad$ Interrupt has not occurred
$1=\quad$ Interrupt has occurred

STOVxy Synchronous Transfer Overflow Interrupt

Enabled STOV interrupts for a certain STlxy interrupt are generated when the STIxy has not been acknowledged in time via the ACKxy bit in the ASTI register. This must be one (for DPS = '0') or zero (for DPS = ' 1 ') BCL clock cycles before the time slot which is selected for the STOV.

STIxy Synchronous Transfer Interrupt
Depending on the DPS bit in the corresponding TSDPxy register the Synchronous Transfer Interrupt STIxy is generated two (for DPS = '0') or one (for DPS = '1') BCL clock cycles after the selected time slot (TSDPxy.TSS).

Note: STOVxy and ACKxy are useful for synchronizing microcontroller accesses and receive/transmit operations. One BCL clock is equivalent to two DCL clocks.

4.9.12 ASTI - Acknowledge Synchronous Transfer Interrupt

ASTI write Address: 58_{H}
Value after reset: 00_{H}

7

0	0	0	0	ACK21	ACK20	ACK11	ACK10

ACKxy Acknowledge Synchronous Transfer Interrupt
After a STIxy interrupt the microcontroller has to acknowledge the interrupt by setting the corresponding ACKxy bit.
$0=$ No activity is initiated
$1=$ Sets the acknowledge bit ACKxy for a STIxy interrupt

4.9.13 MSTI - Mask Synchronous Transfer Interrupt

MSTI
read/write
Address: ${ }^{59}{ }_{H}$
Value after reset: FF_{H}

7

STOV21	STOV20	STOV11	STOV10	STI21	STI20	STI11	STI10

For the MSTI register the following logical states are applied:
$0=\quad$ Interrupt is not masked
$1=\quad$ Interrupt is masked

STOVxy Mask Synchronous Transfer Overflow xy
Mask bits for the corresponding STOVxy interrupt bits.

STIxy Synchronous Transfer Interrupt xy
Mask bits for the corresponding STIxy interrupt bits.

4.10 Detailed MONITOR Handler Registers

4.10.1 MOR - MONITOR Receive Channel

MOR read Address: $5 \mathrm{C}_{\mathrm{H}}$
Value after reset: FF_{H}

7

Contains the MONITOR data received in the $I O M^{\circledR}-2$ MONITOR channel according to the MONITOR channel protocol. The MONITOR channel $(0,1,2)$ can be selected by setting the monitor channel select bit MON_CR.MCS.

4.10.2 MOX - MONITOR Transmit Channel

MOX write Address: $5 \mathrm{C}_{\mathrm{H}}$

Value after reset: FF_{H}

7
\square
Contains the MONITOR data to be transmitted in $I O M^{\circledR}-2$ MONITOR channel according to the MONITOR channel protocol. The MONITOR channel $(0,1,2)$ can be selected by setting the monitor channel select bit MON_CR.MCS

Register Description

4.10.3 MOSR - MONITOR Interrupt Status Register

MOSR
read
Address: $\quad 5 \mathrm{D}_{\mathrm{H}}$
Value after reset: 00_{H}
7

MDR	MER	MDA	MAB	0	0	0	0

MDR MONITOR channel Data Received
$0=\quad$ inactive
$1=\quad$ MONITOR channel Data Received

MER MONITOR channel End of Reception
$0=\quad$ inactive
$1=\quad$ MONITOR channel End of Reception

MDA MONITOR channel Data Acknowledged
The remote end has acknowledged the MONITOR byte being transmitted.
$0=\quad$ inactive
$1=\quad$ MONITOR channel Data Acknowledged

MAB MONITOR channel Data Abort
$0=\quad$ inactive
$1=\quad$ MONITOR channel Data Abort

4.10.4 MOCR - MONITOR Control Register

MOCR read/write Address: $5 \mathrm{E}_{\mathrm{H}}$
Value after reset: 00_{H}
7

MRE	MRC	MIE	MXC	0	0	0	0

Register Description

MRE MONITOR Receive Interrupt Enable
$0=\quad$ MONITOR interrupt status MDR generation is masked.
$1=\quad$ MONITOR interrupt status MDR generation is enabled.

MRC MR Bit Control
Determines the value of the MR bit:
$0=\quad$ MR is always ' 1 '. In addition, the MDR interrupt is blocked, except for the first byte of a packet (if MRE =1).
$1=\quad \mathrm{MR}$ is internally controlled by the $\mathrm{Q}-\mathrm{SMINT}^{\circledR} \mathrm{I}$ according to MONITOR channel protocol. In addition, the MDR interrupt is enabled for all received bytes according to the MONITOR channel protocol (if MRE = 1).

MIE MONITOR Interrupt Enable

$0=\quad$ MONITOR interrupt status MER, MDA, MAB generation is masked
$1=\quad$ MONITOR interrupt status MER, MDA, MAB generation is enabled

MXC MX Bit Control
Determines the value of the $M X$ bit:
$0=\quad$ The MX bit is always ' 1 '.
$1=\quad$ The MX bit is internally controlled by the Q-SMINT ${ }^{\circledR} I$ according to MONITOR channel protocol.

4.10.5 MSTA - MONITOR Status Register

MSTA
read
Address: $\quad 5 \mathrm{~F}_{\mathrm{H}}$
Value after reset: 00_{H}

7
0

0	0	0	0	0	MAC	0	TOUT

Register Description

MAC MONITOR Transmit Channel Active
$0=\quad$ No data transmission in the MONITOR channel
$1=\quad$ The data transmission in the MONITOR channel is in progress.

TOUT Time-Out
Read-back value of the TOUT bit
$0=\quad$ The monitor time-out function is disabled
$1=\quad$ The monitor time-out function is enabled

4.10.6 MCONF - MONITOR Configuration Register

MCONF write Address: $5 \mathrm{~F}_{\mathrm{H}}$
Value after reset: 00_{H}

7 0

0	0	0	0	0	0	0	TOUT

TOUT Time-Out
$0=\quad$ The monitor time-out function is disabled
$1=\quad$ The monitor time-out function is enabled

4.11 Detailed U-Transceiver Registers

4.11.1 OPMODE - Operation Mode Register

The Operation Mode register determines the operating mode of the U-transceiver.
OPMODE $\quad \mathrm{read}^{*} /$ write \quad Address: 60 ${ }_{\mathrm{H}}$

Reset Value: $\quad 14_{\mathrm{H}}$

| 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | UCI | FEBE | MLT | 0 | CI_SEL | 0 | 0 |

FEBE Enable/Disable External Write Access to FEBE Bit in Register M56W
$0=$ external access to FEBE bit disabled - FEBE bit is controlled by internal FEBE counter
$1=\quad$ external access to FEBE bit enabled - FEBE bit is controlled by external microprocessor

MLT Enable/Disable Metallic Loop Termination Function
MLT status is reflected in bit MS2 and MS1 in register M56R
$0=\quad$ MLT disabled
$1=\quad$ MLT enabled

CI_SEL C/I Code Output Selection
by CI_SEL the user can switch:

- between the standard C/I indications of the NT state machine as implemented in today's IEC-Q versions or
- newly defined C/I code indications which facilitates control and debugging
$0=\quad$ Standard NT state machine compliant to NT state machine of today's IEC-Q V4.3-V5.3
$1=\quad$ Simplified NT state machine output of newly defined C/I code indications for enhanced activation/deactivation control and debugging facilities

4.11.2 MFILT - M Bit Filter Options

The M Bit Filter register defines the validation algorithm received Maintenance channel bits (EOC, M4, M56) of the U-interface have to undergo before they are approved and passed on to the $\mu \mathrm{C}$.

MFILT
read*//write
Address: ${ }^{61}{ }_{\mathrm{H}}$
Reset Value: ${ }^{14}{ }_{H}$

7	6	5	4	3	2	1

M56 controls the validation mode of the spare bits (M51, M52, M61) on a per bit
FILTER base (see Chapter 2.4.4.3).
$\mathrm{X} 0=\quad$ Apply same filter to M5 and M6 bit data as programmed for M4 bit data.
X1 $=\quad$ On Change

M4 3-bit field which controls the validation mode of the M4 bits on a per bit
Filter base (see Chapter 2.4.4.1).
x00 = On Change
x01 = TLL coverage of M4 bit data
$x 10=\quad$ CRC coverage of $M 4$ bit data
x11 = CRC and TLL coverage of M4 bit data
$0 x x=M 4$ bits towards state machine are covered by TLL.
$1 x x=\quad M 4$ bits towards state machine are checked by the same validation algorithm as programmed for the reporting to the system interface (see Chapter 2.4.4.2).

EOC 3-bit field which controls the processing of EOC messages and its
FILTER verification algorithm (see Chapter 2.4.3.3).
$100=E O C$ automatic mode
$001=$ EOC transparent mode without any filtering
$010=$ EOC transparent mode with 'on change' filtering
$011=$ EOC transparent mode with Triple-Last-Look (TLL) Filtering

4.11.3 EOCR - EOC Read Register

The EOC Read register contains the last verified EOC message (M1-M3 bits) according to the verification criterion selected in MFILT.EOC FILTER.

EOCR read Address: 63 ${ }_{H}$
Reset Value: 0 FFF ${ }_{H}$

PEF 82912/82913

Register Description

15	14	13	12	11	10	9	8
0	0	0	0	a1	a2	a3	d / m
7	6	5	4	3	2	1	0
i1	i2	i3	i4	i5	i6	i7	i8

EOC Embedded Operations Channel (see Chapter 2.4.3)

a1 .. a3 address field
d/m data/ message indicator
i1 .. i8 information field,

4.11.4 EOCW - EOC Write Register

Via the EOC Write register, the EOC message (M1-M3 bits) of the next available U superframe can be sent and it will be repeated until a new value is written to EOCW, or the line is deactivated.
Access to the EOCW register is reasonably only if the EOC channel is operated in 'Transparent mode', otherwise conflicts with the internal EOC processor may occur.
EOCW

Reset Value: 0100_{H}

15
14
13
12
11
10
9
8

0	0	0	0	a1	a2	a3	d / m

7	6	5	4	3	2	1	0
$i 1$	$i 2$	$i 3$	$i 4$	$i 5$	$i 6$	$i 7$	$i 8$

a1 .. a3 address field
$\mathbf{d} / \mathbf{m} \quad$ data/ message indicator
i1 .. i8 information field (8 codes are reserved by ANSI/ETSI for diagnostic and loopback functions)

4.11.5 M4RMASK - M4 Read Mask Register

Via the M4 Read Mask register, the user can selectively control which M4 bit changes are reported via interrupt requests.

M4RMASK $\quad \mathrm{read}^{*} /$ write \quad Address: 67_{H}
Reset Value: $\quad 00_{\mathrm{H}}$

7
\square M4 Read Mask Bits

Bit $0 . .7$

$0=\quad \mathrm{M} 4$ bit change indication by interrupt active
$1=\quad \mathrm{M} 4$ bit change indication by interrupt masked

4.11.6 M4WMASK - M4 Write Mask Register

Access to the M4 Write Mask register (M4W) is controlled by the M4WMASK register. By means of the M4WMASK register the user can control on a per bit base which M4 bits are controlled by the user and which are controlled by the state machine.

M4WMASK $\quad \mathrm{read}^{*} /$ write \quad Address: 68_{H}
Reset Value: $\quad \mathrm{A} 8_{\mathrm{H}}$

7	6	5	4	3	2	1

Register Description

Bit $0 . .7$

$0=\quad \mathrm{M} 4$ bit is controlled by state machine/ external pins (PS1,2)
$1=\quad \mathrm{M} 4$ bit is controlled by $\mu \mathrm{C}$

Bit 6 Partial Activation Control External/Automatic,

 function corresponds to the MON-8 commands PACE and PACA $0=\quad$ SAI bit is controlled and UOA bit is evaluated by state machine $1=\quad$ SAI bit is controlled via the $\mu \mathrm{C}, \mathrm{UOA}=1$ is reported to the state machine
4.11.7 M4R - M4 Read

The Read M4 bit register contains the last received and verified M4 bit data.
M4R read Address: 69 ${ }_{H}$

Reset Value: $\quad \mathrm{BE}_{\mathrm{H}}$

7	6	5	4	3	2	1	0
AIB	UOA	M46	M45	M44	SCO	DEA	ACT

AIB Interruption (according to ANSI)
$0=\quad$ indicates interruption
$1=\quad$ inactive

UOA U Activation Only
$0=\quad$ indicates that only U is activated
$1=\quad$ inactive

SCO Start-on-Command Only Bit
indicates whether the DLC network will deactivate the loop between calls (defined in Bellcore TR-NWT000397)
$0=$ Start-on-Command-Only mode active, in LULT mode the U-transceiver shall initiate the start-up procedure only upon command from the network ('AR' primitive)

Register Description

$$
\begin{array}{ll}
1= & \text { normal mode, } \\
\text { if the U-transceiver is operated within a DCL configuration as LULT } \\
\text { it shall start operation as soon as power is applied }
\end{array}
$$

DEA Deactivation Bit
$0=\quad$ LT informs NT that it will turn off
$1=\quad$ inactive

ACT Activation Bit
$0=\quad$ layer 2 not established
$1=\quad$ signals layer 2 ready for communication

4.11.8 M4W - M4 Write Register

Via the M4 bit Write register the M4 bits of the next available U-superframe and subsequent ones can be controlled. The value is latched and transmitted until a new value is set.

M4W write Address: $6 \mathrm{~A}_{\mathrm{H}}$
Reset Value: $\quad \mathrm{BE}_{\mathrm{H}}$

7	6	5	4	3	2	1	0
NIB	SAI	M46	CSO	NTM	PS2	PS1	ACT

NIB Network Indication Bit
$0=\quad$ no function (reserved for network use)
$1=\quad$ no function (reserved for network use)

SAI S Activity Indicator
$0=\quad$ S-interface is deactivated
$1=\quad$ S-interface is activated

CSO Cold Start Only
$0=\quad$ NT is capable to perform warm starts
$1=\quad$ NT activation with cold start only

NTM NT Test Mode
$0=\quad$ NT busy in test mode
$1=\quad$ inactive

PS2 Power Status Secondary Source
$0=\quad$ secondary power supply failed
$1=\quad$ secondary power supply ok

PS1 Power Status Primary Source
$0=\quad$ primary power supply failed
$1=\quad$ primary power supply ok

ACT Activation Bit
$0=\quad$ layer 2 not established
$1=\quad$ signals layer 2 ready for communication

4.11.9 M56R - M56 Read Register

Bits 1 to 3 of the M5, M6 bit Read register contain the last verified M5, M6 bit information. Bits 5 and 6 reflect the current MLT state (MS2,1). The FEBE/NEBE error indication bits are accommodated at bit positions 0 and 4. They signal that a FEBE and/or NEBE error have/has occurred.
M56R read Address: 6B ${ }_{H}$

Reset Value: $\quad 1 \mathrm{~F}_{\mathrm{H}}$

7	6	5	4	3	2	1	0
0	MS2	MS1	NEBE	M61	M52	M51	FEBE

MS1,2 MLT Status
$00=$ Normal Mode
$01=\quad$ Insertion Loss
$10=\quad$ Quiet Mode
$11=$ Reserved

Register Description

NEBE Near-End Block Error
$0=\quad$ Near-End Block Error has occurred
$1=$ no Near-End Block Error has occurred

M61, Received Spare Bits of last U superframe (M51, M52 and M61 have no M52, M51 effect on the Q-SMINT ${ }^{\circledR} \mathrm{I}$).

FEBE Far-End Block Error
$0=\quad$ Far-End Block Error has occurred
$1=$ no Far-End Block Error has occurred

4.11.10 M56W - M56 Write Register

Via the M56 bit Write register, the M5 and M6 bits of the next available superframe can be set. The value is latched and transmitted as long as a new value is set or the function is disabled. The FEBE bit can only be set and controlled externally if OPMODE.FEBE is set to ' 1 '.

M56W write Address: 6C H_{H}
Reset Value: $\quad \mathrm{FF}_{\mathrm{H}}$

7	6	5	4	3	2	1	0
1	1	1	1	M61	M52	M51	FEBE

M61, Transmitted Spare Bits to next U superframe (M51, M52 and M61 have no M52, M51 effect on the Q-SMINT ${ }^{\circledR}$ I.

FEBE Far-End Block Error
$0=\quad$ Far-End Block Error has occurred
$1=$ no Far-End Block Error has occurred

4.11.11 UCIR - C/I Code Read Register

Via the U-transceiver C/I code Read register a microcontroller can access the C/I code that is output from the state machine.

PEF 82912/82913

Register Description

UCIR read
Address: $6 \mathrm{D}_{\mathrm{H}}$
Reset Value: $\quad 00_{H}$

| 7 | 6 | 5 | 4 | 3 | 2 | 1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | 00

4.11.12 UCIW - C/I Code Write Register

The U-transceiver C/I code Write register allows a microcontroller to control the state of the U-transceiver. To enable this function bit UCI in register OPMODE must be set to ' 1 ' before.
UCIW
write
Address: $6 \mathrm{E}_{\mathrm{H}}$

Reset Value: $\quad 01_{\mathrm{H}}$

7	6	5	4	3	2	1
0	0	0	0		C/I code input	

4.11.13 TEST - Test Register

The Test register sets the U-transceiver in the desired test mode.
TEST $\quad \mathrm{read}^{*} /$ write \quad Address: $6 \mathrm{~F}_{\mathrm{H}}$
Reset Value: $\quad 00_{H}$

7	6	5	4	3	2	1	0
0	0	0	0	CCRC	+-1 tones	0	40 kHz

CCRC Send Corrupt CRC
$0=\quad$ inactive
$1=\quad$ send corrupt (inverted) CRCs
+-1 tones Send +/-1 Pulses Instead of +/-3
$0=\quad$ issues $+/-3$ pulses during 40 kHz tone generation or in SSP mode

Register Description

$$
1=\quad \text { issues }+/-1 \text { pulses }
$$

40kHz $\quad 40$ kHz Test Signal

$0=\quad$ issues single pulses in state 'Test'
$1=\quad$ issues a 40 kHz test signal in state 'Test'

4.11.14 LOOP - Loop Back Register

The Loop register controls the digital loopbacks of the U-transceiver. The analog loopback (No. 3) is closed by C/I= 'ARL'.
Note: If the EOC automatic mode is selected (MFILT.EOC Filter = '100'), then register LOOP is accessed by the internal EOC processor:
EOC-command 'LB1' ('LB2') sets LOOP.U/IOM and LOOP.LB1 (LOOP.LB2)
EOC-command 'RTN' resets LOOP.LB1, LOOP.LB2 and LOOP.LBBD
LOOP read ${ }^{*} /$ write Address: 70_{H}
Reset Value: $\quad 08_{H}$

| 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | DLB | TRANS | U/IOM | 1 | LBBD | LB2 | LB1 |

DLB Close Framer/Deframer Loopback

- the loopback is closed at the analog/digital interface
- prerequisite is that LB1, LB2, LBBD and U/IOM ${ }^{\circledR}$ are set to ' 0 '
- only user data is looped and no maintenance data is looped back ${ }^{1)}$
$0=\quad$ Framer/Deframer loopback open
$1=\quad$ Framer/Deframer loopback closed
TRANS Transparent/ Non-Transparent Loopback
- in transparent mode user data is both passed on and looped back, whereas in non-transparent mode data is not forwarded but substituted by ' 1 's (idle code) and just looped back ${ }^{\text {2 }}$
- if LBBD, LB2, LB1 is closed towards the IOM ${ }^{*}$ interface and bit TRANS is set to '0' then the state machine has to be put into state 'Transparent' first (e.g. by $\mathrm{C} / \mathrm{I}=\mathrm{DT}$) before data is output on the U-interface
- bit TRANS has no effect on DLB and the analog loopback (ARL operates always in transparent mode)
$0=$ sets transparent loop mode for LBBD, LB2, LB1
$1=\quad$ sets non-transparent mode for LBBD, LB2, LB1 '1's are sent on the $\mathrm{IOM}^{\oplus}-2 / \mathrm{PCM}$ interface in the corresponding time-slot

U/IOM Close LBBD, LB2, LB1 Towards U or Towards IOM ${ }^{\text {® }}$

- Switch that selects whether loopback LB1, LB2 or LBBD is closed towards U or towards IOM®-2
- the setting affects all test loops, LBBD, LB2 and LB1
- an individual selection for LBBD, LB2, LB1 is not possible
$0=\quad$ LB1, LB2, LBBD loops are closed from IOM®-2 to IOM ${ }^{\circledR}-2$
$1=\quad$ LB1, LB2, LBBD loops are closed from U to U

LBBD Close Complete Loop (B1, B2, D) Near the System Interface the direction towards the loop is closed is determined by bit ' $\mathrm{U} / \mathrm{IOM}$ '
$0=$ complete loopback open
$1=\quad$ complete loopback closed

LB2 Close Loop B2 Near the System Interface the direction towards the loop is closed is determined by bit ' $\mathrm{U} / \mathrm{IOM}$ '
$0=$ loopback B2 open
$1=$ loopback B2 closed

LB1 Close Loop B1 Near the System Interface the direction towards the loop is closed is determined by bit ' $\mathrm{U} / \mathrm{IOM}$ '
$0=\quad$ loopback B1 open
$1=\quad$ loopback B1 closed
${ }^{1)}$ If in state Transparent the DLB-loopback is closed from IOM- to IOM, then C/I-code ' DC ' instead of ' Al ' is issued on the $1 \mathrm{IOM}^{\oplus-2-i n t e r f a c e . ~}$
${ }^{2)}$ If in state Transparent the non-transparent LBBD-loopback is closed from U - to U , then C/l-code 'DC' instead of 'AI' is issued on the IOM®-2-interface. However, the correct C/I-code 'Al' can be read from register UCIR.

4.11.15 FEBE - Far End Block Error Counter Register

The Far End Block Error Counter Register contains the FEBE value. If the register is read out it is automatically reset to ' 0 '.

Register Description

FEBE

read
Address: 71_{H}
Reset Value: $\quad 00_{H}$

7	6	5	4	3	2	1

4.11.16 NEBE - Near End Block Error Counter Register

The Near End Block Error Counter Register contains the NEBE value. If the register is read out it is automatically reset to ' 0 '.
NEBE read Address: 72_{H}

Reset Value: $\quad 00_{\mathrm{H}}$

7	6	5	4	3	2	1	0
NEBE Counter Value							

4.11.17 ISTAU - Interrupt Status Register U-Interface

The Interrupt Status register U-interface generates an interrupt for the unmasked interrupt flags. Refer to Chapter 2.4.12 for details on masking and clearing of interrupt flags. For the timing of the interrupt flags ISTAU(3:0) refer to Chapter 2.4.2.4.

ISTAU read Address: 7A ${ }_{H}$
Reset Value: $\quad 00_{H}$

7	6	5	4	3	2	1	0
MLT	CI	FEBE/ NEBE	M56	M4	EOC	6 ms	12 ms

MLT MLT interrupt indication
$0=\quad$ inactive
$1=\quad$ MLT interrupt has occurred

Register Description

Cl $\quad \mathrm{C} / \mathrm{l}$ code indication
the Cl interrupt is generated independently on OPMODE.UCI
$0=\quad$ inactive
$1=\quad \mathrm{Cl}$ code change has occurred
FEBE/ Far End/Near End Block Error indication
NEBE register M56R notifies whether a FEBE or NEBE has been detected
$0=\quad$ inactive
$1=\quad$ FEBE/NEBE occurred

M56 Validated new M56 bit data received from U-interface
$0=\quad$ inactive
$1=\quad$ change of any M5, M6 bit has been detected in receive direction
M4 Validated new M4 bit data received from U-interface
$0=\quad$ inactive
$1=\quad$ change of any M4 bit has been detected in receive direction
EOC Validated new EOC data received from U-interface
$0=\quad$ inactive
$1=\quad$ new EOC message has been received and acknowledged from U
$6 \mathrm{~ms} \quad 6 \mathrm{~ms}$ timer for the transmission of EOC commands on U
$0=\quad$ inactive
$1=\quad$ indicates when a EOC command is going to be issued on U
$12 \mathrm{~ms} \quad$ Superframe marker (each 12 ms) is going to be issued on U in transmit direction
Bellcore test requirement: SR-NWT-002397
$0=\quad$ inactive
$1=\quad$ indicates when a SF marker is going to be transmitted on U

4.11.18 MASKU - Mask Register U-Interface

The Interrupt Mask register U-Interface selectively masks each interrupt source in the ISTAU register by setting the corresponding bit to ' 1 '.

Register Description

MASKU

read*//write
Address: $7 \mathrm{~B}_{\mathrm{H}}$
Reset Value: $\quad \mathrm{FF}_{\mathrm{H}}$

7	6	5	4	3	2	1	0
MASKU Value							

Bit 0.. 7 Mask bits
$0=\quad$ interrupt active
$1=\quad$ interrupt masked

4.11.19 FW_VERSION

FW_VERSION Register contains the Firmware Version number
FW_VERSION read Address: 7D ${ }_{H}$

Reset value: $6 \mathrm{x}_{\mathrm{H}}$

7	6	5	4	3	2	1

Version $1.2: 6 \mathrm{D}_{\mathrm{H}}$
Version 1.3 : $6 \mathrm{C}_{\mathrm{H}}$

Electrical Characteristics

5 Electrical Characteristics

5.1 Absolute Maximum Ratings

Parameter	Symbol	Limit Values	Unit
Ambient temperature under bias	T_{A}	-40 to 85	${ }^{\circ} \mathrm{C}$
Storage temperature	T_{STG}	-65 to 150	${ }^{\circ} \mathrm{C}$
Maximum Voltage on V_{DD}	V_{DD}	4.2	V
Maximum Voltage on any pin with respect to ground	V_{S}	-0.3 to $\mathrm{V}_{\mathrm{DD}}+3.3$ (max. $<5.5)$	V

ESD integrity (according EIA/JESD22-A114B (HBM)): 2 kV

Note: Stress above those listed here may cause permanent damage to the device. Exposure to absolute maximum ratings conditions for extended periods may affect device reliability.

Line Overload Protection

The Q-SMINT ${ }^{\circledR}$ I is compliant to ESD tests according to ANSI / EOS / ESD-S 5.1-1993 (CDM), EIA/JESD22-A114B (HBM) and to Latch-up tests according to JEDEC EIA / JESD78. From these tests the following max. input currents are derived (Table 36):

Table 36 Maximum Input Currents

Test	Pulse Width	Current	Remarks
ESD	100 ns	1.3 A	3 repetitions
Latch-up	5 ms	$+/-200 \mathrm{~mA}$	2 repetitions, respectively
DC	--	10 mA	

PEF 82912/82913

Electrical Characteristics

5.2 DC Characteristics

Digital Pins	Parameter	Symbol	Limit Values		Unit	Test Condition
			min.	max.		
All	Input low voltage	$\mathrm{V}_{\text {IL }}$	-0.3	0.8	V	
	Input high voltage	V_{IH}	2.0	5.25	V	
All except DD/DU $\overline{\mathrm{ACT}, \mathrm{LP} 21}$ MCLK	Output low voltage	$\mathrm{V}_{\text {OL1 }}$		0.45	V	$\mathrm{I}_{\mathrm{OL} 1}=3.0 \mathrm{~mA}$
	Output high voltage	$\mathrm{V}_{\mathrm{OH} 1}$	2.4		V	$\mathrm{I}_{\mathrm{OH} 1}=3.0 \mathrm{~mA}$
DD/DU $\overline{\mathrm{ACT}, \mathrm{LP} 2 \mid}$ MCLK	Output low voltage	$\mathrm{V}_{\text {OL2 }}$		0.45	V	$\mathrm{I}_{\mathrm{OL} 2}=4.0 \mathrm{~mA}$
	Output high voltage (DD/DU push-pull)	$\mathrm{V}_{\mathrm{OH} 2}$	2.4		V	$\mathrm{I}_{\mathrm{OH} 2}=4.0 \mathrm{~mA}$
All	Input leakage current	$\mathrm{I}_{\text {LI }}$		10	$\mu \mathrm{A}$	$0 \mathrm{~V} \leq V_{\text {IN }} \leq V_{\mathrm{DD}}$
	Output leakage current	Lo		10	$\mu \mathrm{A}$	$0 \mathrm{~V} \leq V_{\mathrm{IN}} \leq V_{\mathrm{DD}}$
Analog Pins						
AIN, BIN	Input leakage current	I_{LI}		70	$\mu \mathrm{A}$	$\begin{aligned} & 0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{IN}} \leq \mathrm{V}_{\mathrm{D}} \\ & \mathrm{D} \end{aligned}$

Table 37 S-Transceiver Characteristics

Pin	Parameter	Symbol	Limit Values		Unit	Test Condition	
SX1,2	Absolute value of output pulse amplitude $\left(\mathrm{V}_{\mathrm{SX} 2}-\mathrm{V}_{\mathrm{SX} 1}\right)$	V_{X}	2.03	2.2	2.31	V	$\mathrm{R}_{\mathrm{L}}=50 \Omega$
SX1,2	S-Transmitter output impedance	Z_{X}	10	34		$\mathrm{k} \Omega$	see $^{1)}$
	0				see $^{2 / 3)}$		
SR1,2	S-Receiver input impedance	Z_{R}	10 100			$\mathrm{k} \Omega$ Ω	$\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}$ $\mathrm{~V}_{\mathrm{DD}}=0 \mathrm{~V}$

[^6]
Electrical Characteristics

2) Requirement ITU-T I.430, chapter 8.5.1.1b): 'When transmitting a binary zero, the output impedance shall be $>20 \Omega$.': Must be met by external circuitry.
3) Requirement ITU-T I.430, chapter 8.5.1.1b), Note: 'The output impedance limit shall apply for a nominal load impedance (resistive) of 50Ω. The output impedance for each nominal load shall be defined by determining the peak pulse amplitude for loads equal to the nominal value $+/-10 \%$. The peak amplitude shall be defined as the the amplitude at the midpoint of a pulse. The limitation applies for pulses of both polarities.'

Table 38 U-Transceiver Characteristics

	Limit Values			Unit
	min.	typ.	max.	
Receive Path				
Signal / (noise + total harmonic distortion) ${ }^{1 /}$	652)			dB
DC-level at AD-output	45	50	55	\% ${ }^{3}$
Threshold of level detect (measured between AIN and BIN with	4	5	$\begin{aligned} & 16 \text { (PEF } \\ & \text { 82912) } \end{aligned}$	mV peak
respect to zero signal)			$\begin{aligned} & 9 \text { (PEF } \\ & 82913) \end{aligned}$	
Input impedance AIN/BIN	80			k Ω

Transmit Path

Signal / (noise + total harmonic distortion)	70			dB
Common mode DC-level	1.61	1.65	1.69	V
Offset between AOUT and BOUT			35	mV
Absolute peak voltage for a single +3 or -3 pulse measured between AOUT and BOUT5)	2.42	2.5	2.58	V
Output impedance AOUT/BOUT: Power-up Power-down	0.8 3	1.5 6	Ω Ω	

[^7]
Electrical Characteristics

5.3 Capacitances

$T A=25^{\circ} \mathrm{C}, 3.3 \mathrm{~V} \pm 5 \% V S S A=0 \mathrm{~V}, V S S D=0 \mathrm{~V}, f \mathrm{c}=1 \mathrm{MHz}$, unmeasured pins grounded.
Table 39 Pin Capacitances

Parameter	Symbol	Limit Values		Unit	Remarks
			min.	max.	
Digital pads:					
Input Capacitance I/O Capacitance	C_{IN}		7	pF	
Analog pads:		7	pF		
Load Capacitance	C_{L}		3	pF	pin AIN, BIN

5.4 Power Consumption

Power Consumption

VDD=3.3 V, VSS=0 V, Inputs at VSS/VDD, no LED connected, 50% bin. zeros, no output loads except SX1,2 $\left(50 \Omega^{1)}\right)$

Parameter	Limit Values			Unit	Test Condition
	min.	typ.	max.		
Operational U and S enabled, IOM					
-2 off		235		mW	U: ETSI loop 1 (0 m)
		200		mW	U: ETSI Loop 2.(typical line)
Power Down		15		mW	

[^8]
5.5 Supply Voltages

$$
\begin{aligned}
& \mathrm{VDD}_{\mathrm{D}}=+\mathrm{Vdd} \pm 5 \% \\
& \mathrm{VDD}_{\mathrm{A}}=+\mathrm{Vdd} \pm 5 \%
\end{aligned}
$$

The maximum sinusoidal ripple on VDD is specified in the following figure:

Electrical Characteristics

Figure 74 Maximum Sinusoidal Ripple on Supply Voltage

Electrical Characteristics

5.6 AC Characteristics

$T \mathrm{~A}=-40$ to $85^{\circ} \mathrm{C}, V \mathrm{DD}=3.3 \mathrm{~V} \pm 5 \%$
Inputs are driven to 2.4 V for a logical "1" and to 0.4 V for a logical "0". Timing measurements are made at 2.0 V for a logical "1" and 0.8 V for a logical " 0 ". The AC testing input/output waveforms are shown in Figure 75.

Figure 75 Input/Output Waveform for AC Tests

Parameter	Symbol	Limit values		Unit
All Output Pins		Min	Max	
Fall time			30	ns
Rise time			30	ns

PEF 82912/82913

Electrical Characteristics

5.6.1 $\quad I O M^{\circledR}-2$ Interface

Figure $76 \quad 10 M^{\circledR}-2$ Interface - Bit Synchronization Timing

Figure 77 IOM ${ }^{\circledR}-2$ Interface - Frame Synchronization Timing

PEF 82912/82913

Electrical Characteristics

Parameter $10 M^{\circledR}$-2 Interface	Symbol	Limit values			Unit
		Min	Typ	Max	
DCL period	t_{1}	565	651	735	ns
DCL high	t_{2}	200	310	420	ns
DCL low	t_{3}	200	310	420	ns
Input data setup	t_{4}	20			ns
Input data hold	t_{5}	20			ns
Output data from high impedance to active (FSC high or other than first timeslot)	t_{6}			100	ns
Output data from active to high impedance	t_{7}			100	ns
Output data delay from clock	t_{8}			80	ns
FSC high	$t 9$		50\% of FSC cycle time		ns
FSC advance to DCL	t_{10}	65	130	195	ns
BCL high	t_{11}	565	651	735	ns
BCL low	t_{12}	565	651	735	ns
BCL period	t_{13}	1130	1302	1470	ns
FSC advance to BCL	t_{14}	65	130	195	ns
DCL, FSC rise/fall	t_{15}			30	ns
Data out fall $\left(C_{L}=50 \mathrm{pF}, \mathrm{R}=2 \mathrm{k} \Omega\right.$ to $V_{D D}$, open drain)	t_{16}			200	ns
Data out rise/fall ($\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$, tristate)	t_{17}			150	ns
Strobe Signal Delay	t_{18}			120	ns

Note: At the start and end of a reset period, a frame jump may occur. This results in a DCL, BCL and FSC high time of min. 130 ns after this specific event.

PEF 82912/82913

Electrical Characteristics

5.6.2 Serial μ P Interface

Figure 78 Serial Control Interface

| Parameter |
| :--- | :--- | :--- | :--- | :--- |
| SCI Interface | Symbol | Limit values |
| :--- |
| |
| |
| SCLK cycle time |
| |
| t_{1} |

5.6.3 Parallel μ P Interface

Siemens/Intel Bus Mode

Figure 79 Microprocessor Read Cycle

Figure 80 Microprocessor Write Cycle

Figure 81 Multiplexed Address Timing

Figure $82 \quad$ Non-Multiplexed Address Timing
Motorola Bus Mode

Figure 83 Microprocessor Read Timing

Figure 84 Microprocessor Write Cycle

PEF 82912/82913

Electrical Characteristics

Figure 85 Non-Multiplexed Address Timing
Microprocessor Interface Timing

Parameter	Symbol	Limit Values		Unit
		min.	max.	
ALE pulse width	$t_{\text {AA }}$	20		ns
Address setup time to ALE	t_{AL}	10		ns
Address hold time from ALE	$t_{\text {LA }}$	10		ns
Address latch setup time to $\overline{\mathrm{WR}}, \overline{\mathrm{RD}}$	$\mathrm{t}_{\text {ALS }}$	10		ns
Address setup time	$t_{\text {AS }}$	10		ns
Address hold time	t_{AH}	10		ns
ALE guard time	$\mathrm{t}_{\text {AD }}$	10		ns
	$\mathrm{t}_{\text {DSD }}$	10		ns
$\overline{\overline{R D}}$ pulse width	t_{RR}	80		ns
Data output delay from $\overline{\mathrm{RD}}$	t_{RD}		80	ns
Data hold from $\overline{\mathrm{RD}}$	$t_{\text {DH }}$	0		ns
Data float from $\overline{\mathrm{RD}}$	t_{DF}		25	ns
	t_{RI}	70		ns
$\overline{\bar{W}}$ pulse width	$t_{\text {WW }}$	60		ns
Data setup time to $\overline{\mathrm{W}} \times \overline{\mathrm{CS}}$	$\mathrm{t}_{\text {DW }}$	10		ns
Data hold time $\overline{\mathrm{W}} \times \overline{\mathrm{CS}}$	$t_{W D}$	10		ns
$\overline{\bar{W}}$ control interval	$t_{\text {WI }}$	70		ns
$\mathrm{R} / \overline{\mathrm{W}}$ hold from $\overline{\mathrm{CS}} \times \overline{\mathrm{DS}}$ inactive	$\mathrm{t}_{\text {RWD }}$	10		ns

[^9]
Electrical Characteristics

5.6.4 Reset

Table $40 \quad$ Reset Input Signal Characteristics

Parameter	Symbol	Limit Values		Unit	Test Conditions	
		min.	typ.	max.		
Length of active low state	$\mathrm{t}_{\overline{\mathrm{RST}}}$	4			ms	Power On the 4 ms are assumed to be long enough for the oscillator to run correctly
		2 x DCL clock cycles +400 ns				After Power On
Delay time for $\mu \mathrm{C}$ access after $\overline{\mathrm{RST}}$ rising edge	$\mathrm{t}_{\mu \mathrm{C}}$	500			ns	

Figure 86 Reset Input Signal

PEF 82912/82913

Electrical Characteristics

5.6.5 Undervoltage Detection Characteristics

Figure 87 Undervoltage Control Timing
Table 41 Parameters of the UVD/POR Circuit
$V_{D D}=3.3 \mathrm{~V} \pm 5 \% ; V_{S S}=0 \mathrm{~V} ; \mathrm{T}_{\mathrm{A}}=-40$ to $85^{\circ} \mathrm{C}$

Parameter	Symbol	Limit Values			Unit	Test Condition
		min.	typ.	max.		
Detection Threshold ${ }^{1)}$	$\mathrm{V}_{\mathrm{DET}}$	2.7	2.8	2.92	V	$\mathrm{~V}_{\mathrm{DD}}=3.3 \mathrm{~V} \pm 5 \%$
Hysteresis	$\mathrm{V}_{\mathrm{Hys}}$	30		90	mV	
Max. rising/falling V_{DD} edge for activation/ deactivation of UVD	$\mathrm{d}_{\mathrm{DD}} / \mathrm{dt}$			0.1	$\mathrm{~V} / \mu \mathrm{s}$	
Max. rising V_{DD} for power-on						
Min. operating voltage	$\mathrm{V}_{\mathrm{DDmin}}$	1.5			V	

PEF 82912/82913

Electrical Characteristics

$V_{D D}=3.3 \mathrm{~V} \pm 5 \% ; V_{S S}=0 \mathrm{~V} ; \mathrm{T}_{\mathrm{A}}=-40$ to $85^{\circ} \mathrm{C}$

Parameter	Symbol	Limit Values			Unit	Test Condition
		min.	typ.	max.		
Delay for activation of $\overline{\text { RSTO }}$	$\mathrm{t}_{\mathrm{ACT}}$			10	$\mu \mathrm{~s}$	
Delay for deactivation of RSTO	$\mathrm{t}_{\text {DEACT }}$		64		ms	

[^10]Package Outlines

6 Package Outlines

Package Outlines
Plastic Package, P-TQFP-64
(Thin Quad Flat Package)

1) Does not include plastic or metal protrusion of 0.25 max. per side

Appendix: Differences between Q- and T-SMINT,I

7 Appendix: Differences between Q- and T-SMINT ${ }^{\circledR}$ I

The Q- and T-SMINT ${ }^{\circledR}$ I have been designed to be as compatible as possible. However, some differences between them are unavoidable due to the different line codes 2B1Q and 4B3T used for data transmission on the $\mathrm{U}_{\mathrm{k} 0}$ line.
Especially the pin compatibility between Q- and T-SMINT ${ }^{\circledR}$ I allows for one single PCB design for both series with only some mounting differences. The $\mu \mathrm{C}$ software can distinguish between the Q - and T-series by reading the identification register via the IOM ${ }^{\circledR}$-2 (MONITOR channel identification command) or the $\mu \mathrm{C}$ interface (register ID.DESIGN), respectively.
The following chapter summarizes the main differences between the Q-and T-SMINT ${ }^{\circledR}$ I.

7.1 Pinning

Table 42 Pin Definitions and Functions

	Pin T/MQFP-64	Q-SMINT ${ }^{\circledR}$ I: 2B1Q	T-SMINT ${ }^{\circledR}$ I: 4B3T
	16	Metallic Termination Input (MTI)	Tie to '1'
	55	Power Status (primary) (PS1)	Tie to '1'
	41	Power Status (secondary) (PS2)	Tie to '1'

Appendix: Differences between Q- and T-SMINT,I

7.2 U-Transceiver

7.2.1 U-Interface Conformity

Table 43 Related Documents to the U-Interface

	Q-SMINT ${ }^{\circledR}$ I: 2B1Q	T-SMINT ${ }^{\circledR}$ I: 4B3T
ETSI: TS 102 080	conform to annex A compliant to 10 ms interruptions	conform to annex B
ANSI: T1.601-1998 (Revision of ANSI T1.601- 1992)	conform MLT input and decode logic	not required
CNET: ST/LAA/ELR/DNP/ 822	conform	not required
RC7355E	conform	not required
FTZ-Richtlinie 1 TR 220	not required	conform

Appendix: Differences between Q- and T-SMINT,I

7.2.2 U-Transceiver State Machines

Figure $88 \quad$ INTC-Q Compatible State Machine Q-SMINT ${ }^{\circledR}$ I: 2B1Q

Appendix: Differences between Q- and T-SMINT,I

Figure 89 Simplified State Machine Q-SMINT ${ }^{\circledR}$: 2B1Q

Appendix: Differences between Q- and T-SMINT,I

Figure 90 IEC-T/NTC-T Compatible State Machine T-SMINT ${ }^{\circledR}$ I: 4B3T
Both the Q-and the $\mathrm{T}-\mathrm{SMINT}{ }^{\circledR}$ । U-transceiver can be controlled via state machines, which are compatible to those defined for the old NT generation INTC-Q and NTC-T. Additionally, the Q-SMINT ${ }^{\circledR}$ I possesses a newly defined, so called 'simplified' state machine. This simplified state machine can be used optionally instead of the INTC-Q compatible state machine and eases the U-transceiver control by software. Such a simplified state machine is not available for the T -SMINT ${ }^{\circledR}$.

Appendix: Differences between Q- and T-SMINT,I

7.2.3 Command/Indication Codes

Table 44 C/I Codes

Code	Q-SMINT $^{\circledR}$ I: 2B1Q		T-SMINT ${ }^{\circledR}$ I: 4B3T	
	IN	OUT	IN	OUT
0000	TIM	DR	TIM	DR
0001	RES	-	-	-
0010	-	-	-	-
0011	-	-	-	-
0100	El1	El1	-	RSY
0101	SSP	-	SSP	-
0110	DT	-	DT	-
0111	-	PU	-	-
1000	-	AR	-	AR
1001	ARL	ARL	-	AR
1010	-	-	-	-
1011	AI	AI	AR	-
1100	-	-	RES	AI
1101	-	AIL	-	-
1110	DI	DC	DI	AIL
1111				DC

Appendix: Differences between Q- and T-SMINT,I

7.2.4 Interrupt Structure

Figure 91 Interrupt Structure U-Transceiver Q-SMINT ${ }^{\circledR}$: 2 B1Q

Appendix: Differences between Q- and T-SMINT,I

Figure 92 Interrupt Structure U-Transceiver T-SMINT ${ }^{\circledR}$ I: 4B3T

PEF 82912/82913

Appendix: Differences between Q- and T-SMINT,I

7.2.5 Register Summary U-Transceiver

U-Interface Registers Q-SMINT ${ }^{\circledR}$ I: 2B1Q

Name	7	6	5	4	3	2	1	0	ADDR	R/W	RES
OPMODE	0	UCI	FEBE	MLT	0	$\begin{aligned} & \mathrm{Cl} \\ & \mathrm{SEL} \end{aligned}$	0	0	60_{H}	R*/W	14_{H}
MFILT	M56 FILTER		M4 FILTER			EOC FILTER			61_{H}	R*/W	14_{H}
	reserved								62_{H}		
EOCR	0	0	0	0	a1	a2	a3	d / m	63_{H}	R	OF
	i1	i2	i3	i4	i5	i6	$i 7$	i8	64_{4}		FF_{H}
EOCW	0	0	0	0	a1	a2	a3	d / m	$65_{\text {H }}$	W	0^{01}
	i1	i2	i3	i4	i5	i6	i7	i8	66_{H}		00_{H}
M4RMASK	M4 Read Mask Bits								67_{H}	R*/W	00_{H}
M4WMASK	M4 Write Mask Bits								$68_{\text {H }}$	R*/W	$\mathrm{A8}_{\mathrm{H}}$
M4R	verified M4 bit data of last received superframe								69_{H}	R	BE_{H}
M4W	M4 bit data to be send with next superframe								$6 A_{H}$	R*/W	BE_{H}
M56R	0	MS2	MS1	NEBE	M61	M52	M51	FEBE	$6 \mathrm{~B}_{\mathrm{H}}$	R	$1 \mathrm{~F}_{\mathrm{H}}$
M56W	1	1	1	1	M61	M52	M51	FEBE	$6 \mathrm{C}_{\mathrm{H}}$	W	FF_{H}
UCIR	0	0	0	0	C/I code output				$6 \mathrm{D}_{\mathrm{H}}$	R	00_{H}
UCIW	0	0	0	0	C/I code input				$6 \mathrm{E}_{\mathrm{H}}$	W	$0^{01} \mathrm{H}$
TEST	0	0	0	0	CCRC	$\begin{gathered} +-1 \\ \text { Tones } \end{gathered}$	0	40 KHz	$6 \mathrm{~F}_{\mathrm{H}}$	R*/W	00_{H}
LOOP	0	DLB	TRANS	$\mathrm{J} / \mathrm{IOM}^{\circledR}$	1	LBBD	LB2	LB1	70_{H}	R*/W	08 ${ }_{\mathrm{H}}$
FEBE	FEBE Counter Value								71_{H}	R	0^{+}
NEBE	NEBE Counter Value								72^{H}	R	00_{H}
	reserved								$\begin{aligned} & 73_{\mathrm{H}^{-}} \\ & 79_{\mathrm{H}} \end{aligned}$		

PEF 82912/82913

Appendix: Differences between Q- and T-SMINT,I

Name	7	6	5	4	3	2	1	0	ADDR	R/W	RES
ISTAU	MLT	Cl	FEBE/ NEBE	M56	M4	EOC	6 ms	12 ms	$7 A_{H}$	R	00_{H}
MASKU	MLT	Cl	FEBE/ NEBE	M56	M4	EOC	6 ms	12 ms	$7 \mathrm{~B}_{\mathrm{H}}$	R*/W	FF_{H}
	reserved								$7 \mathrm{C}_{\mathrm{H}}$		
FW VERSION	FW Version Number								$7 \mathrm{D}_{\mathrm{H}}$	R	$6 x_{H}$
	reserved								$\begin{aligned} & 7 \mathrm{E}_{\mathrm{H}^{-}} \\ & 7 \mathrm{~F}_{\mathrm{H}} \end{aligned}$		

Appendix: Differences between Q- and T-SMINT,I
U-Interface Registers T-SMINT ${ }^{\circledR}$: $:$ 4B3T

Name	7	6	5	4	3	2	1	0	ADDR	R/W	RES
OPMODE	0	UCI	0	0	0	0	0	0	60_{H}	R*/W	00_{H}
	reserved								$\begin{aligned} & 61_{\mathrm{H}^{-}} \\ & 6 \mathrm{C}_{\mathrm{H}} \end{aligned}$		
UCIR	0	0	0	0	C/l code output				$6 \mathrm{D}_{\mathrm{H}}$	R	00_{H}
UCIW	0	0	0	0	C/I code input				$6 \mathrm{E}_{\mathrm{H}}$	W	0^{01}
LOOP	reserved								$6 \mathrm{~F}_{\mathrm{H}}$		
	0	DLB	TRANS	J/IOM ${ }^{\text {® }}$	1	LBBD	LB2	LB1	${ }^{70} \mathrm{H}$	R*/W	$0^{\text {¢ }}$ H
RDS	reserved								71_{H}		
	Block Error Counter Value								72_{H}	R	00_{H}
	reserved								$\begin{aligned} & 73_{\mathrm{H}^{-}} \\ & 79_{\mathrm{H}} \end{aligned}$		
ISTAU	0	Cl	RDS	0	0	0	0	1 ms	$7 \mathrm{~A}_{\mathrm{H}}$	R	00_{H}
MASKU	1	Cl	RDS	1	1	1	1	1 ms	$7 \mathrm{~B}_{\mathrm{H}}$	R*/W	FF_{H}
	reserved								$7 \mathrm{C}_{\mathrm{H}}$		
FW VERSION	FW Version Number								$7 \mathrm{D}_{\mathrm{H}}$	R	$3 \mathrm{x}_{\mathrm{H}}$
	reserved								$\begin{aligned} & 7 \mathrm{E}_{\mathrm{H}^{-}} \\ & 7 \mathrm{~F}_{\mathrm{H}} \end{aligned}$		

PEF 82912/82913

Appendix: Differences between Q- and T-SMINT,I

7.3 External Circuitry

The external circuitry of the Q- and T-SMINT ${ }^{\circledR}$ I is equivalent; however, some external components of the U-transceiver hybrid must be dimensioned different for 2B1Q and 4B3T. All information on the external circuitry is preliminary and may be changed in future documents.

Figure 93 External Circuitry Q- and T-SMINT ${ }^{\circledR}$ I
Note: the necessary protection circuitry is not displayed in Figure 93.

Appendix: Differences between Q- and T-SMINT,I
Table 45 Dimensions of External Components

Component	Q-SMINT ${ }^{\circledR}$ I: 2B1Q	T-SMINT ${ }^{\circledR}$ I: 4B3T
Transformer:	$1: 2$	$1: 1.6$
Ratio	14.5 mH	7.5 mH
Main Inductivity	$1.3 \mathrm{k} \Omega$	$1.75 \mathrm{k} \Omega$
Resistance R3	$1.0 \mathrm{k} \Omega$	$1.0 \mathrm{k} \Omega$
Resistance R4	9.5Ω	25Ω
Resistance R_{T}	27 nF	15 nF
Capacitor C	$2 \mathrm{R}_{\text {PTC }}+8 \mathrm{R}_{\text {Comp }}=40 \Omega$	$\mathrm{n}^{2} \times\left(2 \mathrm{R}_{\mathrm{COMP}}+\mathrm{R}_{\mathrm{B}}\right)+\mathrm{R}_{\mathrm{L}}=$ 20Ω
$\mathrm{R}_{\text {PTC }}$ and $\mathrm{R}_{\text {Comp }}$		

PEF 82912/82913

Index

8 Index

A

Absolute Maximum Ratings 194
Address Space 136

B

Block Diagram 7
Block Error Counters 81

C

C/I Channel
Detailed Registers 148
Functional Description 50
C/I Codes
S-Transceiver 109
U-Transceiver 83
Controller Data Access (CDA) 31
Cyclic Redundancy Check 79

D

DC Characteristics 195
D-Channel Access Control
Functional Description 52
State Machine 56
Differences between Q- and T-SMINT 211

E

EOC 67
External Circuitry
S-Transceiver 132
U-Transceiver 130

F

Features 3

I

Identification
via Monitor Channel 48
via Register Access 164
Interrupts 137
IOM®-2 Interface

AC Characteristics 200
Activation/Deactivation 59
Detailed Registers 165
Frame Structure 28
Functional Description 28

L

Layer 1
Activation/Deactivation 120
Loopbacks 125
LED Pins 13
Line Overload Protection 194

M

Maintenance Channel 64
Metallic Loop Termination 99
Microcontroller Clock Generation 24
Microcontroller Interfaces
Interface Selection 17
Parallel Microcontroller Interface 22
Serial Control Interface (SCI) 18
Monitor Channel
Detailed Registers 176
Error Treatment 46
Functional Description 42
Handshake Procedure 42
Interrupt Logic 49
Time-Out Procedure 49

0

Oscillator Circuitry 134
Overhead Bits 75

P

Package Outlines 209
Parallel Microcontroller Interface
AC-Characteristics 203
Functional Description 22
Pin Configuration 6
Pin Definitions and Functions 8
Power Consumption 197
Power Supply Blocking 130
Power-On Reset 27, 207

R

Register Summary 139
Reset
Generation 25
Input Signal Characteristics 206
Power-On Reset 27, 207
Under Voltage Detection 27, 207

S

S/Q Channels 105
Scrambling/ Descrambling 83
Serial Control Interface (SCI)
AC-Characteristics 202
Functional Description 18
Serial Data Strobe Signal 41
Stop/Go Bit Handling 54
S-Transceiver
Detailed Registers 152
Functional Description 103
State Machine, LT-S 115
State Machine, NT 111
Supply Voltages 197
Synchronous Transfer 37
System Integration 14

T

Test Modes 14
TIC Bus Handling 53

U

U-Interface Hybrid 130
Under Voltage Detection 27, 207
U-Transceiver
Detailed Registers 179
Functional Description 60
State Machine, Simplified NT 95
State Machine, Standard NT 87

W

Watchdog Timer 26

Infineon goes for Business Excellence

"Business excellence means intelligent approaches and clearly defined processes, which are both constantly under review and ultimately lead to good operating results.
Better operating results and business excellence mean less idleness and wastefulness for all of us, more professional success, more accurate information, a better overview and, thereby, less frustration and more satisfaction."

Dr. Ulrich Schumacher
http://www.infineon.com

[^0]: 1) Pull-ups to 5 V must be avoided. A so-called 'hot-electron-effect' would lead to long term degradation.
[^1]: 1) The 'OR'-gates shall illustrate in a symbolic way, that 'source A active' or 'source B active' is forwarded. The real polarity of the different sources is not considered.
[^2]: 1) during a Power-On/UVD Reset, the microcontroller clock MCLK is not running, but starts running as soon as timer $t_{\text {DEAC }}$ is started.
[^3]: 1) In order to enable the STI interrupts the input of the corresponding CDA register has to be enabled. This is also valid if only a synchronous write access is wanted. The enabling of the output alone does not effect an STI interrupt.
 2) In order to enable the STOV interrupts the output of the corresponding CDA register has to be enabled. This is also valid if only a synchronous read access is wanted. The enabling of the input alone does not effect an interrupt.
[^4]: 1) The A/B-bit is not supported by the U-transceiver
[^5]: 1) If the S-transceiver is reset by SRES.RES_S = '1' or disabled by S_CONF0.DIS_TR = '1', then the D-channel arbiter is in state Ready ($\mathrm{S} / \mathrm{G}=$ ' 1 '), too. The S / G evaluation of the HDLC has to be disabled in this case; otherwise, the HDLC is not able to send data.
[^6]: 1) Requirement ITU-T I.430, chapter 8.5.1.1a): 'At all times except when transmitting a binary zero, the output impedance, in the frequency range of 2 kHz to 1 MHz , shall exceed the impedance indicated by the template in Figure 11. The requirement is applicable with an applied sinusoidal voltage of 100 mV (r.m.s value)'
[^7]: 1) Test conditions: 1.4 Vpp differential sine wave as input on AIN/BIN with long range (low, critical range).
 2) Versions PEF 8×913 with enhanced performance of the U-interface are tested with tightened limit values
 3) The percentage of the " 1 "-values in the PDM-signal.
 4) Interpretation and test conditions: The sum of noise and total harmonic distortion, weighted with a low pass filter 0 to 80 kHz , is at least 70 dB below the signal for an evenly distributed but otherwise random sequence of $+3,+1,-1,-3$.
 5) The signal amplitude measured over a period of 1 min . varies less than 1%.
[^8]: 1) $50 \Omega(2 \times$ TR $)$ on the S-bus.
[^9]: 1) control interval: $t_{R I}$ is minimal 70 ns for all registers except ISTAU, FEBE and NEBE. However, the time between two consecutive read accesses to one of the registers ISTAU, FEBE or NEBE, respectively, must be longer than 330 ns . This does not limit t_{RI} of read sequences, which involve intermediate read access to other registers, as for instance: ISTAU -($\left.\mathrm{t}_{\mathrm{RI}}\right)$ - ISTA -($\left.\mathrm{t}_{\mathrm{RI}}\right)$ - ISTAH -($\left.\mathrm{t}_{\mathrm{RI}}\right)$ - ISTAU.
[^10]: 1) The Detection Threshold $V_{\text {DET }}$ is far below the specified supply voltage range of analog and digital parts of the Q-SMINT ${ }^{\left({ }^{(}\right)}$. Therefore, the board designer must take into account that a range of voltages is existing, where neither performance and functionality of the Q-SMINT ${ }^{\Theta_{1}}$ are guaranteed, nor a reset is generated.
 ${ }^{2)}$ If the integrated Power-On Reset of the Q -SMINTI is selected (VDDDET = ' 0 ') and the supply voltage V_{DD} is ramped up from 0 V to $3.3 \mathrm{~V}+/-5 \%$, then the $\mathrm{Q}-$ SMINTI is kept in reset during $\mathrm{V}_{\mathrm{DD} \text { min }}<\mathrm{V}_{\mathrm{DD}}<\mathrm{V}_{\mathrm{DET}}+\mathrm{V}_{\text {Hys }}$. $V_{D D}$ must be ramped up so slowly that the Q-SMINTI leaves the reset state after the oscillator circuit has already finished start-up. The start-up time of the oscillator circuit is typically in the range between 3 ms and 12ms.
