Not Recommended for New Designs

This product was manufactured for Maxim by an outside wafer foundry using a process that is no longer available. It is not recommended for new designs. The data sheet remains available for existing users.

A Maxim replacement or an industry second-source may be available. Please see the QuickView data sheet for this part or contact technical support for assistance.

For further information, contact Maxim's Applications Tech Support.

5A/2A Step-Down, PWM, Switch-Mode DC-DC Regulators

General Description

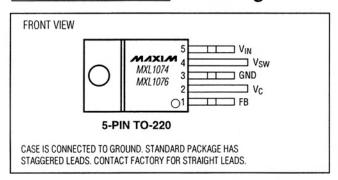
The MXL1074/MXL1076 are monolithic, bipolar, pulsewidth modulation (PWM), switch-mode DC-DC regulators optimized for step-down applications. The MXL1074 is rated at 5A, while the MXL1076 is rated at 2A. Few external components are needed for standard operation because the power switch, oscillator, and control circuitry are all on-chip. Employing a classic buck topology, these regulators perform high-current step-down functions, but can also be configured as an inverter, a negative boost converter, or a flyback converter.

The regulators have excellent dynamic and transient-response characteristics, while featuring cycle-by-cycle current limiting to protect against overcurrent faults and short-circuit output faults. The MXL1074/MXL1076 also have a wide 8V to 40V input range in the step-down configuration. In inverting and step-up configurations, the input can be as low as 5V.

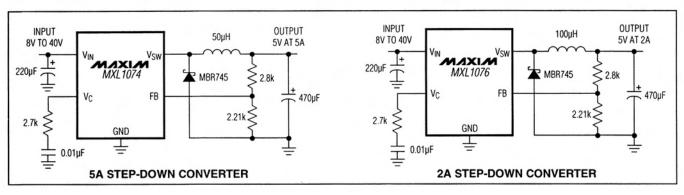
The MXL1074/MXL1076 are available in a 5-pin TO-220 package. The devices have a preset 100kHz oscillator frequency and a preset current limit of 6.5A for the MXL1074, and 2.6A for the MXL1076. The MXL1074/MXL1076 are pin compatible with the LT1074/LT1076.

Applications

Distributed Power from High-Voltage Buses
High-Current, High-Voltage Step-Down Applications
High-Current Inverter
Negative Step-Up Converter
Multiple-Output Step-Down Converter
Isolated DC-DC Conversion


_Features

- ♦ Input Range: Up to 40V
- 5A On-Chip Power Switch (MXL1074)
 2A On-Chip Power Switch (MXL1076)
- ♦ Adjustable Output: 2.5V to 35V
- ♦ 100kHz Switching Frequency
- **♦ Excellent Dynamic Characteristics**
- Few External Components
- ♦ 8.5mA Quiescent Current
- ♦ TO-220 Package


Ordering Information

PART	TEMP. RANGE	PIN-PACKAGE		
MXL1074CT	0°C to +70°C	5 TO-220		
MXL1074ET	-40°C to +85°C	5 TO-220		
MXL1076CT	0°C to +70°C	5 TO-220		
MXL1076ET	-40°C to +85°C	5 TO-220		

Pin Configuration

Typical Operating Circuits

Maxim Integrated Products 1

For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at 1-888-629-4642, or visit Maxim's website at www.maxim-ic.com.

5A/2A Step-Down, PWM, Switch-Mode DC-DC Regulators

ABSOLUTE MAXIMUM RATINGS

Input Voltage	45V
Switch Voltage with Respect to Input Voltage	50V
Switch Voltage with Respect to Ground Pin (Vsw n	egative)
(Note 1)	35V
Feedback Pin Voltage	0.3V, +10V
Operating Temperature Ranges	
MXL1074CT/MXL1076CT	0°C to +70°C
MXL1074ET/MXL1076ET40	0°C to +85°C

Junction Temperature Ranges	•	
MXL1074CT/MXL1076CT	0°C to	+125°C
MXL1074ET/MXL1076ET	40°C to	+125°C
Storage Temperature Range	65°C to	+160°C
Lead Temperature (soldering,	10sec)	+300°C

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

($V_{IN} = 25V$, $T_j = T_{MIN}$ to T_{MAX} , unless otherwise noted.)

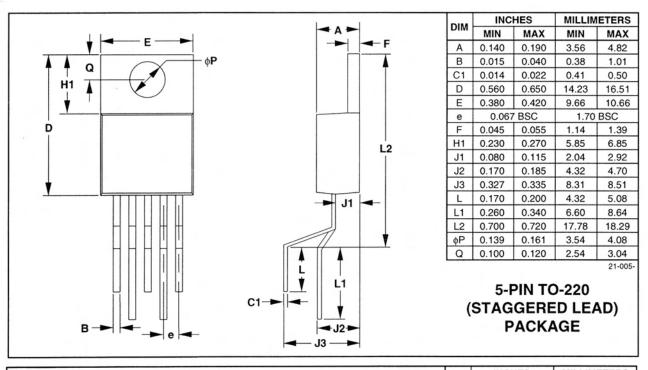
PARAMETER		CONDITIONS		MIN	TYP	MAX	UNITS
Input Supply Voltage Range				8.0		40.0	V
	MXL1074	I _{SW} = 1A	T _j ≥ 0°C			1.85	
			T _j < 0°C			2.10	
		Isw = 5A	T _j ≥ 0°C			2.30	
Switch-On Voltage (Note 2)			T _j < 0°C			2.50	7 °
	1070	Isw = 0.5A				1.2	
	MXL1076	Isw = 2A				1.7	
	1074	$V_{IN} \le 25V$, $V_{SW} = 0V$	T _j = +25°C		5	300	
	MXL1074	$V_{IN} = 40V$, $V_{SW} = 0V$	$T_j = +25^{\circ}C$		10	500	μΑ
Switch-Off Leakage	MXL1076	V _{IN} ≤ 25V, V _{SW} = 0V	T _j = +25°C			150	
		V _{IN} = 40V, V _{SW} = 0V	T _j = +25°C			250	
Supply Current (Note 3)	V _{FB} = 2.5\	/, V _{IN} ≤ 40V			8.5	11	mA
	Normal Mo	ode			7.3	8.0	
Minimum Supply Voltage	Start-Up Mode (Note 4)		T _j ≥ 0°C		3.5	4.8	\ \
	Start-Up N	node (Note 4)	T _j < 0°C		3.5	5.0	1
Cuitab Current Limit (Note E)	MXL1074	MXL1074 MXL1076		5.5	6.5	8.5	A
Switch-Current Limit (Note 5)	MXL1076			2	2.6	3.2	_ ^
Maximum Duty Cycle				85	90		%
Switching Frequency			T _j = +25°C	90	100	110	
			T _j ≤ +125°C	85		120	kHz
	V _{FB} = gro	unded through $2k\Omega$ (Note 5)	T _j = +25°C		20		
Switching Frequency Line Regulation	8V ≤ V _{IN} ≤ 40V			0.03	0.1	%/V	

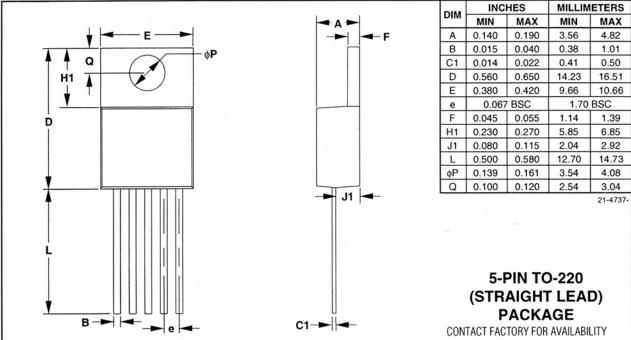
AA	AXI.	44
7712		

5A/2A Step-Down, PWM, Switch-Mode DC-DC Regulators

ELECTRICAL CHARACTERISTICS (continued)

(VIN = 25V, Ti = TMIN to TMAX, unless otherwise noted.)


PARAMETER	CONDITION	S	MIN	TYP	MAX	UNITS
Error-Amplifier Voltage Gain	1V ≤ V _C ≤ 4V	T _j = +25°C			2000	V/V
Error-Amplifier Transconductance		T _j = +25°C	3000	5000	9000	µmho
Error-Amplifier Source Current	VFB = 2V	Tj = +25°C	100	140	225	μА
Error-Amplifier Sink Current	V _{FB} = 2.5V	T _j = +25°C	0.6	1.0	1.7	mA
Feedback Pin Bias Current	VFB = VREF			0.5	2	μA
Reference Voltage	V _C = 2V		2.155	2.210	2.265	V
Reference Voltage Tolerance	VREF (nominal) = 2.21V	T _j = +25°C		±0.5	±1.5	
	All conditions of input voltage, output voltage, temperature and load current			±1	±2.5	%
Reference Voltage Line Regulation	8V ≤ V _{IN} ≤ 40V			0.005	0.02	%N
V _C Voltage at 0% Duty Cycle	P. C.	Tj = +25°C		1.5		V
		Tj = TMIN to TMAX		-4		mV/°C
Thermal Resistance Junction to Case (Note 6)	MXL1074				2.5	°C/W
	MXL1076				4.0	


- Note 1: Do not exceed switch-to-input voltage limitation.
- Note 2: For switch currents between 1A and 5A, maximum switch on voltage can be calculated via linear interpolation.
- Note 3: By setting the feedback pin (FB) to 2.5V, the V_C pin is forced to its low clamp level and the switch duty cycle is forced to zero, approximating the zero load condition.
- Note 4: For proper regulation, total voltage from V_{IN} to ground must be ≥8V after start-up.
- Note 5: To avoid extremely short switch-on times, the switch frequency is internally scaled down when VFB is less than 1.3V. Switch current limit is tested with VFB adjusted to give a 1µs minimum switch-on time.
- Note 6: Guaranteed, not production tested.

5A/2A Step-Down, PWM, Switch-Mode DC-DC Regulators

Package Information

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to www.maxim-ic.com/packages.)

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

4 ______Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 (408) 737-7600

© 1995 Maxim Integrated Products

Printed USA

MAXIM is a registered trademark of Maxim Integrated Products