02E10.pdf 04.1.20

Chip Monolithic Ceramic Capacitors

Innovator in Electronics

Murata Manufacturing Co., Ltd.

Cat.No.C02E-10

CONTENTS

Par	t Numbering	2
Sel	ection Guide	6
1	for Flow/Reflow Soldering GRM15/18/21/31 Series	7
2	for Reflow Soldering GRM32/43/55 Series	15
3	Ultra-small GRM03 Series	18
4	Thin Type (Flow/Reflow)	20
GR	M Series Specifications and Test Methods	22
5	Thin Layer Large-capacitance Type	27
6	Low-dissipation Type	32
GR	M Series Data	37
7	Microchips	39
8	Capacitor Arrays	42
9	for Ultrasonic Sensors	48
10	Low ESL	51
11	High Frequency for Flow/Reflow Soldering	56
12	High-Q & High Power Type	61
13	High Frequency Type	69
ER	F/ERH/ERA/ERD Series Data	79
Pac	ckage	81
	Caution	85
Not	tice	91
Ref	ference Data	97
14	Medium-voltage Low Dissipation Factor	104
15	Medium-voltage High-Capacitance for General-Use	109
16	Only for Information Devices/Tip & Ring	—— 113
17	AC250V(r.m.s.) Type	—— 117
18	Safety Standard Recognized Type GC (UL, IEC60384-14 Class X1/Y2)	121
19	Safety Standard Recognized Type GD (IEC60384-14 Class Y3)	122
20	Safety Standard Recognized Type GF (IEC60384-14 Class Y2)	123

muRata

21 Safety Standard Recognized Type GB (IEC60384-14 Class X2)	124
GA3 Series Specifications and Test Methods	125
GRM/GR4/GA2/GA3 Series Data	129
Package	132
△ Caution	135
Notice	141
ISO 9000 Certifications	145

• Please refer to "Specifications and Test Methods" at the end of each chapter of 5 - 17 .

0 1

4Dimension (T)

8

Part Numbering Chip Monolithic Ceramic Capacitors GR M 18 8 B1 1H 102 K A01 K (Part Number) 0 6 A Ø A 4 R Product ID 2 Series Product ID Code Series М Tin Plated Layer GR 4 Only for Information Devices / Tip & Ring High Frequency and F high Power Type High Frequency and High Power Type н (Ribbon Terminal) ER High Frequency Type Α

	D	Ribbon Terminal)		
GQ	Μ	High Frequency for Flow/Reflow Soldering		
GM	Α	Monolithic Microchip		
GN	Μ	Capacitor Array		
LL	L	Low ESL Wide Width Type		
GJ	Μ	High Frequency Low Loss Type Tin Plated Type		
	6	High Frequency Low Loss Type		
GA	2	for AC250V (r.m.s.)		
GA	3	Safety Standard Recognized Type		
60	Р	Automotive Soldering Electrode		
90	м	Automotive Tin Plated Laver		

Code Dimension (T) 2-elements (Array Type) 2 3 0.3 mm 4 4-elements (Array Type) 5 0.5 mm 6 0.6 mm 7 0.7 mm 8 0.8 mm 9 0.85 mm Α 1.0 mm в 1.25 mm С 1.6 mm D 2.0 mm

Е 2.5 mm F 3.2 mm М 1.15 mm Ν 1.35 mm R 1.8 mm s 2.8 mm Q 1.5 mm х Depends on individual standards.

With the array type GNM series, "Dimension(T)" indicates the number of elements

3 Dimension (LXW)

Code	Dimension (L \times W)	EIA		
03	0.6×0.3 mm	0201		
05	0.5×0.5 mm	0202		
08	0.8×0.8 mm	0303		
11	1.25×1.0 mm	0504		
15	1.0×0.5 mm	0402		
18	1.6×0.8 mm	0603		
1D	1.4×1.4 mm			
1X	Depends on individual standards.			
21	2.0×1.25 mm	0805		
22	2.8×2.8 mm	1111		
31	3.2×1.6 mm	1206		
32	3.2×2.5 mm	1210		
3X	Depends on individual	standards.		
42	4.5×2.0 mm	1808		
43	4.5×3.2 mm	1812		
52	5.7×2.8 mm	2211		
55	5.7×5.0 mm	2220		

Continued on the following page.

Code	Temperature Characteristics	Temperature Range	Capacitance Change or Temperature Coefficient	Operating Temperature Range
1X	SL	20 to 85°C	+350 to -1000ppm/°C	-55 to 125°C
2C	СН	-55 to 125°C	0±60ppm/°C	-55 to 125°C
2P	PH	-25 to 85°C	-150±60ppm/°C	-25 to 85°C
2R	RH	-25 to 85°C	-220±60ppm/°C	-25 to 85°C
2S	SH	-25 to 85°C	-330±60ppm/°C	-25 to 85°C
2T	TH	-25 to 85°C	-470±60ppm/°C	-25 to 85°C
3C	CJ	-55 to 125°C	0±120ppm/°C	-55 to 125°C
3P	PJ	-25 to 85°C	-150±120ppm/°C	-25 to 85°C
3R	RJ	-25 to 85°C	-220±120ppm/°C	-25 to 85°C
3S	SJ	-25 to 85°C	-330±120ppm/°C	-25 to 85°C
3T	TJ	-25 to 85°C	-470±120ppm/°C	-25 to 85°C
3U	UJ	-25 to 85°C	-750±120ppm/°C	-25 to 85°C
4C	СК	-55 to 125°C	0±250ppm/°C	-55 to 125°C
5C	COG	-55 to 125°C	0±30ppm/°C	-55 to 125°C
6C	C0H/CH *1	-55 to 125°C	0±60ppm/°C	-55 to 125°C
6P	P2H	-55 to 85°C	-150±60ppm/°C	-55 to 125°C
6R	R2H	-55 to 85°C	-220±60ppm/°C	-55 to 125°C
6S	S2H	-55 to 85°C	-330±60ppm/°C	-55 to 125°C
6T	T2H	-55 to 85°C	-470±60ppm/°C	-55 to 125°C
7C	CJ *1	-55 to 125°C	0±120ppm/°C	-55 to 125°C
7U	U2J	-55 to 85°C	-750±120ppm/°C	-55 to 125°C
8C	CK *1	-55 to 125°C	0±250ppm/°C	-55 to 125°C
B1	B *2	-25 to 85°C	±10%	-25 to 85°C
B3	В	-25 to 85°C	±10%	-25 to 85°C
E4	Z5U	10 to 85°C	+22, -56%	10 to 85°C
F1	F *2	-25 to 85°C	+30, -80%	-25 to 85°C
F5	Y5V	-30 to 85°C	+22, -82%	-30 to 85°C
R1	R *2	-55 to 125°C	±15%	-55 to 125°C
R3	R	-55 to 125°C	±15%	-55 to 125°C
R6	X5R	-55 to 85°C	±15%	-55 to 85°C
R7	X7R	-55 to 125°C	±15%	-55 to 125°C
C8	X6S	-55 to 105°C	±22%	-55 to 105°C
05	71.54	-25 to 20°C	-4700+100/-2500ppm/°C	
96	ZLIVI –	20 to 85°C	-4700+500/-1000ppm/°C	-25 10 85°C

*1 ER series only. *2 Add 50% of the rated voltage.

Continued on the following page. \square

Ζ	Continued	from	the	preceding	page.	
				P		

6 Rated V	oltage
-----------	--------

Code	Rated Voltage
0G	DC4V
0J	DC6.3V
1A	DC10V
1C	DC16V
1E	DC25V
1H	DC50V
2A	DC100V
2D	DC200V
2E	DC250V
YD	DC300V
2H	DC500V
2J	DC630V
3A	DC1kV
3D	DC2kV
3F	DC3.15kV
E2	AC250V
GB	X2; AC250V (Safety Standard Recognized Type GB)
GC	X1, Y2; AC250V (Safety Standard Recognized Type GC)
GD	Y3; AC250V (Safety Standard Recognized Type GD)
GF	Y2; AC250V (Safety Standard Recognized Type GF)

Capacitance

Expressed by three figures. The unit is pico-farad (pF). The first and second figures are significant digits, and the third figure expresses the number of zeros which follow the two numbers. If there is a decimal point, it is expressed by the capital letter "**R**". In this case, all figures are significant digits.

Ex.)	Code	Capacitance
	R50	0.5pF
	1R0	1.0pF
	100	10pF
	103	10000pF

8Capacitance Tolerance

Code	Capacitance Tolerance	TC	Series	Capac	itance Step	
В	±0.1pF	CΔ	GJM	≦5pF	E24 Series,1pF	
6	+0.2EpF	CA–SL	GRM/ERF/ERH/ERA/ERD/GQM	≦5pF	* 1pF	
C	±0.25pF	СΔ	GJM	<10pF	E24 Series,1pF	
	LO En E	CA–SL	GRM	6.0 to 9.0pF	* 1pF	
U	±0.5pr	СΔ	ERF/ERH/ERA/ERD/GQM/GJM	5.1 to 9.1pF	E24 Series	
6	+ 20/	CΔ	GJM	≧10pF	E12 Series	
G	±2 %	CΔ	GQM	≧10pF	E24 Series	
	TE0/	C∆–SL	GRM/GA3	≧10pF	E12 Series	
J	J ±3 <i>7</i> 0	CΔ	ERF/ERH/ERA/ERD/GQM/GJM	≧10pF	E24 Series	
V	±10%		GRM/GA3 E6 Series		Series	
ĸ		D,R,A/R,AJR,ZLIVI	GR4	E1:	2 Series	
		Z5U	GRM		E3 Series	
м	±20%	B,R,X7R	GMA/LLL	E6	Series	
_		X7R	GA2	E3 Series		
Z	+80%, -20%	F,Y5V	GRM	E3 Series		
R	Depends on individual standards.					

* E24 series is also available.

Individual Specification Code

Code	Series	Individual Specification	Temperature Characteristics Type *4	Inner Electrode	Undercoat Metal of Outer Electrode
A01	GRM *1		TC	Paco Motal	Base Metal
AUT	GRM *1/LLL/GNM	Standard Type	HiK		
A11	GRM *1	Special Dimension Type (Tolerances of LXWXT are ±0.15mm)	HiK	Base Metal	Base Metal
A12	GRM *1	Special Characteristics (Applied Voltage is X1.25 of Rated Voltage at High Temperature Load Test)	НіК	Base Metal	Base Metal
A35/A39	GRM *1	Special Dimension Type	НіК	Base Metal	Base Metal

Continued on the following page.

Code	Series	Individual Specification	Temperature Characteristics Type *4	Inner Electrode	Undercoat Metal of Outer Electrode
A61/A88/A92/A93	GRM *1	Special Characteristics (Under special control)	HiK	Base Metal	Base Metal
B01	GJM/GQM	Standard Type	TC	Base Metal (Cu)	Base Metal
C01	GRM *1	Standard Type	HiK	Base Metal	Precious Metal
C11	GRM *1	Special Dimension Type (Tolerances of LXW are ± 0.2 mm, others)	HiK	Base Metal	Precious Metal
C12	GRM *1	Special Dimension Type (Length is 3.2±0.2, Width is 1.6±0.2mm, Thickness is 1.2±0.1mm)	HiK	Base Metal	Precious Metal
	ERA/ERD/ERF/ERH		TC		
D01	GRM *1/GNM	 Standard Type (Non-coated type for ERH series) 	TC	Precious Metal	Precious Metal
	GRM *1/GMA/LLL/GNM		HiK		
D02	ERH	Standard Type (Coated with Resin)	TC	Precious Metal	Precious Metal
DB4	GJM	Special Dimension Type (Thickness is 0.25±0.05mm)	TC	Precious Metal	Precious Metal
E01	GRM *1	Standard Type (Thin Layer Large Capacitance Type)	HiK	Base Metal	Base Metal
E19/E34	GRM *1	Special Characteristics (Under Special Control)	HiK	Base Metal	Base Metal
E20	GRM *1	Special Dimension Type	HiK	Base Metal	Base Metal
E39	GRM *1	Special Dimension Type	HiK	Base Metal	Base Metal
V01	GRM *2	Standard Type (New Ceramic Material)	TC	Precious Metal	Precious Metal
W01	GRM *3/GR4/GA2/GA3	Tolorance of Thickness is $10/0.2$ mm	HiK	Paco Motal	Base Metal
WOT	GRM *3		TC	Dase metal	
W02	GA3	Tolerance of Thickness is ±0.2mm	HiK	Base Metal	Base Metal
W03	GRM *3	Tolerance of Thickness is ±0.2mm	HiK	Base Metal	Base Metal
W07	GRM *3	Tolerance of Thickness is ±0.1mm	HiK	Base Metal	Base Metal
V01	GRM *3	Tolorance of Thickness is $10/0.2$ mm	TC	Dracious Motal	Dracious Matal
101	GRM *3		HiK	FIECIOUS METAI	FIECIOUS MIETAI
V02	GA3	Toloranco of Thicknoss is +0.3mm	HiK	Procious Motol	Procious Motol
102	GRM *3/GA3		TC		
Y06	GA3	Thickness is 2.7±0.3mm	HiK	Precious Metal	Precious Metal
Y21	GRM *2	Standard Type	TC	Precious Metal	Precious Metal
Z01	GRM *1	Standard Type (New Ceramic Material)	TC	Precious Metal	Precious Metal

*1 Apply to rated voltage 100V and under. *2 Apply to rated voltage 200/500V. *3 Apply to rated voltage 250V, 630V to 3.15kV.

*4 "TC" means Temperature Compensating Type and "HiK" means High Dielectric Type.

Packaging

Code	Packaging
L	ø178mm Plastic Taping
D	ø178mm Paper Taping
к	ø330mm Plastic Taping
J	ø330mm Paper Taping
E	ø178mm Special Packaging
F	ø330mm Special Packaging
В	Bulk
С	Bulk Case
т	Bulk Tray

Selection Guide of Chip Monolithic Ceramic Capacitors

★For other automotive equipment such as comfort, security, information, entertainment, GRM series (for general electronics) are available.

Chip Monolithic Ceramic Capacitors

muRata

for Flow/Reflow Soldering GRM15/18/21/31 Series

Features

- 1. Terminations are made of metal highly resistant to migration.
- 2. The GRM series is a complete line of chip ceramic capacitors in 6.3V, 10V, 16V, 25V, 50V, 100V, 200V and 500V ratings. These capacitors have temperature characteristics ranging from C0G to Y5V.
- A wide selection of sizes is available, from the miniature LxWxT: 1.0x0.5x0.5mm to LxWxT: 3.2x1.6x1.15mm.
 GRM18, 21 and GRM31 types are suited to flow and reflow soldering.

GRM15 type is applied to only reflow soldering.

- 4. Stringent dimensional tolerances allow highly reliable, high speed automatic chip placement on PCBs.
- 5. The GRM series is available in paper or plastic embossed tape and reel packaging for automatic placement. Bulk case packaging is also available for GRM15, GRM18 and GRM21.

Applications

General electronic equipment

Temperature Compensating Type GRM15 Series (1.0x0.5 mm) 50V/25V

Part Number				GR	M15			
L x W [EIA]				1.00x0.	50 [0402]			
тс	C0G (5C)	P2H (6P)	R2H (6R)	S2H (6S)	(*	SL I X)	T2H (6T)	U2J (7U)
Rated Volt.	50 (1H)	50 (1H)	50 (1H)	50 (1H)	50 (1H)	25 (1E)	50 (1H)	50 (1H)
Capacitance (Ca	pacitance part r	numbering code)	and T (mm) Dim	ension (T Dimer	ision part numbe	ering code)	·	•
0.50pF(R50)	0.50 (5)							
0.75pF(R75)	0.50 (5)							
1.0pF(1R0)	0.50 (5)							
2.0pF(2R0)	0.50 (5)							
3.0pF(3R0)	0.50 (5)	0.50 (5)	0.50 (5)	0.50(5)			0.50 (5)	0.50 (5)
4.0pF(4R0)	0.50 (5)	0.50 (5)	0.50 (5)	0.50(5)			0.50 (5)	0.50 (5)
5.0pF(5R0)	0.50 (5)	0.50 (5)	0.50 (5)	0.50(5)			0.50(5)	0.50 (5)
6.0pF(6R0)	0.50 (5)	0.50 (5)	0.50 (5)	0.50(5)			0.50(5)	0.50 (5)
7.0pF(7R0)	0.50 (5)	0.50 (5)	0.50 (5)	0.50(5)			0.50(5)	0.50 (5)
8.0pF(8R0)	0.50 (5)	0.50 (5)	0.50 (5)	0.50(5)			0.50(5)	0.50 (5)
9.0pF(9R0)	0.50 (5)	0.50 (5)	0.50 (5)	0.50(5)			0.50(5)	0.50 (5)
10pF(100)	0.50 (5)	0.50 (5)	0.50 (5)	0.50(5)			0.50(5)	0.50 (5)
12pF(120)	0.50 (5)	0.50 (5)	0.50 (5)	0.50(5)			0.50(5)	0.50 (5)
15pF(150)	0.50 (5)	0.50 (5)	0.50 (5)	0.50(5)			0.50(5)	0.50 (5)
18pF(180)	0.50 (5)	0.50 (5)	0.50 (5)	0.50(5)			0.50(5)	0.50 (5)
22pF(220)	0.50(5)	0.50(5)	0.50 (5)	0.50(5)			0.50(5)	0.50(5)
27pF(270)	0.50 (5)	0.50(5)	0.50 (5)	0.50(5)			0.50(5)	0.50(5)
33pF(330)	0.50(5)		0.50(5)	0.50(5)			0.50(5)	0.50(5)

Dart Number		Din	nensions (n	nm)			
Part Number	L	W	Т	е	g min.		
GRM155	1.0 ± 0.05	0.5 ± 0.05	0.5 ±0.05	0.15 to 0.3	0.4		
GRM188*	1.6 ±0.1	0.8 ±0.1	0.8 ±0.1	0.2 to 0.5	0.5		
GRM216			0.6 ±0.1				
GRM219	20+01	1 25 +0 1	0.85 ±0.1	0.2 to 0.7	0.7		
GRM21A	2.0 ±0.1	1.25 ±0.1	1.0 +0/-0.2	0.2 10 0.7			
GRM21B			1.25 ±0.1				
GRM316			0.6 ±0.1				
GRM319	3.2 ±0.15	1.6 ±0.15	0.85 ±0.1	0.2 to 0.9	1 5		
GRM31M			1.15 ±0.1	0.3 10 0.8	1.5		
GRM31C	3.2 ±0.2	1.6 ±0.2	1.6 ±0.2				

* Bulk Case : 1.6 ±0.07(L)×0.8 ±0.07(W)×0.8 ±0.07(T)

Continued from the preceding page.

Part Number				GR	M15			
L x W [EIA]				1.00x0.	50 [0402]			
тс	C0G (5C)	P2H (6P)	R2H (6R)	S2H (6S)	(1	SL X)	T2H (6T)	U2J (7U)
Rated Volt.	50 (1H)	50 (1H)	50 (1H)	50 (1H)	50 (1H)	25 (1E)	50 (1H)	50 (1H)
Capacitance (Ca	pacitance part r	numbering code)	and T (mm) Din	nension (T Dimer	sion part numbe	ering code)		
39pF(390)	0.50 (5)			0.50 (5)			0.50(5)	0.50 (5)
47pF(470)	0.50 (5)				0.50(5)		0.50(5)	0.50(5)
56pF(560)	0.50 (5)				0.50(5)		0.50(5)	0.50(5)
68pF(680)	0.50 (5)				0.50(5)		0.50(5)	0.50(5)
82pF(820)	0.50 (5)				0.50(5)		0.50(5)	0.50(5)
100pF(101)	0.50 (5)				0.50(5)		0.50(5)	0.50(5)
120pF(121)	0.50 (5)				0.50(5)			0.50(5)
150pF(151)	0.50 (5)				0.50(5)			0.50(5)
180pF(181)	0.50 (5)				0.50(5)			0.50(5)
220pF(221)	0.50 (5)					0.50(5)		
270pF(271)	0.50 (5)					0.50(5)		
330pF(331)	0.50 (5)					0.50(5)		
390pF(391)	0.50 (5)					0.50(5)		
470pF(471)	0.50 (5)							
560pF(561)	0.50 (5)							
680pF(681)	0.50 (5)							
820pF(821)	0.50 (5)							
1000pF(102)	0.50 (5)							

The part numbering code is shown in ().

Dimensions are shown in mm and Rated Voltage in Vdc.

Temperature Compensating Type GRM18 Series (1.60x0.80 mm) 200V/100V/50V/25V

Part Number						GR	M18					
L x W [EIA]						1.60x0.8	30 [0603]					
тс		C0G (5C)		P2H (6P)	R2H (6R)	S2H (6S)	SL (1X)				T2H (6T)	U2J (7U)
Rated Volt.	200 (2D)	100 (2A)	50 (1H)	50 (1H)	50 (1H)	50 (1H)	200 (2D)	100 (2A)	50 (1 H)	25 (1E)	50 (1H)	50 (1H)
Capacitance (Ca	pacitance	part numbe	ering code)	and T (mm) Dimensio	n (T Dimen	sion part n	umbering o	ode)			1
0.50pF(R50)	0.80(8)	0.80(8)	0.80(8)									
0.75pF(R75)	0.80(8)	0.80(8)	0.80(8)									
1.0pF(1R0)	0.80(8)	0.80(8)	0.80(8)									
2.0pF(2R0)	0.80(8)	0.80(8)	0.80(8)									
3.0pF(3R0)	0.80(8)	0.80(8)	0.80(8)	0.80(8)	0.80(8)	0.80(8)					0.80(8)	0.80(8)
4.0pF(4R0)	0.80(8)	0.80(8)	0.80(8)	0.80(8)	0.80(8)	0.80(8)					0.80(8)	0.80(8)
5.0pF(5R0)	0.80(8)	0.80(8)	0.80(8)	0.80(8)	0.80(8)	0.80(8)					0.80(8)	0.80(8)
6.0pF(6R0)	0.80(8)	0.80(8)	0.80(8)	0.80(8)	0.80(8)	0.80(8)					0.80(8)	0.80(8)
7.0pF(7R0)	0.80(8)	0.80(8)	0.80(8)	0.80(8)	0.80(8)	0.80(8)					0.80(8)	0.80(8)
8.0pF(8R0)	0.80(8)	0.80(8)	0.80(8)	0.80(8)	0.80(8)	0.80(8)					0.80(8)	0.80(8)
9.0pF(9R0)	0.80(8)	0.80(8)	0.80(8)	0.80(8)	0.80(8)	0.80(8)					0.80(8)	0.80(8)
10pF(100)	0.80(8)	0.80(8)	0.80(8)	0.80(8)	0.80(8)	0.80(8)					0.80(8)	0.80(8)
12pF(120)		0.80(8)	0.80(8)	0.80(8)	0.80(8)	0.80(8)	0.80(8)				0.80(8)	0.80(8)
15pF(150)		0.80(8)	0.80(8)	0.80(8)	0.80(8)	0.80(8)	0.80(8)				0.80(8)	0.80(8)
18pF(180)		0.80(8)	0.80(8)	0.80(8)	0.80(8)	0.80(8)	0.80(8)				0.80(8)	0.80(8)
22pF(220)		0.80(8)	0.80(8)	0.80(8)	0.80(8)	0.80(8)	0.80(8)				0.80(8)	0.80(8)
27pF(270)		0.80(8)	0.80(8)	0.80(8)	0.80(8)	0.80(8)	0.80(8)				0.80(8)	0.80(8)
33pF(330)		0.80(8)	0.80(8)	0.80(8)	0.80(8)	0.80(8)	0.80(8)				0.80(8)	0.80(8)
39pF(390)		0.80(8)	0.80(8)	0.80(8)	0.80(8)	0.80(8)	0.80(8)				0.80(8)	0.80(8)
47pF(470)		0.80(8)	0.80(8)	0.80(8)	0.80(8)	0.80(8)	0.80(8)				0.80(8)	0.80(8)
56pF(560)		0.80(8)	0.80(8)	0.80(8)	0.80(8)	0.80(8)	0.80(8)				0.80(8)	0.80(8)

Continued on the following page. \square

C02E10.pdf 04.1.20

Continued from the preceding page.

Part Number		GRM18										
L x W [EIA]						1.60x0.8	80 [0603]					
тс		C0G (5C)		P2H (6P)	R2H (6R)	S2H (6S)	SL (1 X)				T2H (6T)	U2J (7U)
Rated Volt.	200 (2D)	100 (2A)	50 (1H)	50 (1H)	50 (1H)	50 (1H)	200 (2D)	100 (2A)	50 (1H)	25 (1E)	50 (1H)	50 (1H)
Capacitance (Ca	pacitance	part numbe	ering code)	and T (mm) Dimensio	n (T Dimen	sion part n	umbering c	ode)			
68pF(680)		0.80(8)	0.80(8)	0.80(8)	0.80(8)	0.80(8)	0.80(8)		0.80(8)		0.80(8)	0.80(8)
82pF(820)		0.80(8)	0.80(8)	0.80(8)	0.80(8)	0.80(8)	0.80(8)		0.80(8)		0.80(8)	0.80(8)
100pF(101)		0.80(8)	0.80(8)	0.80(8)	0.80(8)	0.80(8)	0.80(8)		0.80(8)		0.80(8)	0.80(8)
120pF(121)		0.80(8)	0.80(8)	0.80(8)	0.80(8)	0.80(8)		0.80(8)	0.80(8)		0.80(8)	0.80(8)
150pF(151)		0.80(8)	0.80(8)	0.80(8)	0.80(8)	0.80(8)		0.80(8)	0.80(8)		0.80(8)	0.80(8)
180pF(181)		0.80(8)	0.80(8)		0.80(8)	0.80(8)		0.80(8)	0.80(8)		0.80(8)	0.80(8)
220pF(221)		0.80(8)	0.80(8)			0.80(8)		0.80(8)	0.80(8)		0.80(8)	0.80(8)
270pF(271)		0.80(8)	0.80(8)					0.80(8)	0.80(8)		0.80(8)	0.80(8)
330pF(331)		0.80(8)	0.80(8)					0.80(8)	0.80(8)		0.80(8)	0.80(8)
390pF(391)		0.80(8)	0.80(8)					0.80(8)	0.80(8)		0.80(8)	0.80(8)
470pF(471)		0.80(8)	0.80(8)						0.80(8)			0.80(8)
560pF(561)		0.80(8)	0.80(8)						0.80(8)			0.80(8)
680pF(681)			0.80(8)						0.80(8)			0.80(8)
820pF(821)			0.80(8)							0.80(8)		
1000pF(102)			0.80(8)							0.80(8)		
1200pF(122)			0.80(8)							0.80(8)		
1500pF(152)			0.80(8)							0.80(8)		
1800pF(182)			0.80(8)									
2200pF(222)			0.80(8)									
2700pF(272)			0.80(8)									

The part numbering code is shown in ().

Dimensions are shown in mm and Rated Voltage in Vdc.

Temperature Compensating Type GRM21 Series (2.00x1.25 mm) 200V/100V/50V/25V

Part Number							GRM21						
L x W [EIA]						2.0	0x1.25 [08	305]					
тс		C0G (5C)		C0H (6C)	P2H (6P)	R2H (6R)	S2H (6S)		(1	SL X)		T2H (6T)	U2J (7U)
Rated Volt.	200 (2D)	100 (2A)	50 (1H)	25 (1E)	50 (1H)	50 (1H)	50 (1H)	200 (2D)	100 (2A)	50 (1H)	25 (1E)	50 (1H)	50 (1H)
Capacitance (Ca	pacitance	e part num	bering coo	de) and T (mm) Dime	ension (T D	imension	part numb	ering code	e)			
12pF(120)	0.85(9)												
15pF(150)	0.85(9)												
18pF(180)	0.85(9)												
22pF(220)	0.85(9)												
27pF(270)	0.85(9)												
33pF(330)	0.85(9)												
39pF(390)	0.85(9)												
47pF(470)	0.85(9)												
56pF(560)	0.85(9)												
68pF(680)	1.25(B)	0.85(9)											
82pF(820)	1.25(B)	0.85(9)											
100pF(101)	1.25(B)	0.60(6)											
120pF(121)	1.25(B)	0.60(6)						0.85(9)					
150pF(151)	1.25(B)	0.60(6)						1.25(B)					
180pF(181)	1.25(B)	0.60(6)			0.85(9)			1.25(B)					
220pF(221)	1.25(B)	0.60(6)			0.85(9)	0.85(9)		1.25(B)					
270pF(271)		0.60(6)			0.85(9)	0.85(9)	0.85(9)	1.25(B)					
330pF(331)		0.60(6)			0.85(9)	0.85(9)	0.85(9)	1.25(B)					
390pF(391)		0.60(6)			1.25(B)	0.85(9)	0.85(9)	1.25(B)					

Continued from the preceding page.

Part Number							GRM21	0					
L x W [EIA]						2.0	0x1.25 [08	305]					
тс		C0G (5C)		C0H (6C)	P2H (6P)	R2H (6R)	S2H (6S)		S (1	L X)		T2H (6T)	U2J (7U)
Rated Volt.	200 (2D)	100 (2A)	50 (1H)	25 (1E)	50 (1H)	50 (1H)	50 (1H)	200 (2D)	100 (2A)	50 (1H)	25 (1E)	50 (1H)	50 (1H)
Capacitance (Ca	pacitance	e part num	bering coo	de) and T (mm) Dime	nsion (T D	imension	part numb	ering code	e)			
470pF(471)		0.60(6)			1.25(B)	0.85(9)	0.85(9)	1.25(B)	0.85(9)				
560pF(561)		0.60(6)			1.25(B)	1.25(B)	1.25(B)		0.85(9)			1.25(B)	
680pF(681)		0.85(9)				1.25(B)	1.25(B)		0.85(9)			1.25(B)	
820pF(821)		0.85(9)					1.25(B)		1.25(B)	0.60(6)		1.25(B)	0.60 (6)
1000pF(102)		0.85(9)							1.25(B)	0.60(6)		1.25(B)	0.60 (6)
1200pF(122)									1.25(B)	0.60(6)		1.25(B)	0.60(6)
1500pF(152)									1.25(B)	0.85(9)		1.25(B)	0.85(9)
1800pF(182)			0.60(6)						1.25(B)	0.85(9)		1.25(B)	0.85(9)
2200pF(222)			0.60(6)							0.85(9)			0.85(9)
2700pF(272)			0.60(6)	1.25(B)						1.25(B)			1.25(B)
3300pF(332)			0.60(6)	1.25(B)						1.25(B)			1.25(B)
3900pF(392)			0.60(6)	1.25(B)							0.85(9)		
4700pF(472)			0.60(6)								0.85(9)		
5600pF(562)			0.85(9)								1.25(B)		
6800pF(682)			0.85(9)								1.25(B)		
8200pF(822)			0.85(9)										
10000pF(103)			0.85(9)							0.60(6)			0.60(6)
12000pF(123)										0.60(6)			0.60(6)
15000pF(153)										0.60(6)			0.60(6)
18000pF(183)										0.60(6)			0.60(6)
22000pF(223)										0.85(9)			0.85(9)
27000pF(273)										0.85(9)			0.85(9)
33000pF(333)										1.00(A)			1.00(A)
39000pF(393)										1.25(B)			1.25(B)
47000pF(473)										1.25(B)			1.25(B)

The part numbering code is shown in ().

Dimensions are shown in mm and Rated Voltage in Vdc.

Temperature Compensating Type GRM31 Series (3.20x1.60 mm) 500V/200V/100V/50V/25V

Part Number							GR	M31						
L x W [EIA]							3.20x1.6	50 [1206]						
тс		C((5	0G (C)		C0H (6C)	P2H (6P)	R2H (6R)	S2H (6S)		(1	SL X)		T2H (6T)	U2J (7U)
Rated Volt.	500 (2H)	200 (2D)	50 (1H)	25 (1E)	25 (1E)	50 (1H)	50 (1H)	50 (1H)	200 (2D)	200 100 50 25 (2D) (2A) (1H) (1E)				50 (1H)
Capacitance (Ca	apacitance	e part nur	mbering c	ode) and	T (mm) D	imension	(T Dimen	sion part	numberir	ng code)				
1.0pF(1R0)	1.15(M)													
2.0pF(2R0)	1.15(M)													
3.0pF(3R0)	1.15(M)													
4.0pF(4R0)	1.15(M)													
5.0pF(5R0)	1.15(M)													
6.0pF(6R0)	1.15(M)													
7.0pF(7R0)	1.15(M)													
8.0pF(8R0)	1.15(M)													
9.0pF(9R0)	1.15(M)													
10pF(100)	1.15(M)													
12pF(120)	1.15(M)													
15pF(150)	1.15(M)													
18pF(180)	1.15(M)													
22pF(220)	1.15(M)													

C02E10.pdf 04.1.20

Continued from the preceding page.

Part Number							GR	M31	0					
L x W [EIA]							3.20x1.6	0 [1206]						
тс		C((5)G C)		C0H (6C)	P2H (6P)	R2H (6R)	S2H (6S)		SL (1X)			T2H (6T)	U2J (7U)
Rated Volt.	500 (2H)	200 (2D)	50 (1H)	25 (1E)	25 (1E)	50 (1H)	50 (1H)	50 (1H)	200 (2D)	100 (2A)	50 (1H)	25 (1E)	50 (1H)	50 (1 H)
Capacitance (Ca	pacitance	e part nur	nbering c	ode) and	T (mm) D	imension	(T Dimen	sion part	numberin	ig code)				
27pF(270)	1.15(M)													
33pF(330)	1.15(M)													
39pF(390)	1.15(M)													
47pF(470)	1.15(M)													
56pF(560)	1.15(M)													
68pF(680)	1.15(M)													
82pF(820)	1.15(M)													
270pF(271)		1.15(M)												
330pF(331)		1.15(M)												
390pF(391)		1.15(M)												
470pF(471)		1.15(M)												
560pF(561)									1.15(M)					
680pF(681)						0.85(9)			1.15(M)					
820pF(821)						0.85(9)	0.85(9)		1.15(M)					
1000pF(102)						1.15(M)	1.15(M)	0.85(9)	1.15(M)					
1200pF(122)						1.15(M)	1.15(M)	1.15(M)	1.15(M)					
1500pF(152)						1.15(M)	1.15(M)	1.15(M)						
1800pF(182)								1.15(M)						
2200pF(222)										1.15(M)			1.15(M)	
2700pF(272)										1.15(M)			1.15(M)	
3300pF(332)										1.15(M)			1.15(M)	
3900pF(392)										1.15(M)	0.85(9)		1.15(M)	0.85(9)
4700pF(472)										1.15(M)	0.85(9)			0.85(9)
5600pF(562)			0.85(9)								0.85(9)			0.85(9)
6800pF(682)			0.85(9)		0.85(9)						1.15(M)			1.15(M)
8200pF(822)			0.85(9)		1.15(M)						1.15(M)			1.15(M)
10000pF(103)			0.85(9)									1.15(M)		
12000pF(123)												1.15(M)		
15000pF(153)												1.15(M)		
27000pF(273)			0.85(9)											
33000pF(333)			0.85(9)											
47000pF(473)			1.15(M)											
56000pF(563)											0.85(9)			0.85(9)
68000pF(683)											1.15(M)			1.15(M)
82000pF(823)											1.15(M)			1.15(M)
0.10μF(104)				1.60(C)							1.15(M)			1.15(M)

The part numbering code is shown in $% \left({\left. {{{\bf{n}}_{\rm{s}}}} \right)_{\rm{s}}} \right)$ ().

Dimensions are shown in mm and Rated Voltage in Vdc.

High Dielectric Constant Type X5R (R6) Characteristics

тс				X! (R	5R (6)					
Part Number	GRI	115 GRM18 GRM21 GRN								
L x W [EIA]	1.00x0.5	50 [0402]	1.60x0.8	0 [0603]	2.00x1.2	25 [0805]	3.20x1.6	0 [1206]		
Rated Volt.	16 (1C)	10 (1A)	10 (1A)	6.3 (0J)	10 (1A)	6.3 (0J)	10 (1A)	6.3 (0J)		
Capacitance (Ca	pacitance part r	numbering code)	and T (mm) Dim	ension (T Dimen	sion part numbe	ring code)				
68000pF(683)		0.50 (5)								
0.10μF(104)	0.50 (5)	0.50 (5)								
0.33µF(334)			0.80(8)							

 \Box Continued from the preceding page.

тс		X5R (R6)											
Part Number	GRI	M15	GR	M18	GR	M21	GR	V I31					
L x W [EIA]	1.00x0.5	50 [0402]	1.60x0.8	30 [0603]	2.00x1.25 [0805]		3.20x1.6	0 [1206]					
Rated Volt.	16 (1C)	10 (1A)	10 (1A)	6.3 (0J)	10 (1A)	6.3 (0J)	10 (1A)	6.3 (0J)					
Capacitance (Ca	pacitance part r	numbering code)	and T (mm) Dim	ension (T Dimen	sion part numbe	ering code)							
0.47µF(474)			0.80(8)										
0.68μF(684)			0.80(8)										
1.0μF(105)			0.80(8)	0.80(8)	0.85(9)								
1.5μF(155)						0.85(9)							
2.2μF(225)					1.25(B)	1.25(B)	0.85(9)						
3.3μF(335)						1.25(B)	1.30(X)						
4.7μF(475)						1.25(B)	1.60(C)	1.15(M)					
10μF(106)							1.60(C)	1.60(C)					

The part numbering code is shown in each ().

 $3.3\mu F$ and $4.7\mu F,\, 6.3V$ rated are GRM21 series of L: 2±0.15, W: 1.25±0.15, T: 1.25±0.15.

T: 1.15 \pm 0.1mm is also available for GRM31 1.0µF for 16V.

Dimensions are shown in mm and Rated Voltage in Vdc.

High Dielectric Constant Type X7R (R7) Characteristics

тс									X. (R	7R 2 7)								
Part Number		GRI	M15				GRM18	;			GR	M21				GRM31		
L x W [EIA]	1	.00x0.5	50 [040]	2]		1.60	x0.80 [(0603]		2	.00x1.2	25 [080	5]		3.20	x1.60 [′	1206]	
Rated Volt.	50 (1H)	25 (1E)	16 (1C)	10 (1A)	100 (2A)	50 (1H)	25 (1E)	16 (1C)	10 (1A)	100 (2A)	50 (1H)	25 (1E)	16 (1C)	100 (2A)	50 (1H)	25 (1E)	16 (1C)	10 (1A)
Capacitance (Ca	pacitar	nce part	t numbe	ering co	de) and	d T (mm) Dimer	nsion (T	Dimen	sion pa	rt num	pering c	ode)					
220pF (221)	0.50 (5)					0.80 (8)												
330pF (331)	0.50 (5)					0.80 (8)												
470pF (471)	0.50 (5)					0.80 (8)												
680pF (681)	0.50 (5)					0.80 (8)												
1000pF (102)	0.50 (5)					0.80 (8)												
1500pF (152)	0.50 (5)					0.80 (8)												
2200pF (222)	0.50 (5)				0.80 (8)	0.80 (8)												
3300pF (332)	0.50 (5)				0.80 (8)	0.80 (8)												
4700pF (472)	0.50 (5)					0.80 (8)				0.85 (9)								
6800pF (682)		0.50 (5)				0.80 (8)				0.85 (9)								
10000pF (103)		0.50 (5)				0.80 (8)				1.25 (B)								
15000pF (153)			0.50 (5)			0.80 (8)												
22000pF (223)			0.50 (5)			0.80 (8)												
33000pF (333)				0.50 (5)		0.80 (8)	0.80 (8)				0.85 (9)			1.15 (M)				

Continued on the following page.

C02E10.pdf 04.1.20

Continued from the preceding page.

тс									X. (R	7R 2 7)								
Part Number		GR	M15	-			GRM18				GR	M21				GRM31		
L x W [EIA]	1	.00x0.5	50 [040	2]		1.60x0.80 [0603]			2	.00x1.2	5 [080!	5]		3.20	x1.60 [1	206]		
Rated Volt.	50 (1H)	25 (1E)	16 (1C)	10 (1A)	100 (2A)	50 (1H)	25 (1E)	16 (1C)	10 (1A)	100 (2A)	50 (1H)	25 (1E)	16 (1C)	100 (2A)	50 (1H)	25 (1E)	16 (1C)	10 (1A)
Capacitance (Ca	pacitar	nce par	t numbe	ering co	de) and	d T (mm) Dimer	nsion (T	Dimen	sion pa	rt numb	ering c	ode)					
47000pF (473)				0.50 (5)		0.80 (8)	0.80 (8)				1.25 (B)			1.15 (M)				
68000pF (683)						0.80 (8)	0.80 (8)				1.25 (B)							
0.10μF (104)			0.50 (5)	0.50 (5)		0.80 (8)	0.80 (8)	0.80 (8)			1.25 (B)	1.25 (B)						
0.15μF (154)							0.80 (8)		0.80 (8)		1.25 (B)	1.25 (B)						
0.22μF (224)								0.80 (8)	0.80 (8)		1.25 (B)	0.85 (9)						
0.33μF (334)											0.85 (9)	1.25 (B)			0.85 (9)			
0.47μF (474)											1.25 (B)	1.25 (B)	0.85 (9)		1.15 (M)			
0.68μF (684)													0.85 (9)			0.85 (9)		
1.0μF (105)													1.25 (B)		1.15 (M)	1.15 (M)	0.85 (9)	0.85 (9)
1.5μF (155)															1.60 (C)		1.15 (M)	
2.2μF (225)															1.60 (C)		1.15 (M)	0.85 (9)
3.3μF (335)																1.60 (C)		
4.7μF (475)																1.60 (C)		

The part numbering code is shown in each ().

The tolerance will be changed to L: 3.2 \pm 0.2, W: 1.6 \pm 0.2 for GRM31 16V 1.0 μ F type. Also L: 3.2 \pm 0.2, W: 1.6 \pm 0.2, T: 1.15 \pm 0.15 for GRM31 16V 1.5 μ F and 2.2 μ F type. Dimensions are shown in mm and Rated Voltage in Vdc.

High Dielectric Constant Type Y5V (F5) Characteristics

тс				1					Y5V (F5)								
Part Number		GRM15				GRM18				GR	M21				GRM31		
L x W [EIA]	1.00	x0.50 [0	0402]		1.60	x0.80 [0	0603]		2	2.00x1.2	25 [0805	5]		3.20	x1.60 [1	206]	
Rated Volt.	50 (1H)	25 (1E)	16 (1C)	100 (2A)	50 (1H)	25 (1E)	16 (1C)	10 (1A)	50 (1H)	25 (1E)	16 (1C)	10 (1A)	50 (1H)	25 (1E)	16 (1C)	10 (1A)	6.3 (0J)
Capacitance (Ca	pacitan	ce part	number	ing cod	e) and T	- (mm) [Dimensi	on (T Dii	nensior	part nu	umberin	g code)					
2200pF (222)	0.50 (5)																
4700pF (472)	0.50 (5)			0.80 (8)													
10000pF (103)	0.50 (5)				0.80 (8)												
22000pF (223)		0.50 (5)			0.80 (8)												
47000pF (473)			0.50 (5)		0.80 (8)												
0.10μF (104)		0.50 (5)	0.50 (5)		0.80 (8)	0.80 (8)			0.85 (9)								

Continued from the preceding page.

тс									Y5V (F5)								
Part Number		GRM15				GRM18				GRI	M21				GRM31		
L x W [EIA]	1.00	x0.50 [C	0402]		1.60	x0.80 [C	0603]		2	2.00x1.2	5 [0805	5]		3.20	x1.60 [1	206]	
Rated Volt.	50 (1H)	25 (1E)	16 (1C)	100 (2A)	50 (1H)	25 (1E)	16 (1C)	10 (1A)	50 (1 H)	25 (1E)	16 (1C)	10 (1A)	50 (1 H)	25 (1E)	16 (1C)	10 (1A)	6.3 (0J)
Capacitance (Ca	pacitan	ce part	number	ing cod	e) and T	" (mm) E	Dimensio	on (T Dir	mensior	part nu	Imberin	g code)					
0.22μF (224)							0.80 (8)		1.25 (B)	0.85 (9)							
0.47μF (474)							0.80 (8)	0.80 (8)		1.25 (B)			1.15 (M)				
1.0μF (105)							0.80 (8)	0.80 (8)		0.85 (9)	0.85 (9)	0.85 (9)		1.15 (M)	0.85 (9)		
2.2μF (225)										1.25 (B)	1.25 (B)	1.25 (B)			1.15 (M)	0.85 (9)	
4.7μF (475)												1.25 (B)		1.15 (M)	1.15 (M)	1.15 (M)	
10μF (106)														1.60 (C)		1.15 (M)	1.15 (M)

The part numbering code is shown in each ().

T: 1.25 $\pm 0.1 mm$ is also available for GRM21 25V or 16V 1.0 μF type.

Dimensions are shown in mm and Rated Voltage in Vdc.

High Dielectric Constant Type Z5U (E4) Characteristics

тс		Z5U (E4)	
Part Number	GRM18	GRM21	GRM31
L x W [EIA]	1.60x0.80 [0603]	2.00x1.25 [0805]	3.20x1.60 [1206]
Rated Volt.	50 (1H)	50 (1H)	50 (1H)
Capacitance (Ca	pacitance part numbering code) and T (mm) Dimension (T Dimension part numbering c	ode)
10000pF(103)	0.80(8)		
22000pF(223)	0.80(8)		
47000pF(473)		0.60 (6)	
0.10μF(104)		0.85 (9)	
0.22µF(224)			0.85 (9)

The part numbering code is shown in ().

Dimensions are shown in mm and Rated Voltage in Vdc.

Chip Monolithic Ceramic Capacitors

muRata

for Reflow Soldering GRM32/43/55 Series

1111

Features

- 1. Terminations are made of metal highly resistant to migration.
- 2. The GRM series is a complete line of chip ceramic capacitors in 10V, 16V, 25V, 50V, 100V and 200V ratings.

These capacitors have temperature characteristics ranging from C0G to Y5V.

- 3. This series consists of type LxWxT: 3.2x2.5x0.85mm to LxWxT: 5.7x5.0x2.5mm. These are suited to only reflow soldering.
- 4. Stringent dimensional tolerances allow highly reliable, high speed automatic chip placement on PCBs.
- 5. The GRM series is available in paper or plastic embossed tape and reel packaging for automatic placement.

Applications

General electronic equipment

Temperature Compensating Type GRM32/43/55 Series

Part Number	TC Code (Standard)	Rated Voltage (Vdc)	Capacitance (pF)	Length L (mm)	Width W (mm)	Thickness T (mm)
GRM32N5C2D561JV01	COG (EIA)	200	560 ±5%	3.20	2.50	1.35
GRM32N5C2D681JY21	COG (EIA)	200	680 ±5%	3.20	2.50	1.35
GRM32N5C2D821JY21	COG (EIA)	200	820 ±5%	3.20	2.50	1.35
GRM32N5C2D102JY21	COG (EIA)	200	1000 ±5%	3.20	2.50	1.35
GRM43R5C2D122JV01	COG (EIA)	200	1200 ±5%	4.50	3.20	1.80
GRM43R5C2D152JV01	COG (EIA)	200	1500 ±5%	4.50	3.20	1.80
GRM43R5C2D182JY21	COG (EIA)	200	1800 ±5%	4.50	3.20	1.80
GRM43R5C2D222JY21	COG (EIA)	200	2200 ±5%	4.50	3.20	1.80
GRM43R5C2D272JY21	COG (EIA)	200	2700 ±5%	4.50	3.20	1.80
GRM55N5C2D332JY21	COG (EIA)	200	3300 ±5%	5.70	5.00	1.35
GRM55R5C2D392JY21	COG (EIA)	200	3900 ±5%	5.70	5.00	1.80
GRM55R5C2D472JY21	COG (EIA)	200	4700 ±5%	5.70	5.00	1.80
GRM55R5C2D562JY21	COG (EIA)	200	5600 ±5%	5.70	5.00	1.80
GRM32N1X2D152JV01	SL (JIS)	200	1500 ±5%	3.20	2.50	1.35
GRM43N1X2D182JV01	SL (JIS)	200	1800 ±5%	4.50	3.20	1.35
GRM43N1X2D222JV01	SL (JIS)	200	2200 ±5%	4.50	3.20	1.35
GRM43R1X2D272JV01	SL (JIS)	200	2700 ±5%	4.50	3.20	1.80
GRM43R1X2D332JV01	SL (JIS)	200	3300 ±5%	4.50	3.20	1.80
GRM43R1X2D392JV01	SL (JIS)	200	3900 ±5%	4.50	3.20	1.80
GRM55N1X2D472JV01	SL (JIS)	200	4700 ±5%	5.70	5.00	1.35
GRM55R1X2D562JV01	SL (JIS)	200	5600 ±5%	5.70	5.00	1.80
GRM55R1X2D682JV01	SL (JIS)	200	6800 ±5%	5.70	5.00	1.80
GRM55R1X2D822JV01	SL (JIS)	200	8200 ±5%	5.70	5.00	1.80
GRM32N1X2A562JZ01	SL (JIS)	100	5600 ±5%	3.20	2.50	1.35
GRM32N1X2A682JZ01	SL (JIS)	100	6800 ±5%	3.20	2.50	1.35
GRM43N1X2A822JZ01	SL (JIS)	100	8200 ±5%	4.50	3.20	1.35
GRM43R1X2A103JZ01	SL (JIS)	100	10000 ±5%	4.50	3.20	1.80

Continued from the preceding page.

Part Number	TC Code (Standard)	Rated Voltage (Vdc)	Capacitance (pF)	Length L (mm)	Width W (mm)	Thickness T (mm)
GRM43R1X2A123JZ01	SL (JIS)	100	12000 ±5%	4.50	3.20	1.80
GRM43R1X2A153JZ01	SL (JIS)	100	15000 ±5%	4.50	3.20	1.80
GRM55M1X2A183JZ01	SL (JIS)	100	18000 ±5%	5.70	5.00	1.15
GRM55N1X2A223JZ01	SL (JIS)	100	22000 ±5%	5.70	5.00	1.35
GRM55R1X2A273JZ01	SL (JIS)	100	27000 ±5%	5.70	5.00	1.80
GRM55R1X2A333JZ01	SL (JIS)	100	33000 ±5%	5.70	5.00	1.80
GRM55R1X2A393JZ01	SL (JIS)	100	39000 ±5%	5.70	5.00	1.80
GRM32N1X1H103JZ01	SL (JIS)	50	10000 ±5%	3.20	2.50	1.35
GRM32N1X1H123JZ01	SL (JIS)	50	12000 ±5%	3.20	2.50	1.35
GRM43R1X1H153JZ01	SL (JIS)	50	15000 ±5%	4.50	3.20	1.80
GRM55M1X1H183JZ01	SL (JIS)	50	18000 ±5%	5.70	5.00	1.15
GRM55N1X1H223JZ01	SL (JIS)	50	22000 ±5%	5.70	5.00	1.35
GRM55R1X1H273JZ01	SL (JIS)	50	27000 ±5%	5.70	5.00	1.80
GRM55R1X1H333JZ01	SL (JIS)	50	33000 ±5%	5.70	5.00	1.80
GRM55R1X1H393JZ01	SL (JIS)	50	39000 ±5%	5.70	5.00	1.80

High Dielectric Constant Type Type GRM32 Series (3.20x2.50mm)

Part Number	TC Code (Standard)	Rated Voltage (Vdc)	Capacitance	Length L (mm)	Width W (mm)	Thickness T (mm)
GRM32ER61A106KC01	X5R (EIA)	10	10μF ±10%	3.20	2.50	2.50
GRM32NR72A683KA01	X7R (EIA)	100	68000pF ±10%	3.20	2.50	1.35
GRM32NR72A104KA01	X7R (EIA)	100	0.10μF ±10%	3.20	2.50	1.35
GRM32ER72A105KA01	X7R (EIA)	100	1.0μF ±10%	3.20	2.50	2.50
GRM32NR71H684KA01	X7R (EIA)	50	0.68μF ±10%	3.20	2.50	1.35
GRM32RR71H105KA01	X7R (EIA)	50	1.0μF ±10%	3.20	2.50	1.80
GRM32RR71E225KC01	X7R (EIA)	25	2.2μF ±10%	3.20	2.50	1.80
GRM32MR71C225KC01	X7R (EIA)	16	2.2μF ±10%	3.20	2.50	1.15
GRM32NR71C335KC01	X7R (EIA)	16	3.3μF ±10%	3.20	2.50	1.35
GRM32RR71C475KC01	X7R (EIA)	16	4.7μF ±10%	3.20	2.50	1.80
GRM32ER71H475KA88	X7R (EIA)	16	4.7μF ±10%	3.20	2.50	2.50
GRM32NF52A104ZA01	Y5V (EIA)	100	0.10µF +80/-20%	3.20	2.50	1.35
GRM32RF51H105ZA01	Y5V (EIA)	50	1.0µF +80/-20%	3.20	2.50	1.8
GRM32DF51H106ZA01	Y5V (EIA)	50	10µF +80/-20%	3.20	2.50	2.00
GRM329F51E475ZA01	Y5V (EIA)	25	4.7µF +80/-20%	3.20	2.50	0.85
GRM32NF51E106ZA01	Y5V (EIA)	25	10μF +80/-20%	3.20	2.50	1.35
GRM32NF51C106ZA01	Y5V (EIA)	16	10μF +80/-20%	3.20	2.50	1.35

High Dielectric Constant Type Type GRM43 Series (4.50x3.20mm)

Part Number	TC Code (Standard)	Rated Voltage (Vdc)	Capacitance (μF)	Length L (mm)	Width W (mm)	Thickness T (mm)
GRM43RR72A154KA01	X7R (EIA)	100	0.15 ±10%	4.50	3.20	1.80
GRM43RR72A224KA01	X7R (EIA)	100	0.22 ±10%	4.50	3.20	1.80
GRM43DR72A474KA01	X7R (EIA)	100	0.47 ±10%	4.50	3.20	2.00
GRM43ER72A225KA01	X7R (EIA)	100	2.2 ±10%	4.50	3.20	2.50
GRM43ER71H225KA01	X7R (EIA)	50	2.2 ±10%	4.50	3.20	2.50

2

High Dielectric Constant Type Type GRM55 Series (5.70x5.00mm)

Part Number	TC Code (Standard)	Rated Voltage (Vdc)	Capacitance (μF)	Length L (mm)	Width W (mm)	Thickness T (mm)
GRM55DR61H106KA01	X5R (EIA)	50	10.0 ±10%	5.70	5.00	2.00
GRM55DR72A105KA01	X7R (EIA)	100	1.0 ±10%	5.70	5.00	2.00
GRM55ER72A475KA01	X7R (EIA)	100	4.7 ±10%	5.70	5.00	2.50
GRM55RR71H105KA01	X7R (EIA)	50	1.0 ±10%	5.70	5.00	1.80
GRM55RR71H155KA01	X7R (EIA)	50	1.5 ±10%	5.70	5.00	1.80
GRM55ER71H475KA01	X7R (EIA)	50	4.7 ±10%	5.70	5.00	2.50
GRM55RF52A474ZA01	Y5V (EIA)	100	0.47 +80/-20%	5.70	5.00	1.80

Chip Monolithic Ceramic Capacitors

muRata

Ultra-small GRM03 Series

- Features
- 1. Small chip size (LxWxT: 0.6x0.3x0.3mm).
- 2. Terminations are made of metal highly resistant to migration.
- 3. GRM03 type is suited to only reflow soldering.
- 4. Stringent dimensional tolerances allow highly reliable, high speed automatic chip placement on PCBs.
- 5. GRM03 series are suited to miniature micro wave module, portable equipment and high frequency circuits.

Applications

- 1. Miniature micro wave module
- 2. Portable equipment
- 3. High frequency circuit

Part Numbor	Dimensions (mm)								
Part Number	L	W	Т	е	g min.				
GRM033	0.6 ±0.03	0.3 ±0.03	0.3 ±0.03	0.1 to 0.2	0.2				

Part Number			GRM03		
LxW			0.6x0.3		
тс	C0G (5C)	X5R (R6)		X7R (R7)	Y5V (F5)
Rated Volt.	25 (1E)	10 (1A)	16 (1C)	6.3 (0J)	10 (1A)
Capacitance (Ca	pacitance part numbering	code) and T (mm) Dimer	nsion (T Dimension part nu	umbering code)	
0.50pF(R50)	0.3 (3)				
1.0pF(1R0)	0.3 (3)				
2.0pF(2R0)	0.3 (3)				
3.0pF(3R0)	0.3 (3)				
4.0pF(4R0)	0.3 (3)				
5.0pF(5R0)	0.3 (3)				
6.0pF(6R0)	0.3 (3)				
7.0pF(7R0)	0.3 (3)				
8.0pF(8R0)	0.3 (3)				
9.0pF(9R0)	0.3 (3)				
10pF(100)	0.3 (3)				
12pF(120)	0.3 (3)				
15pF(150)	0.3 (3)				
18pF(180)	0.3 (3)				
22pF(220)	0.3 (3)				
27pF(270)	0.3 (3)				
33pF(330)	0.3(3)				
39pF(390)	0.3(3)				
47pF(470)	0.3(3)				
56pF(560)	0.3(3)				
68pF(680)	0.3(3)				
82pF(820)	0.3(3)				
100pF(101)	0.3(3)		0.3(3)		
150pF(151)			0.3(3)		
220pF(221)			0.3(3)		
330pF(331)			0.3(3)		
470pF(471)			0.3 (3)		
680pF(681)			0.3(3)		

C02E10.pdf 04.1.20

3

Continued from the preceding page.

Part Number		GRM03							
L×W			0.6x0.3						
тс	COG (5C)	X5R (R6)	X (I	7R R7)	Y5V (F5)				
Rated Volt.	25 (1E)	10 (1A)	16 (1C)	6.3 (0J)	10 (1A)				
Capacitance (Capacitance part numbering code) and T (mm) Dimension (T Dimension part numbering code)									
1000pF(102)			0.3 (3)						
1500pF(152)		0.3 (3)		0.3 (3)					
2200pF(222)		0.3(3)		0.3(3)	0.3(3)				
3300pF(332)		0.3(3)		0.3(3)					
4700pF(472)		0.3(3)		0.3(3)	0.3(3)				
6800pF(682)		0.3(3)		0.3(3)					
10000pF(103)		0.3(3)		0.3(3)	0.3 (3)				

The part numbering code is shown in ().

Dimensions are shown in mm and Rated Voltage in Vdc.

Chip Monolithic Ceramic Capacitors

muRata

Dimensions (mm)

1.0 ±0.05 0.5 ±0.05 0.25 ±0.05 0.1 to 0.3

т

е

g min.

0.4

W

L.

Thin Type (Flow/Reflow)

- Features
- 1. This series is suited to flow and reflow soldering. Capacitor terminations are made of metal highly resistant to migration.
- 2. Large capacitance values enable excellent bypass effects to be realized.
- 3. Its thin package makes this series ideally suited for the production of small electronic products and for mounting underneath ICs.

Applications

Thin equipment such as IC cards

Temperature Compensating Type

Part Number	TC Code (Standard)	Rated Voltage (Vdc)	Capacitance (pF)	Length L (mm)	Width W (mm)	Thickness T (mm)
GRM15X5C1H1R0CDB4	COG (EIA)	50	1.0 ±0.25pF	1.00	0.50	0.25
GRM15X5C1H2R0CDB4	COG (EIA)	50	2.0 ±0.25pF	1.00	0.50	0.25
GRM15X5C1H3R0CDB4	COG (EIA)	50	3.0 ±0.25pF	1.00	0.50	0.25
GRM15X5C1H4R0CDB4	COG (EIA)	50	4.0 ±0.25pF	1.00	0.50	0.25
GRM15X5C1H5R0CDB4	COG (EIA)	50	5.0 ±0.25pF	1.00	0.50	0.25
GRM15X5C1H6R0DDB4	COG (EIA)	50	6.0 ±0.5pF	1.00	0.50	0.25
GRM15X5C1H7R0DDB4	COG (EIA)	50	7.0 ±0.5pF	1.00	0.50	0.25
GRM15X5C1H8R0DDB4	COG (EIA)	50	8.0 ±0.5pF	1.00	0.50	0.25
GRM15X5C1H9R0DDB4	COG (EIA)	50	9.0 ±0.5pF	1.00	0.50	0.25
GRM15X5C1H100JDB4	COG (EIA)	50	10 ±5%	1.00	0.50	0.25
GRM15X5C1H120JDB4	COG (EIA)	50	12 ±5%	1.00	0.50	0.25
GRM15X5C1H150JDB4	COG (EIA)	50	15 ±5%	1.00	0.50	0.25
GRM15X5C1H180JDB4	COG (EIA)	50	18 ±5%	1.00	0.50	0.25
GRM15X5C1H220JDB4	COG (EIA)	50	22 ±5%	1.00	0.50	0.25
GRM15X5C1H270JDB4	COG (EIA)	50	27 ±5%	1.00	0.50	0.25
GRM15X5C1H330JDB4	COG (EIA)	50	33 ±5%	1.00	0.50	0.25
GRM15X5C1H390JDB4	COG (EIA)	50	39 ±5%	1.00	0.50	0.25
GRM15X5C1H470JDB4	COG (EIA)	50	47 ±5%	1.00	0.50	0.25
GRM15X5C1H560JDB4	COG (EIA)	50	56 ±5%	1.00	0.50	0.25
GRM15X5C1H680JDB4	COG (EIA)	50	68 ±5%	1.00	0.50	0.25
GRM15X5C1H820JDB4	COG (EIA)	50	82 ±5%	1.00	0.50	0.25
GRM15X5C1H101JDB4	COG (EIA)	50	100 ±5%	1.00	0.50	0.25
GRM15X5C1E121JDB4	COG (EIA)	25	120 ±5%	1.00	0.50	0.25
GRM15X5C1E151JDB4	COG (EIA)	25	150 ±5%	1.00	0.50	0.25
GRM15X5C1E181JDB4	COG (EIA)	25	180 ±5%	1.00	0.50	0.25
GRM15X5C1E221JDB4	COG (EIA)	25	220 ±5%	1.00	0.50	0.25

Part Number

GRM15X

High Dielectric Constant Type

Part Number	TC Code (Standard)	Rated Voltage (Vdc)	Capacitance (pF)	Length L (mm)	Width W (mm)	Thickness T (mm)
GRM15XR71H221KA86	X7R (EIA)	50	220 ±10%	1.00	0.50	0.25
GRM15XR71H331KA86	X7R (EIA)	50	330 ±10%	1.00	0.50	0.25
GRM15XR71H471KA86	X7R (EIA)	50	470 ±10%	1.00	0.50	0.25

C02E10.pdf 04.1.20

Continued from t	the preceding page.
------------------	---------------------

Part Number	TC Code (Standard)	Rated Voltage (Vdc)	Capacitance (pF)	Length L (mm)	Width W (mm)	Thickness T (mm)
GRM15XR71H681KA86	X7R (EIA)	50	680 ±10%	1.00	0.50	0.25
GRM15XR71H102KA86	X7R (EIA)	50	1000 ±10%	1.00	0.50	0.25
GRM15XR71H152KA86	X7R (EIA)	50	1500 ±10%	1.00	0.50	0.25
GRM15XR71E182KA86	X7R (EIA)	25	1800 ±10%	1.00	0.50	0.25
GRM15XR71E222KA86	X7R (EIA)	25	2200 ±10%	1.00	0.50	0.25
GRM15XR71C332KA86	X7R (EIA)	16	3300 ±10%	1.00	0.50	0.25
GRM15XR71C472KA86	X7R (EIA)	16	4700 ±10%	1.00	0.50	0.25
GRM15XR71C682KA86	X7R (EIA)	16	6800 ±10%	1.00	0.50	0.25

			Specifi	cations				
No.	lte	em	Temperature Compensating Type	High Dielectric Type	-	Test Method		
1	Operating Temperat) ure	−55 to +125℃	R6 : −55 to +85℃ R7 : −55 to +125℃ E4 : +10 to +85℃ F5 : −30 to +85℃				
2	2 Rated Voltage		See the previous page.		The rated voltage is may be applied cont When AC voltage is whichever is larger, voltage range.	The rated voltage is defined as the maximum voltage which may be applied continuously to the capacitor. When AC voltage is superimposed on DC voltage, V ^{P-P} or V ^{O-P} , whichever is larger, should be maintained within the rated voltage range.		
3	Appearar	ice	No defects or abnormalities		Visual inspection			
4	Dimensio	ns	Within the specified dimensions		Using calipers on mi	crometer		
5	5 Dielectric Strength		No defects or abnormalities	efects or abnormalities		No failure should be observed when *300% of the rated voltage (C0 Δ to U2J and SL) or *250% of the rated voltage (X5R, X7R, Z5U and Y5V) is applied between the terminations for 1 to 5 seconds, provided the charge/discharge current is less than 50mA. *200% for 500V		
6	Insulation Resistanc	i ce	More than 10,000M Ω or 500 Ω •	F (Whichever is smaller)	The insulation resist voltage not exceedir max. and within 2 m	ance should be meas ng the rated voltage at inutes of charging.	ured with a DC : 25℃ and 75%RH	
7	Capacita	nce	Within the specified tolerance	The capacitance/Q/I	D.F. should be measu ae shown in the table.	red at 25℃ at the		
				[R6, R7]	Item Cha	ar. Frequency	Voltage	
		Q/ 30pFmin. : Q≧1000 Dissipation Factor 30pFmax. : Q≧400+20C	W.V. : 250mm : 0.025max. W.V. : 16/10V : 0.035max. W.V. : 6.3V 0.05max (C<3.3uE)	∆C to 7U, 1X (1000pF and below)	1±0.1MHz	0.5 to 5Vrms		
Q/ 8 Dissi (D.F.)	Q/ Dissipatio		30pFmin. : Q≧1000 30pFmax. : Q≧400+20C	0.1max.(C≥3.3µF) [E4]	ΔC to 7U, 1X (more than 1000pF)	1±0.1kHz	1±0.2Vrms	
	(D.F.)		C : Nominal Capacitance (pF)	[F5] W.V. : 25Vmin.	R6, R7, F5 (10µF and below) 1±0.1kHz	1±0.2Vrms	
		: 0.05r : 0.09r W.V. : 16V/10		: 0.05max.(C<0.10µF) : 0.09max.(C≧0.10µF) W.V. : 16V/10V : 0.125max.	R6, R7, F5 (more than 10μF) 120±24Hz	0.5±0.1Vrms	
				W.V. : 6.3Vmax. : 0.15max.	E4	1±0.1kHz	0.5±0.05Vrms	
		$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		R6 : Within $\pm 15\%$ (-55 to +85°C) R7 : Within $\pm 15\%$ (-55 to +125°C) E4 : Within +22/-56% (+10 to +85°C) F5 : Within +22/-82% (-30 to +85°C)	The capacitance change should be measured after 5 min. at each specified temperature stage. (1) Temperature Compensating Type The temperature coefficient is determined using the Capacitance measured in step 3 as a reference. When cycling the temperature sequentially from step 1 throug 5 ($C0\Delta : +25$ °C to $+125$ °C : other temp. coeffs. : $+25$ °C to +85°C) the capacitance should be within the specified tolerand for the temperature approximate approximate the specified tolerand			
	Capacitance	Temperature	Within the specified tolerance		Table A. The capacitance drift between the maximu 1, 3 and 5 by the cap	t is calculated by dividum and minimum mea	ding the differences sured values in steps p 3.	
9	Characteristics	Coefficient	(Table A)		Step	lemperat 25+	2	
					2	-55±3 (for ∆C to -30±3 (f 10±3 (fo	7U/1X/R6/R7) for F5) or E4)	
					3	25±	2	
					4	125±3 (for 85±3 (for o	∆C/R7) ther TC)	
		Capacitance	(Whichever is larger.)		5	25±	2	
			fft (Whichever is larger.) *Does not apply to 1X/25V	_	 (2) High Dielectric Constant Type The ranges of capacitance change compared with the above 25°C value over the temperature ranges shown in the table should be within the specified ranges. 		red with the above hown in the table	

Continued on the following page.

Continued from the preceding page.

			Specifi	cations	
No.	lte	m	Temperature Compensating Type	High Dielectric Type	Test Method
10	Adhesive of Termin	Strength	No removal of the terminations	or other defect should occur.	Solder the capacitor to the test jig (glass epoxy board) shown in Fig. 1 using a eutectic solder. Then apply 10N* force in parallel with the test jig for 10±1sec. The soldering should be done either with an iron or using the reflow method and should be conducted with care so that the soldering is uniform and free of defects such as heat shock. *2N (GR□03) 5N (GR□15, GRM18)
		Appearance	No defects or abnormalities		
		Capacitance	Within the specified tolerance		
11	Vibration Resistance	Q/D.F.	30pFmin. : Q≧1000 30pFmax. : Q≧400+20C C : Nominal Capacitance (pF)	$\begin{array}{l} [R6,R7] \\ W.V.: 25Vmin.: 0.025max. \\ W.V.: 16/10V: 0.035max. \\ W.V.: 6.3V: \\ 0.05max. (C{<}3.3\muF) \\ 0.1max. (C{\geq}3.3\muF) \\ [E4] \\ W.V.: 25Vmin.: 0.025max. \\ [F5] \\ W.V.: 25Vmin. \\ : 0.05max. (C{<}0.10\muF) \\ : 0.09max. (C{\geq}0.10\muF) \\ W.V.: 16V/10V: 0.125max. \\ \\ W.V.: 6.3Vmax.: 0.15max. \end{array}$	Solder the capacitor to the test jig (glass epoxy board) in the same manner and under the same conditions as (10). The capacitor should be subjected to a simple harmonic motion having a total amplitude of 1.5mm, the frequency being varied uniformly between the approximate limits of 10 and 55Hz. The frequency range, from 10 to 55Hz and return to 10Hz, should be traversed in approximately 1 minute. This motion should be applied for a period of 2 hours in each of 3 mutually perpendicular directions (total of 6 hours).
			No crack or marked defect shou	lld occur.	Solder the capacitor on the test jig (glass epoxy board) shown in Fig. 2 using a eutectic solder. Then apply a force in the direction shown in Fig. 3. The soldering should be done either with an iron or using the reflow method and should be conducted with care so that the soldering is uniform and free of defects such as heat shock.
12	Deflection	ı	Type a GR□03 0.3 GR□15 0.4 GRM21 1.2 GRM31 2.2 GRM32 2.2 GRM43 3.5 GRM55 4.5		20 50 Pressurizing speed : 1.0mm/sec. Pressurize Pressurize Flexure : ≤1 Capacitance meter 45 45 45

Continued from the preceding page.

			Specifi	cations					
No.	lte	em	Temperature Compensating Type	High Dielectric Type		Test	Method		
13	Solderabi Terminati	llity of on	75% of the terminations are to b continuously.	be soldered evenly and	Immerse the ca rosin (JIS-K-59 Preheat at 80 t immerse in eut 230±5℃.	apacitor in a so 102) (25% rosin o 120°C for 10 ectic solder so	lution of in weigh to 30 sec lution for	ethanol (JIS-K- t proportion). onds. After pre 2±0.5 seconds	-8101) and cheating, s at
			The measured and observed characteristics should satisfy the specifications in the following table.						
		Appearance	No marking defects						
		Capacitance Change	Within $\pm 2.5\%$ or ± 0.25 pF (Whichever is larger)	R6, R7 : Within ±7.5% E4, F5 : Within ±20%	Preheat the capacitor at 120 to 150°C for 1 minute. Immerse the capacitor in a eutectic solder solution at 270±5°C for 10±0.5 seconds. Let sit at room temperature for 24±2 hour (temperature compensating type) or 48±4 hours (high dielectric constant type), then measure. •Initial measurement for high dielectric constant type Perform a heat treatment at 150 ±18°C for one hour and then let sit for 48±4 hours at room temperature. Perform the initial measurement. *Preheating for GRM32/43/55 Step Temperature 1 100°C to 120°C 1 100°C to 200°C 1 min.			270+5℃	
14	Resistance to Soldering Heat	Q/D.F.	30pFmin. : Q≧1000 30pFmax. : Q≧400+20C C : Nominal Capacitance (pF)	$[R6, R7] \\ W.V.: 25Vmin.: 0.025max. \\ W.V.: 16/10V: 0.035max. \\ W.V.: 6.3V: \\ 0.05max. (C<3.3\muF) \\ 0.1max. (C\geq3.3\muF) \\ [E4] \\ W.V.: 25Vmin.: 0.025max. \\ [F5] \\ W.V.: 25Vmin. \\ : 0.05max. (C<0.10\muF) \\ : 0.09max. (C \geq 0.10\muF) \\ W.V.: 16V/10V: 0.125max. \\ W.V.: 6.3Vmax.: 0.15max. \\ W.V. \\ \end{tabular}$				24±2 hours h dielectric and then n. n.	
		I.R.	More than 10,000M Ω or 500 Ω •	F (Whichever is smaller)					
		Dielectric Strength	No failure						
			The measured and observed ch specifications in the following ta	aracteristics should satisfy the ble.					
		Appearance	No marking defects						
		Capacitance Change	Within $\pm 2.5\%$ or ± 0.25 pF (Whichever is larger)	R6, R7 : Within ±7.5% E4, F5 : Within ±20%	Fix the capacite	or to the suppo	rting jig ii (10) Pe	n the same ma	inner and
				[R6, R7] W.V. : 25Vmin. : 0.025max. W.V. : 16/10V : 0.035max. W.V. : 6.3V	according to th table. Let sit fo or 48±4 hour (temperature, th	e four heat trea r 24±2 hours (1 high dielectric o hen measure.	atments li temperationstant	sted in the folloure compensatives at room	owing iting type)
	Tomporaturo			0.05max. (C<3.3µF)	Step	1	2	3	4
15	Cycle	Q/D.F.	30pFmin. : Q≧1000 30pFmax. : Q≧400+20C C : Nominal Capacitance (pE)	0.1max. (C≥3.3µF) [E4] W.V. : 25Vmin. : 0.025max.	Temp. (℃)	Min. Operating Temp.+0/-3	Room Temp.	Max. Operating Temp.+3/-0	Room Temp.
			C. Norminal Capacitance (pr)	[F5]	Time (min.)	30±3	2 to 3	30±3	2 to 3
				 W.V.: 25Vmin. : 0.05max. (C<0.10μF) : 0.09max. (C≥0.10μF) W.V.: 16V/10V : 0.125max. W.V.: 6.3Vmax.: 0.15max. 	•Initial measure Perform a heat let sit for 48±4 Perform the ini	ement for high treatment at 1 hours at room tial measureme	dielectric 50 ±18℃ temperat ent.	constant type for one hour a ure.	and then
		I.R.	More than 10,000M Ω or 500 Ω •	F (Whichever is smaller)					
	-	Dielectric Strength	No failure						

Continued on the following page. \fbox

Continued from the preceding page.

			Specifi	cations	
No.	Ite	m	Temperature Compensating Type	High Dielectric Type	Test Method
			The measured and observed ch specifications in the following ta	aracteristics should satisfy the ble.	
		Appearance	No marking defects		
		Capacitance Change	Within $\pm 5\%$ or ± 0.5 pF (Whichever is larger)	R6, R7 : Within ±12.5% E4, F5 : Within ±30%	
16	Humidity Steady State	Q/D.F.	30pF and over : Q≥350 10pF and over 30pF and below : Q≥275+5C/2 10pF and below : Q≥200+10C C : Nominal Capacitance (pF)	[R6, R7] W.V. : 25Vmin. : 0.05max. W.V. : 16/10V : 0.05max. W.V. : 6.3V 0.075max. (C<3.3µF) 0.125max. (C≥3.3µF) [E4] W.V. : 25Vmin. : 0.05max. [F5] W.V. : 25Vmin. : 0.075max. (C<0.10µF) : 0.125max. (C≥0.10µF) W.V. : 16V/10V : 0.15max. W.V. : 6.3Vmax. : 0.2max.	Let the capacitor sit at 40±2°C and 90 to 95% humidity for 500±12 hours. Remove and let sit for 24±2 hours (temperature compensating type) or 48±4 hours (high dielectric constant type) at room tem- perature, then measure.
		I.R.	More than 1,000M Ω or 50 Ω • F	(Whichever is smaller)	•
		Dielectric Strength No failure			
			The measured and observed ch specifications in the following ta	aracteristics should satisfy the ble.	
		Appearance	No marking defects		
		Capacitance Change	Within ±7.5% or ±0.75pF (Whichever is larger)	R6, R7 : Within ±12.5% E4 : Within ±30% F5 : Within ±30% [W.V. : 10Vmax.] F5 : Within +30/-40%	
17	Humidity Load	Q/D.F.	30pF and over : Q≥200 30pF and below : Q≥100+10C/3 C : Nominal Capacitance (pF)	$[R6, R7] \\ W.V. : 25Vmin. : 0.05max. \\ W.V. : 16/10V : 0.05max. \\ W.V. : 6.3V \\ 0.075max. (C<3.3\muF) \\ 0.125max. (C\geq3.3\muF) \\ [E4] \\ W.V. : 25Vmin. : 0.05max. \\ [F5] \\ W.V. : 25Vmin. \\ : 0.075max. (C<0.10\muF) \\ : 0.125max. (C\geq0.10\muF) \\ W.V. : 16V/10V : 0.15max. \\ W.V. : 6.3Vmax. : 0.2max. \\ W.V. : 0.2max \\ W.V. : 0.2max \\ W.V. : 0.2max \\ W.V. : $	 Apply the rated voltage at 40±2°C and 90 to 95% humidity for 500±12 hours. Remove and let sit for 24±2 hours (temperature compensating type) or 48±4 hours (high dielectric constant type) at room temperature, then measure. The charge/discharge current is less than 50mA. Initial measurement for F5/10V max. Apply the rated DC voltage for 1 hour at 40±2°C. Remove and let sit for 48±4 hours at room temperature. Perform initial measurement.
		I.R.	More than 500MΩ or 25Ω • F (V	Vhichever is smaller)	
		Dielectric Strength	No failure		

Continued on the following page.

Continued from the preceding page.

			Specifi	cations	
No.	lte	em	Temperature Compensating Type	High Dielectric Type	Test Method
			The measured and observed characteristics should satisfy the specifications in the following table.		
		Appearance	No marking defects		
		Capacitance Change	Within ±3% or ±0.3pF (Whichever is larger)	R6, R7 : Within ±12.5% E4 : Within ±30% F5 : Within ±30% (Cap<1.0μF) F5 : Within +30/−40% (Cap≧1.0μF)	Apply 200% of the rated voltage for 1000±12 hours at the
18	High Temperature Load	Q/D.F.	30pF and over : Q≥350 10pF and over 30pF and below : Q≥275+5C/2 10pF and below : Q≥200+10C C : Nominal Capacitance (pF)	$ \begin{array}{l} [R6,R7] \\ W.V.: 25Vmin.: 0.05max. \\ W.V.: 16/10V: 0.05max. \\ W.V.: 6.3V \\ 0.075max. (C{<}3.3\muF) \\ 0.125max. (C{\geq}3.3\muF) \\ [E4] \\ W.V.: 25Vmin.: 0.05max \\ [F5] \\ W.V.: 25Vmin. \\ : 0.075max. (C{<}0.10\muF) \\ : 0.125max. (C{\geq}0.10\muF) \\ : 0.125max. (C{\geq}0.10\muF) \\ W.V.: 16V/10V: 0.15max. \\ W.V.: 6.3Vmax.: 0.2max. \\ \end{array} $	maximum operating temperature ±3°C. Let sit for 24±2 hours (temperature compensating type) or 48±4 hours (high dielectric constant type) at room temperature, then measure. The charge/discharge current is less than 50mA. •Initial measurement for high dielectric constant type. Apply 200% of the rated DC voltage for one hour at the maximum operating temperature ±3°C. Remove and let sit for 48±4 hours at room temperature. Perform initial measurement. *150% for 500V and C≥10µF
	I.R. M	More than 1,000M Ω or 50 Ω •F (, Whichever is smaller)		
		Dielectric Strength	No failure		

Table A

Capacitance Change from 25°C (%)							
Char. Code	Nominal Values (ppm/℃)*	_!	55	_	30	_	10
		Max.	Min.	Max.	Min.	Max.	Min.
5C	0 ± 30	0.58	-0.24	0.40	-0.17	0.25	-0.11
6C	0 ± 60	0.87	-0.48	0.59	-0.33	0.38	-0.21
6P	-150 ± 60	2.33	0.72	1.61	0.50	1.02	0.32
6R	-220 ± 60	3.02	1.28	2.08	0.88	1.32	0.56
6S	-330 ± 60	4.09	2.16	2.81	1.49	1.79	0.95
6T	-470 ± 60	5.46	3.28	3.75	2.26	2.39	1.44
7U	-750 ±120	8.78	5.04	6.04	3.47	3.84	2.21
1X	+350 to -1000	-	_	-	-	-	-

*Nominal values denote the temperature coefficient within a range of 25℃ to 125℃ (for △C)/85℃ (for other TC).

Chip Monolithic Ceramic Capacitors

Thin Layer Large-capacitance Type

Features

- 1. Smaller size and higher capacitance value.
- 2. High reliability and no polarity.
- 3. Excellent pulse responsibility and noise reduction due to the low impedance at high frequency.

Applications

General electronic equipment

Dort Number	Dimensions (mm)							
Part Number	L	W	Т	e min.	g min.			
GRM033	0.6 ±0.03	0.3 ±0.03	0.3 ±0.03	0.1 to 0.2	0.2			
GRM155	1.0 ±0.05	0.5 ±0.05	0.5 ±0.05	0.15 to 0.3	0.4			
GRM185	1.6 ±0.1	0.8 ±0.1	0.5 +0/-0.2	0.2 to 0.5	0.5			
GRM188	1.6 ±0.1	0.8 ±0.1	0.8 ±0.1	0.2 to 0.5	0.5			
GRM216			0.6 ±0.1					
GRM219	2.0 ±0.1	1.25 ±0.1	0.85 ±0.1	0.2 to 0.7	0.7			
GRM21B			1.25 ±0.1					
GRM316	2 2 ±0 15	1 6 ±0 15	0.6 ±0.1	0 2 to 0 9	15			
GRM319	3.Z ±0.15	1.0 ±0.15	0.85 ±0.1	0.3 10 0.8	1.5			
GRM31M	2 2 40 2	14+02	1.6 ±0.2	0.2 to 0.9	1 5			
GRM31C	3.2 <u>±</u> 0.2	1.0 ±0.2	1.15 ±0.1	0.3 10 0.8	1.5			
GRM32D	2 2 40 2	2 5 +0 2	2.0 ±0.2	0.2	10			
GRM32E	3.2 <u>±</u> 0.3	2.3 ±0.2	2.5 ±0.2	0.5	1.0			
GRM43D			2.0 ±0.2					
GRM43E	4.5 ±0.4	3.2 ±0.3	2.5 ±0.2	0.3	2.0			
GRM43S			2.8 ±0.2					
GRM55F	5.7 ±0.4	5.0 ±0.4	3.2 ±0.2	0.3	2.0			

muRata

Part Number	TC Code (Standard)	Rated Voltage (Vdc)	Capacitance	Length L (mm)	Width W (mm)	Thickness T (mm)
GRM188R61C105KE93	X5R (EIA)	16	1.0μF ±10%	1.60	0.80	0.80
GRM219R61C225KA88	X5R (EIA)	16	2.2μF ±10%	2.00	1.25	0.85
GRM319R61C475KA88	X5R (EIA)	16	4.7μF ±10%	3.20	1.60	0.85
GRM32ER61C226KE20	X5R (EIA)	16	22μF ±10%	3.20	2.50	2.50
GRM185R61A105KE36	X5R (EIA)	10	1.0μF ±10%	1.60	0.80	0.50
GRM155R61A154KE19	X5R (EIA)	10	1.5μF ±10%	1.00	0.50	0.50
GRM155R61A224KE19	X5R (EIA)	10	2.2μF ±10%	1.00	0.50	0.50
GRM188R61A225KE34	X5R (EIA)	10	2.2µF ±10%	1.60	0.80	0.80
GRM188R61A225ME34	X5R (EIA)	10	2.2μF ±10%	1.60	0.80	0.80
GRM216R61A225KE24	X5R (EIA)	10	2.2µF ±10%	2.00	1.25	0.60
GRM219R61A225KA01	X5R (EIA)	10	2.2µF ±10%	2.00	1.25	0.85
GRM219R61A335KE19	X5R (EIA)	10	3.3µF ±10%	2.00	1.25	0.85
GRM316R61A335KE19	X5R (EIA)	10	3.3µF ±10%	3.20	1.60	0.60
GRM219R61A475KE19	X5R (EIA)	10	4.7μF ±10%	2.00	1.25	0.85
GRM219R61A475KE34	X5R (EIA)	10	4.7μF ±10%	2.00	1.25	0.85
GRM316R61A475KE19	X5R (EIA)	10	4.7μF ±10%	3.20	1.60	0.60
GRM319R61A475KA01	X5R (EIA)	10	4.7μF ±10%	3.20	1.60	0.85
GRM31MR61A106KE19	X5R (EIA)	10	10μF ±10%	3.20	1.60	1.15
GRM033R60J153KE01	X5R (EIA)	6.3	15000pF ±10%	0.6	0.3	0.3
GRM033R60J223KE01	X5R (EIA)	6.3	22000pF ±10%	0.6	0.3	0.3
GRM033R60J333KE01	X5R (EIA)	6.3	33000pF ±10%	0.6	0.3	0.3
GRM033R60J393KE19	X5R (EIA)	6.3	39000pF ±10%	0.6	0.3	0.3
GRM033R60J473KE19	X5R (EIA)	6.3	47000pF ±10%	0.6	0.3	0.3
GRM033R60J104KE19	X5R (EIA)	6.3	0.10μF ±10%	0.6	0.3	0.3
GRM155R60J154KE01	X5R (EIA)	6.3	0.15µF ±10%	1.00	0.50	0.50
GRM155R60J224KE01	X5R (EIA)	6.3	0.22µF ±10%	1.00	0.50	0.50
GRM155R60J334KE01	X5R (EIA)	6.3	0.33µF ±10%	1.00	0.50	0.50
GRM155R60J474KE19	X5R (EIA)	6.3	0.47µF ±10%	1.00	0.50	0.50
GRM155R60J105KE19	X5R (EIA)	6.3	1.0μF ±10%	1.00	0.50	0.50
GRM185R60J105KE21	X5R (EIA)	6.3	1.0μF ±10%	1.60	0.80	0.50
GRM185R60J105KE26	X5R (EIA)	6.3	1.0μF ±10%	1.60	0.80	0.50
GRM185R60J225KE26	X5R (EIA)	6.3	2.2μF ±10%	1.60	0.80	0.50
GRM188R60J225KE01	X5R (EIA)	6.3	2.2μF ±10%	1.60	0.80	0.80
GRM188R60J225KE19	X5R (EIA)	6.3	2.2μF ±10%	1.60	0.80	0.80
GRM188R60J475KE19	X5R (EIA)	6.3	4.7μF ±10%	1.60	0.80	0.80
GRM219R60J475KE01	X5R (EIA)	6.3	4.7μF ±10%	2.00	1.25	0.85
GRM219R60J106KE19	X5R (EIA)	6.3	10μF ±10%	2.00	1.25	0.85
GRM219R60J106ME19	X5R (EIA)	6.3	10μF ±20%	2.00	1.25	0.85

Continued from the preceding page.

Part Number	TC Code (Standard)	Rated Voltage (Vdc)	Capacitance	Length L (mm)	Width W (mm)	Thickness T (mm)
GRM21BR60J106KE01	X5R (EIA)	6.3	10μF ±10%	2.00	1.25	1.25
GRM21BR60J106KE19	X5R (EIA)	6.3	10μF ±10%	2.00	1.25	1.25
GRM21BR60J106ME01	X5R (EIA)	6.3	10μF ±20%	2.00	1.25	1.25
GRM21BR60J106ME19	X5R (EIA)	6.3	10µF +10/-20%	2.00	1.25	1.25
GRM21BR60J226ME39	X5R (EIA)	6.3	22µF ±20%	2.00	1.25	1.25
GRM31CR60J226ME19	X5R (EIA)	6.3	22µF ±20%	3.20	1.60	1.60
GRM32DR60J226KA01	X5R (EIA)	6.3	22μF ±10%	3.20	2.50	2.00
GRM32DR60J336ME19	X5R (EIA)	6.3	33µF ±10%	3.20	2.50	2.00
GRM32ER60J476ME20	X5R (EIA)	6.3	47μF ±20%	3.20	2.50	2.50
GRM32ER60J107ME20	X5R (EIA)	6.3	100μF ±20%	3.20	2.50	2.50
GRM43SR60J107ME20	X5R (EIA)	6.3	100μF ±20%	4.50	3.20	2.80
GRM32ER71A226KE20	X7R (EIA)	10	22μF ±10%	3.20	2.50	2.50
GRM32ER71A226ME20	X7R (EIA)	10	22µF ±20%	3.20	2.50	2.50
GRM188F51A225ZE01	Y5V (EIA)	10	2.2µF +80/-20%	1.60	0.80	0.80
GRM188F50J225ZE01	Y5V (EIA)	6.3	2.2µF +80/-20%	1.60	0.80	0.80
GRM21BF50J106ZE01	Y5V (EIA)	6.3	10µF +80/-20%	2.00	1.25	1.25

Specifications and Test Methods

No.	Item	Specifications	Test Method				
1	Operating Temperature Range	R6 : −55℃ to +85℃ R7 : −55℃ to +125℃ F5 : −30℃ to +85℃ C8 : −55℃ to +105℃					
2	Rated Voltage	See the previous pages.	The rated voltage is defined as the maximum voltage which may be applied continuously to the capacitor. When AC voltage is superimposed on DC voltage, V ^{p,p} or V ^{o,p} , whichever is larger, should be maintained within the rated voltage range.				
3	Appearance	No defects or abnormalities	Visual inspection				
4	Dimensions	Within the specified dimension	Using calipers				
5	Dielectric Strength	No defects or abnormalities	No failure should be observed when 250% of the rated voltage is applied between the terminations for 1 to 5 seconds, provided the charge/discharge current is less than 50mA.				
6	Insulation Resistance	50Ω • F min.	The insulation resistance should be measured with a DC voltage not exceeding the rated voltage at 25°C and 75%RH max. and within 1 minute of charging.				
7	Capacitance	Within the specified tolerance	The capacitance/D.F. should be measured at 25°C at the				
8	Dissipation Factor (D.F.)	R6 / R7 / C8 : 0.1 max. F5 : 0.2 max.	Trequency and voltage shown in the table.CapacitanceFrequencyVoltageC≤10µF (10V min.)*11±0.1kHz1.0±0.2Vrms*1C≤10µF (6.3V max.)1±0.1kHz0.5±0.1VrmsC>10µF120±24Hz0.5±0.1Vrms*1 Table 1 items are applied to 0.5+/-0.1Vrms.Table 1GRM155R61A124-224KGRM185R61A105KGRM188R61A225KGRM219R61A475K				
9	Capacitance Temperature Characteristics	Char. Temp. Range Reference Temp. Cap. Change R6 -55 to +85°C 25°C Within±15% R7 -55 to +125°C 25°C Within±15% F5 -30 to +85°C 25°C Within±25% C8 -55 to +105°C 25°C Within±22%	The capacitance change should be measured after 5 min. at each specified temperature stage. The ranges of capacitance change compared with the 25°C value over the temperature ranges shown in the table should be within the specified ranges. Measuring Voltage : GRM43 R6 0J/1A 336/476 : 1.0+/-0.2Vrms				
10	Adhesive Strength of Termination	No removal of the terminations or other defects should occur.	Solder the capacitor to the test jig (glass epoxy board) shown in Fig.1 using a eutectic solder. Then apply *210N force in parallel with the test jig for 10±1 sec. The soldering should be done either with an iron or using the reflow method and should be conducted with care so that the soldering is uniform and free of defects such as heat shock. **25N (GR□15, GRM18) / 2N (GR□03) **25N (GR□15, GRM18) / 2N (GR□03) •				

Continued on the following page.

Specifications and Test Methods

Continued from the preceding page.

5

No.	lte	em	Specifications	Test Method				
		Appearance	No defects or abnormalities	Solder the capacitor to the test jig (glass epoxy board) in the same manner and under the same conditions as (10). The capacitor should be subjected to a simple harmonic motion having a total amplitude of 1.5mm, the frequency being varied uniformly between the approximate limits of 10 and 55Hz. The frequency range, from 10 to 55Hz and return to 10Hz, should be traversed in approximately 1 minute. This motion should be applied for a period of 2 hours in each 3 mutually perpendicular directions (total of 6 hours).				
		Capacitance	Within the specified tolerance					
11	Vibration	D.F.	R6 / R7 / C8 : 0.1 max. F5 : 0.2 max.					
			No cracking or marking defects should occur.	Solder the cap	pacitor to the te	st jig (gla	iss epoxy board	d) shown in
			Pressurize R230	Fig.2 using a shown in Fig. iron or using t care so that th heat shock.	eutectic solder. 3. The soldering he reflow meth he soldering is t	Then ap g should od and sl uniform a	ply a force in the be done either nould be conduind free of defe	ne direction with an incted with cts such as
			700 € 000 Flexure : ≤1			+0		
12	Deflectio	n	Capacitance meter 45 45		ļ	100	1	t : 1.6mm
			- · · · - · ·				(GR□03, GR□15 :	t : 0.8mm)
			Fig 3	Туре	a		b	С
			Tig.o	$\frac{\text{GR}_03}{\text{GR}_15}$	0.3		1.5	0.3
				GRM18	1.0		3.0	1.2
				GRM21	1.2		4.0	1.65
				GRM31	2.2		5.0	2.0
				GRM32	2.2		5.0	2.9
				GRIVI43	3.5		8.0	56
					1.0	Fig.2	0.0	(in mm)
13	13 Solderability of Termination		75% of the terminations is to be soldered evenly and continuously.	Immerse the capacitor in a solution of ethanol (JIS-K-8101) and rosin (JIS-K-5902) (25% rosin in weight proportion). Preheat at 80 to 120°c for 10 to 30 seconds. After preheating, immerse in eutectic solder solution for 2 \pm 0.5 seconds at 230 \pm 5°c.				
		Appearance	No marking defects	 Preheat the capacitor at 120 to 150°C for 1 minute. Immerse the capacitor in a eutectic solder solution at 270±5°C for 10±0.5 seconds. Let sit at room temperature for 48±4 hours, then measure. Initial measurement Perform a heat treatment at 150 ⁺1°°C for one hour and then let sit for 48±4 hours at room temperature. Perform the initial measurement. 				
		Capacitance	R6 / R7 / C8 : Within ±7.5%					
	Resistance	Change	F5 : Within ±20%					
14	to Soldering	D.F.	R6 / R7 / C8 : 0.1 max. F5 : 0.2 max.					
	Heat	I.R.	50Ω • F min.					
		Dielectric Strength	No failure					
		Appearance	No marking defects	Fix the capaci	tor to the supp	orting jig	in the same ma	anner and
		Capacitance Change	R6 / R7 / C8 : Within ±7.5% F5 : Within ±20%	under the same conditions as (10). Perform the five cycles according to the four heat treatments listed in the following				
		D.F.	R6 / R7 / C8 : 0.1 max. F5 : 0.2 max.	sure.				
	Temperature	I.R.	50Ω • F min.	Step	Min	2	3 Max	4
15	Sudden Change			Temp.(℃)	Operating Temp.+0/-3	Room Temp.	Operating Temp.+3/-0	Room Temp.
		Dieloctric		Time(min.)	30±3	2 to 3	30±3	2 to 3
		Strength	No failure	•Initial measu Perform a he let sit for 48± Perform the i	rement at treatment at 4 hours at roor nitial measurer	150 <u>+</u> 18 n temper nent.	c for one hour ature.	and then

Continued on the following page. $\boxed{}$

Specifications and Test Methods

Continued from the preceding page.

No.	Ite	em	Specifications	Test Method		
16	High Temperature High Humidity (Steady)	Appearance Capacitance Change	No marking defects R6 / R7 / C8 : Within ±12.5% F5 : Within ±30%	Apply the rated voltage at 40±2°C and 90 to 95% humidity fo 500±12 hours. The charge/discharge current is less than 50		
		D.F.	R6 / R7 / C8 : 0.2 max. F5 : 0.4 max.	•Initial measurement Perform a heat treatment at 150 [±] 18°C for one hour and then let sit for 48±4 hours at room temperature.		
		I.R.	12.5Ω • F min.	 Perform the initial measurement. Measurement after test Perform a heat treatment at 150[±]₁8°C for one hour and then let sit for 48±4 hours at room temperature, then measure 		
		Appearance	No marking defects	Apply 150% of the rated voltage for 1000±12 hours at the		
		Capacitance Change	R6 / R7 / C8 : Within ±12.5% F5 : Within ±30%	maximum operating temperature ±3°C. The charge/discharge current is less than 50mA.		
17	Durability	D.F.	R6 / R7 / C8 : 0.2 max. F5 : 0.4 max.	 Initial measurement Perform a heat treatment at 150[±]1^o℃ for one hour and then 		
		I.R.	25Ω • F min.	 let sit for 48±4 hours at room temperature. Perform the initial measurement. •Measurement after test Perform a heat treatment at 150[±]18°C for one hour and then let sit for 48±4 hours at room temperature, then measure. 		

Chip Monolithic Ceramic Capacitors

Low-dissipation Type

Features

- 1. Mobile telecommunication and RF module, mainly
- 2. Quality improvement of telephone calls, Low power consumption, yield ratio improvement

Applications

VCO, PA, Mobile Telecommunications

Dort Number	Dimensions (mm)							
Part Number	L	W	Т	е	g min.			
GJM15	1.0 ±0.05	0.5 ±0.05	0.5 ±0.05	0.15 to 0.3	0.4			
GJM03	0.6 ±0.03	0.3 ±0.03	0.3 ±0.03	0.1 to 0.2	0.2			

Part Number	TC Code (Standard)	Rated Voltage (Vdc)	Capacitance (pF)	Length L (mm)	Width W (mm)	Thickness T (mm)
GJM1555C1HR50CB01	COG (EIA)	50	0.50 ±0.25pF	1.00	0.50	0.50
GJM1555C1HR75CB01	COG (EIA)	50	0.75 ±0.25pF	1.00	0.50	0.50
GJM1555C1H1R0CB01	COG (EIA)	50	1.0 ±0.25pF	1.00	0.50	0.50
GJM1555C1H1R1CB01	COG (EIA)	50	1.1 ±0.25pF	1.00	0.50	0.50
GJM1555C1H1R2CB01	COG (EIA)	50	1.2 ±0.25pF	1.00	0.50	0.50
GJM1555C1H1R3CB01	COG (EIA)	50	1.3 ±0.25pF	1.00	0.50	0.50
GJM1555C1H1R5CB01	COG (EIA)	50	1.5 ±0.25pF	1.00	0.50	0.50
GJM1555C1H1R6CB01	COG (EIA)	50	1.6 ±0.25pF	1.00	0.50	0.50
GJM1555C1H1R8CB01	COG (EIA)	50	1.8 ±0.25pF	1.00	0.50	0.50
GJM1555C1H2R0CB01	COG (EIA)	50	2.0 ±0.25pF	1.00	0.50	0.50
GJM1555C1H2R2CB01	COG (EIA)	50	2.2 ±0.25pF	1.00	0.50	0.50
GJM1555C1H2R4CB01	COG (EIA)	50	2.4 ±0.25pF	1.00	0.50	0.50
GJM1555C1H2R7CB01	COG (EIA)	50	2.7 ±0.25pF	1.00	0.50	0.50
GJM1555C1H3R0CB01	COG (EIA)	50	3.0 ±0.25pF	1.00	0.50	0.50
GJM1555C1H3R3CB01	COG (EIA)	50	3.3 ±0.25pF	1.00	0.50	0.50
GJM1555C1H3R6CB01	COG (EIA)	50	3.6 ±0.25pF	1.00	0.50	0.50
GJM1555C1H3R9CB01	COG (EIA)	50	3.9 ±0.25pF	1.00	0.50	0.50
GJM1555C1H4R0CB01	COG (EIA)	50	4.0 ±0.25pF	1.00	0.50	0.50
GJM1555C1H4R3CB01	COG (EIA)	50	4.3 ±0.25pF	1.00	0.50	0.50
GJM1555C1H4R7CB01	COG (EIA)	50	4.7 ±0.25pF	1.00	0.50	0.50
GJM1555C1H5R0CB01	COG (EIA)	50	5.0 ±0.25pF	1.00	0.50	0.50
GJM1555C1H5R1CB01	COG (EIA)	50	5.1 ±0.25pF	1.00	0.50	0.50
GJM1555C1H5R6CB01	COG (EIA)	50	5.6 ±0.25pF	1.00	0.50	0.50
GJM1555C1H6R0CB01	COG (EIA)	50	6.0 ±0.25pF	1.00	0.50	0.50
GJM1555C1H6R0DB01	COG (EIA)	50	6.0 ±0.5pF	1.00	0.50	0.50
GJM1555C1H6R2CB01	COG (EIA)	50	6.2 ±0.25pF	1.00	0.50	0.50
GJM1555C1H6R8CB01	COG (EIA)	50	6.8 ±0.25pF	1.00	0.50	0.50
GJM1555C1H7R0CB01	COG (EIA)	50	7.0 ±0.25pF	1.00	0.50	0.50
GJM1555C1H7R0DB01	COG (EIA)	50	7.0 ±0.5pF	1.00	0.50	0.50
GJM1555C1H7R5CB01	COG (EIA)	50	7.5 ±0.25pF	1.00	0.50	0.50
GJM1555C1H8R0CB01	COG (EIA)	50	8.0 ±0.25pF	1.00	0.50	0.50
GJM1555C1H8R0DB01	COG (EIA)	50	8.0 ±0.5pF	1.00	0.50	0.50
GJM1555C1H8R2CB01	COG (EIA)	50	8.2 ±0.25pF	1.00	0.50	0.50
GJM1555C1H9R0CB01	COG (EIA)	50	9.0 ±0.25pF	1.00	0.50	0.50
GJM1555C1H9R0DB01	COG (EIA)	50	9.0 ±0.5pF	1.00	0.50	0.50
GJM1555C1H9R1CB01	COG (EIA)	50	9.1 ±0.25pF	1.00	0.50	0.50
GJM1555C1H100JB01	COG (EIA)	50	10 ±5%	1.00	0.50	0.50
GJM1555C1H100RB01	COG (EIA)	50	10 ±2.5%	1.00	0.50	0.50

C02E10.pdf 04.1.20

 \fbox Continued from the preceding page.

Part Number	TC Code (Standard)	Rated Voltage (Vdc)	Capacitance (pF)	Length L (mm)	Width W (mm)	Thickness T (mm)
GJM1555C1H120JB01	COG (EIA)	50	12 ±5%	1.00	0.50	0.50
GJM1555C1H150JB01	COG (EIA)	50	15 ±5%	1.00	0.50	0.50
GJM1555C1H180JB01	COG (EIA)	50	18 ±5%	1.00	0.50	0.50

Specifications and Test Methods

			Specifications																	
No.	lte	em	Temperature Compensating Type	Test Method																
1	Operating Temperati	ure Range	−55 to +125℃																	
2	2 Rated Voltage		See the previous pages	The rated voltage is defined as the maximum voltage which may be applied continuously to the capacitor. When AC voltage is superimposed on DC voltage, V ^{P,P} or V ^{O,P} , whichever is larger, should be maintained within the rated voltage range.																
3	Appearar	nce	No defects or abnormalities	Visual inspection																
4	Dimensio	ons	Within the specified dimensions	Using calipers																
5	Dielectric	c Strength	No defects or abnormalities	No failure should be observed when 300% of the is applied between the terminations for 1 to 5 sec provided the charge/discharge current is less that	rated voltage conds, n 50mA.															
6	Insulation (I.R.)	Resistance	10,000MΩ min. or 500Ω • F min. (Whichever is smaller)	The insulation resistance should be measured with voltage not exceeding the rated voltage at 25° C at max. and within 2 minutes of charging.	th a DC nd 75%RH															
7	Capacita	nce	Within the specified tolerance	The capacitance/Q should be measured at 25° C a	at the															
				frequency and voltage shown in the table.	-l)															
8	0		30pF max. : Q≧400+20C	$\frac{11000 \text{ Frequency}}{1+0.1 \text{ MHz}}$	elow)															
Ŭ	2		C : Nominal Capacitance (pF)	Voltage 0.5 to 5Vr m s																
					·															
		Capacitance	Within the specified tolerance (Table A)	The capacitance change should be measured after each specified temperature stage	er 5 min. at															
	Capacitance Temperature Characteristics	Tomporatura		Temperature coefficient is determined using the																
		ce rre stics Capacitance Drift	Within the specified tolerance (Table A)																	
9			Capacitance Drift	Capacitance Drift	Capacitance Drift	Capacitance Drift		When cycling the temperature sequentially from s 5, ($\Delta C : +25^{\circ}C$ to+125°C : other temp. coeffs. : +2 the capacitance should be within the specified tol temperature coefficient and capacitance change a The capacitance drift is calculated by dividing the between the maximum and minimum measured v 1.3 and 5 by the capacitance value in step 3	step 1 through 25° to 85°) lerance for the as Table A. e differences values in steps											
							Drift	Drift	Drift	Drift	Drift	Drift	Drift	Drift	Drift	Capacitance Drift	Capacitance Drift	Capacitance Drift	Capacitance Drift	Capacitance Drift
				1 25±2																
				2 -55±3																
				3 25±2																
				4 125±3																
				5 25±2																
10	Adhesive	Adhesive Strength		Solder the capacitor to the test jig (glass epoxy boa Fig. 1 using a eutectic solder. Then apply a 5N* for with the test jig for 10 \pm 1sec. The soldering should with an iron or using the reflow method and should with care so that the soldering is uniform and free o as heat shock.	ard) shown in ce in parallel be done either be conducted of defects such *2N (GJM03)															
10	of Termir	ation	No removal of the terminations or other defect should occur.	Type a b Solder GJM03 0.3 0.9 GJM15 0.4 1.5	r resist d electrode or r foil 0.3 0.5 (in mm)															

34
Continued from the preceding page.

			Specifications	Test Method			
No.	Ite	m	Temperature Compensating Type				
		Appearance	No defects or abnormalities	Solder the capacitor to the test jig (glass epoxy board) in the			
		Capacitance	Within the specified tolerance	same manner and under the same conditions as (10).			
11	Vibration Resistance	Q	30pF max. : Q≥400+20C C : Nominal Capacitance (pF)	The capacitor should be subjected to a simple narmonic motion having a total amplitude of 1.5mm, the frequency being varied uniformly between the approximate limits of 10 and 55Hz. The frequency range, from 10 to 55Hz and return to 10Hz, should be traversed in approximately 1 minute. This motion should be applied for a period of 2 hours in each of 3 mutually perpendicular directions (total of 6 hours).			
			No cracking or marking defects should occur	Solder the capacitor to the test jig (glass epoxy boards) shown in Fig. 2 using a eutectic solder. Then apply a force in the direction shown in Fig. 3. The soldering should be done either with an iron or using the			
12	12 Deflection		Type a b c GJM03 0.3 0.9 0.3 GJM15 0.4 1.5 0.5 (in mm)	reflow method and should be conducted with care so that the soldering is uniform and free of defects such as heat shock. $\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array}{c} \end{array}} \begin{array}{c} \end{array}} \begin{array}{c} \begin{array}{c} \end{array}} \begin{array}{c} \end{array}} \begin{array}{c} \end{array}} \begin{array}{c} \end{array}} \begin{array}{c} \begin{array}{c} \end{array}} \end{array}} \begin{array}{c} \end{array}} \begin{array}{c} \end{array}} \begin{array}{c} \end{array}} \end{array}} \begin{array}{c} \end{array}} \end{array}} \begin{array}{c} \end{array}} \begin{array}{c} \end{array}} \end{array}} \begin{array}{c} \end{array}} \end{array}} \begin{array}{c} \end{array}} \end{array}} \end{array}} \begin{array}{c} \end{array}} \end{array}}$			
13	Solderability of Termination 75% of the terminations are to be soldered evenly and continuously.		75% of the terminations are to be soldered evenly and continuously.	rosin (JIS-K-5902) (25% rosin in weight proportion). Preheat at 80 to 120°C for 10 to 30 seconds. After preheating, immerse in eutectic solder solution for 2 ± 0.5 seconds at 230 ± 5 °C.			
		The measured and observed characteristics should satisfy the specifications in the following table.					
		Appearance	No marking defects				
14	Resistance	Capacitance Change	Within ±2.5% or ±0.25pF (Whichever is larger)	Preheat the capacitor at 120 to 150°C for 1 minute. Immerse the capacitor in a eutectic solder solution at 270±5°C			
14	Heat	Q	30pF and below : Q≧400+20C C : Nominal Capacitance (pF)	for 10 ± 0.5 seconds. Let sit at room temperature for 24 ± 2 hours.			
		I.R.	More than 10,000M Ω or 500 Ω • F (Whichever is smaller)				
		Dielectric Strength	No failure				
			The measured and observed characteristics should satisfy the specifications in the following table.	Fix the capacitor to the supporting is in the same mapper and			
		Appearance	No marking defects	under the same conditions as (10). Perform the five cycles			
		Capacitance Change	Within $\pm 2.5\%$ or ± 0.25 pF	according to the four heat treatments listed in the following table. Let sit for 24 ± 2 hours at room temperature, then measure.			
15	l'emperature Cycle	Q	$30pF$ and below : Q \geq 400+20C C : Nominal Capacitance (pF)	Step 1 2 3 4 Temp (%) Min. Operating Room Max. Operating Room			
		LR.	More than 10 000MQ or 500Q • F (Whichever is smaller)	$\frac{1}{2} \frac{1}{2} \frac{1}$			
		Dielectric	No failure	$1 \text{ ime (min.)} 30\pm3 2 \text{ to } 3 30\pm3 2 \text{ to } 3$			
			The measured and observed characteristics should satisfy the specifications in the following table.				
		Appearance	No marking defects				
16	Humidity, Steady	Capacitance Change	Within ±5% or ±0.5pF (Whichever is larger)	Let the capacitor sit at 40±2°C and 90 to 95% humidity for 500±12 hours.			
	State	Q	10pF and over, 30pF and below : Q≧275+ ½ C 10pF and below : Q≧200+10C C : Nominal Capacitance (pF)	type) at room temperature, then measure.			
					I.R.	More than 10,000M Ω or 500 Ω • F (Whichever is smaller)	

Continued on the following page. \square

Continued from the preceding page.

			Specifications	
No.	p. Item		Temperature Compensating Type	Test Method
			The measured and observed characteristics should satisfy the specifications in the following table.	
		Appearance	No marking defects	
	Humidity	Capacitance Change	Within ±7.5% or ±0.75pF (Whichever is larger)	Apply the rated voltage at $40\pm2^{\circ}$ and 90 to 95% humidity for 500 ± 12 hours.
17	Load	Q	30pF and below : $Q \ge 100 + \frac{10}{3}$ C C : Nominal Capacitance (pF)	Remove and let sit for 24±2 hours at room temperature, then measure. The charge/discharge current is less than 50mA.
		I.R.	More than 500M Ω or 25 Ω • F (Whichever is smaller)	
		Dielectric Strength	No failure	_
		1	The measured and observed characteristics should satisfy the specifications in the following table.	
		Appearance	No marking defects	
	High	Capacitance Change	Within $\pm 3\%$ or ± 0.3 pF (Whichever is larger)	Apply 200% of the rated voltage for 1000±12 hours at the maximum operating temperature ±3°C. Let sit for 24±2 hours
18	Temperature Load	٥	10pF and over, 30pF and below : $Q \ge 275 + \frac{5}{2}$ C 10pF and below : $Q \ge 200+10$ C C : Nominal Capacitance (pF)	(temperature compensating type) at room temperature, then measure. The charge/discharge current is less than 50mA.
		I.R.	More than 1,000M Ω or 50 Ω • F (Whichever is smaller)	
		Dielectric Strength	No failure	
19	ESR	·	0.5pF≦C≦1pF : 350mΩ • pF below 1pF <c≦5pf 300mω="" :="" below<br="">5pF<c≦10pf 250mω="" :="" below<="" td=""><td>The ESR should be measured at room Temperature. and frequency 1 ± 0.2GHz with the equivalent of BOONTON Model 34A.</td></c≦10pf></c≦5pf>	The ESR should be measured at room Temperature. and frequency 1 ± 0.2 GHz with the equivalent of BOONTON Model 34A.
			10pF <c≦20pf 400mω="" :="" below<="" td=""><td>The ESR should be measured at room Temperature. and frequency 500+50MHz with the equivalent of HPR753B</td></c≦20pf>	The ESR should be measured at room Temperature. and frequency 500+50MHz with the equivalent of HPR753B

Table A

	T	Capacitance Change from 25°C Value (%)					
Char. Code	(ppm/°C) Note 1	-5	5℃	-3	0°C	-1	0°C
		Max.	Min.	Max.	Min.	Max.	Min.
5C	0±30	0.58	-0.24	0.40	-0.17	0.25	-0.11

Note 1 : Nominal values denote the temperature coefficient within a range of 25 to $125^{\circ}C.(for \Delta C)$

: 1kHz, 0.5Vrms : 1kHz, 1Vrms : 1MHz, 1Vrms

C0G 50V

X7R 50V

Z5U 50V

Y5V 50V

50

40

GRM Series Data

■ Capacitance-Temperature Characteristics

■ Capacitance-AC Voltage Characteristics

■ Impedance-Frequency Characteristics

■ Capacitance Change-Aging

10

Capacitance Change [%]

-20

-40

-60

-80

-100

■ Capacitance-DC Voltage Characteristics

Measuring condition Z5U X7R, Y5V C0G

> 20 DC Voltage [Vdc]

30

■ Allowable Voltage-Frequency

Continued on the following page. \square

GRM Series Data

Continued from the preceding page.

■ Allowable Current-Frequency

■ Allowable Apparent Power

muRata

Chip Monolithic Ceramic Capacitors

Microchips

Features

- 1. Better microwave characteristics
- 2. Suitable for by-passing
- 3. High density mounting

Applications

- 1. Optical device for telecommunication
- 2. IC, IC packaging built-in
- 3. Measuring equipment

Dort Number		Dimensions (mm)	
Part Number	L	W	Т
GMA05X	0.5 ±0.05	0.5 ±0.05	0.35 ±0.05
GMA085	0.8 ±0.05	0.8 ±0.05	0.5 ±0.1

Part Number	TC Cod (Standard)	Rated Voltage (Vdc)	Capacitance	Length L (mm)	Width W (mm)	Thickness T (mm)
GMA05XR71H471MD01	X7R (EIA)	50	470pF ±20%	0.5	0.5	0.35
GMA05XR71C102MD01	X7R (EIA)	16	1000pF ±20%	0.5	0.5	0.35
GMA05XR71C152MD01	X7R (EIA)	16	1500pF ±20%	0.5	0.5	0.35
GMA05XR71C222MD01	X7R (EIA)	16	2200pF ±20%	0.5	0.5	0.35
GMA085R71C103MD01	X7R (EIA)	16	10000pF ±20%	0.8	0.8	0.5
GMA05XF51C472ZD01	Y5V (EIA)	16	4700pF +80/-20%	0.5	0.5	0.35
GMA05XF51C682ZD01	Y5V (EIA)	16	6800pF +80/-20%	0.5	0.5	0.35
GMA085F51C473ZD01	Y5V (EIA)	16	47000pF +80/-20%	0.8	0.8	0.5
GMA05XF51A153ZD01	Y5V (EIA)	10	15000pF +80/-20%	0.5	0.5	0.35
GMA085F51A104ZD01	Y5V (EIA)	10	0.10μF +80/-20%	0.8	0.8	0.5

No.	lte	em	S	pecifications	Test Method				
1	Operating Temperat) ture	R7 : −55℃ to +125℃ F5 : −30℃ to +85℃	R7 :					
2	Rated Vo	ltage	See the previous pages.		The rated volt may be applie When AC volt whichever is la age range.	age is defined d continuously age is superim arger, should b	as the m to the ca posed or be mainta	aximum voltage apacitor. n DC voltage, V ined within the	e which ^{rթ.թ} or V ^{o.թ} , rated volt-
3	Appearar	nce	No defects or abnormalitie	es	Visual inspect	ion			
4	Dimensio	ns	See the previous pages.		Visual inspect	ion			
5	Dielectric	: Strength	No defects or abnormalitie	No failure shou voltage is appl provided the cl	uld be observed ied between the harge/discharge	l when a v e both terr e current i	voltage of 250% minations for 1 t s less than 50m	o of the rated to 5 seconds, nA.	
6	Insulation (I.R.)	Insulation Resistance $10,000M\Omega$ min. (I.R.)			The insulation age not excee humidity and	resistance she eding the rated within 2 minute	ould be m voltage a s of char	neasured with a at normal tempe ging.	a DC volt- erature and
7	Capacita	nce	Within the specified tolera	nce	The capacitar frequency and	ice should be r d 1±0.2Vr.m.s.	neasurec in voltag	l at 25℃ with 1: e.	±0.1kHz in
8	Dissipatic (D.F.)	n Factor	R7 : 0.035 max. F5 : 0.09 max. (for 16V) : 0.125 max. (for 10V)	D.F. should be capacitance.	e measured un	ider the s	ame conditions	at the	
9	Capacitar Temperat Character	nce ure fistics	Char. Temp. Range R7 -55 to +125% F5 -30 to +85%	Char. Temp. Range Reference Temp. Cap. Change Rate R7 -55 to +125℃ 25℃ Within±15% F5 -30 to +85℃ 25℃ Within±32%			ange in r n in the ta ould be m stage.	eference to 25° able should be leasured after 5	°C within within the 5 min. at
10	Mechanical Strength	Bond Strength	Pull force : 3.0g min.		MIL-STD-883 Method 2011 Condition D Mount the capacitor on a gold metallized alumina substrate with Au-Sn (80/20) and bond a 20µm (0.0008 inch) gold wire to the capacitor terminal using an ultrasonic wedge bond. Then, pull wire.		strate with re to the nen, pull		
		Die Shear Strength	Die Shear force : 200g min	Die Shear force : 200g min.		MIL-STD-883 Method 2019 Mount the capacitor on a gold metallized alumina substrate with Au-Sn (80/20). Apply the force parallel to the substrate.			bstrate bstrate.
		Appearance	No defects or abnormalitie	95					
	Vibration	Capacitance	Within the specified tolera	nce	Ramp frequency from 10 to 55Hz then return to 10Hz all within 1 minute Amplitude 15 mm (0.06 inch) max total excursion				
11	Resistance	D.F.	R7 : 0.035 max. F5 : 0.09 max. (for 16V) : 0.125 max. (for 10V)		Apply this motion for a period of 2 hours in each of 3 mutually perpendicular directions (total 6 hours).				
			The measured values sho table.	ould satisfy the values in the following	The capacitor ture after one	should be set hour heat of tr	for 48±4 eatment a	hours at room at 150 ±°₀ ℃, the capacitor to	tempera- hen mea-
			Item Appearance	Specifications No marked defect	porting jig in the	ne same mann	er and ur	nder the same of	conditions
			Capacitance Chapac	R7 Within±7.5%	as (11) and co	onduct the five	cycles ac	cording to the	tempera-
12	Temperat	ure Cycle		F5 ······ Within±20%	hours at room	temperature.	tollowing	table. Set it for sure.	48±4
			I.K.	R7 ······ 0.035 max	Step	1	2	3	4
			D.F.	F5 0.09 max.(for 16V)	Temp (°C)	Min. Operating	Room	Max. Operating	Room
			Dielectrie Strongth	0.125 max.(for 10V)		lemp.—́š	Temp.		Temp.
					lime(min.)	30±3	2 to 3	30±3	2 to 3
			The measured values sho table.	ould satisfy the values in the following					
			Appearance	Specifications No marked defect					
	L Is constants		Capacitanas Chanas	R7 Within±12.5%	Set the capac	itor for 500 ± 12	2 hours at	: 40±20℃, in 90	0 to 95%
13	Steady S	State)		F5 ······ Within±30%	Take it out an	d set it for 48+	4 hours a	at room temper	ature then
	(c.cuuy c		I.R.	More than 1,000MΩ	measure.				
			D.F.	F5 0.125 max.(for 16V) 0.15 max.(for 10V)					
			Dielectric Strength	No failure					

7

Continued on the following page.

Continued from the preceding page.

No.	Item	S	pecifications	Test Method
14	Humidity Load	The measured values should satisfy the values in the following table. Item Specifications Appearance No marked defect Capacitance Change R7 ······ Within±12.5% F5 ······ Within±38% I.R. I.R. More than 500MΩ R7 ····· 0.05 max. F5 ······ 0.125 max.(for 16V) 0.15 max.(for 10V) Dielectric Strength		 Apply the rated voltage for 500±12 hours at 40±20°C, in 90 to 95% humidity and set it for 48±4 hours at room temperature, then measure. The charge/discharge current is less than 50mA. Initial measurement for Y5V Perform a heat treatment at 150^{±0}/₇₀°C for one hour and then let sit for 48±4 hours at room temperature. Perform the initial measurement.
15	High Temperature Load	Item Specifications Appearance No marked defect Capacitance Change R7 ······ Within±12.5% F5 ····· Within±38% I.R. More than 1,000MΩ R7 ····· 0.05 max. D.F. F5 ····· 0.125 max.(for 16V) 0.15 max.(for 10V)		A voltage treatment should be given to the capacitor, in which a DC voltage of 200% the rated voltage is applied for one hour at the maximum operating temperature $\pm 3^{\circ}$ then it should be set for 48±4 hours at room temperature and the initial measurement should be conducted. Then apply the above mentioned voltage continuously for 1000±12 hours at the same temperature, remove it from the bath, and set it for 48±4 hours at room temperature, then measure. The charge/discharge current is less than 50mA.

Mounting for testing : The capacitors should be mounted on the substrate as shown below using die bonding and wire bonding when tests No. 11 to 15 are performed.

muRata

Chip Monolithic Ceramic Capacitors

Capacitor Arrays

Features

- 1. High density mounting due to mounting space saving
- 2. Mounting cost saving

Applications

8

General electronic equipment

GNM1M2/212				
Dout Number		Dimensio	ons (mm)	
Part Number	L	W	Т	Р
GNM1M2	1.37 ±0.15	1.0 ±0.15	0.6 ±0.1	0.64 ±0.05
GNM212	20+015	1 25 ±0 15	0.85 ±0.1	1.0 ±0.1
GNM214	2.0 ±0.15	1.25 ±0.15	0.6 ±0.1	0.5 ±0.05
GNM314	3.2 ±0.15	1.6 ±0.15	0.8 ±0.1	0.8 ±0.1
		1	I.U ±0.1	

Temperature Compensating Type

Part Number	GNI	M31		
LxW	3.2>	(1.6		
тс	C0G (5 C)			
Rated Volt.	100 (2A)	50 (1H)		
Capacitance (Ca	apacitance part numbering code) and T (mm) Dimension (T Dimen	sion part numbering code)		
10pF(100)	0.8(4)	0.8(4)		
11pF(110)	0.8(4)	0.8(4)		
12pF(120)	0.8(4)	0.8(4)		
13pF(130)	0.8(4)	0.8(4)		
15pF(150)	0.8(4)	0.8(4)		
16pF(160)	0.8(4)	0.8(4)		
18pF(180)	0.8(4)	0.8(4)		
20pF(200)	0.8(4)	0.8(4)		
22pF(220)	0.8(4)	0.8(4)		
24pF(240)	0.8(4)	0.8(4)		
27pF(270)	0.8(4)	0.8(4)		
30pF(300)	0.8(4)	0.8(4)		
33pF(330)	0.8(4)	0.8(4)		
36pF(360)	0.8(4)	0.8(4)		
39pF(390)	0.8(4)	0.8(4)		
43pF(430)	0.8(4)	0.8(4)		
47pF(470)	0.8(4)	0.8(4)		
51pF(510)	0.8(4)	0.8(4)		
56pF(560)	0.8(4)	0.8(4)		
62pF(620)	0.8(4)	0.8(4)		
68pF(680)	0.8(4)	0.8(4)		
75pF(750)	0.8(4)	0.8(4)		
82pF(820)	0.8(4)	0.8(4)		
91pF(910)	0.8(4)	0.8(4)		
100pF(101)	0.8(4)	0.8(4)		
110pF(111)	0.8(4)	0.8(4)		
120pF(121)	0.8(4)	0.8(4)		
130pF(131)	0.8(4)	0.8(4)		
150pF(151)	0.8(4)	0.8(4)		
160pF(161)		0.8(4)		
180pF(181)		0.8(4)		

Note Please read rating and
 CAUTION (for storage, operating, rating, soldering, mounting and handling) in this PDF catalog to prevent smoking and/or burning, etc.
 This catalog has only typical specifications. Therefore, you are requested to approve our product specifications or to transact the approval sheet for product specifications before ordering.

C02E10.pdf 04.1.20

Continued from the preceding page.

Part Number	GN	M31			
L×W	3.2x1.6				
тс	C0G (5C)				
Rated Volt.	100 (2A)	50 (1H)			
Capacitance (Ca	Capacitance (Capacitance part numbering code) and T (mm) Dimension (T Dimension part numbering code)				
200pF(201)		0.8(4)			
220pF(221)		0.8(4)			
240pF(241)		0.8(4)			
270pF(271)		0.8(4)			
300pF(301)		0.8(4)			
330pF(331)		0.8(4)			
360pF(361)		0.8(4)			

The part numbering code is shown in each (). The (4) code in T(mm) means number of elements (four). Dimensions are shown in mm and Rated Voltage in Vdc.

High Dielectric Constant Type GNM1 Series

Part Number	GNM1M				
L x W	1.37x1.00				
тс	X7R (R7)				
Rated Volt.	16 (1C)	10 (1A)			
Capacitance (Capacitance part numbering code) and T (mm) Dimension (T Dimension part numbering code)					
22000pF(223)	0.6(2)				
47000pF(473)	0.6(2)				
0.10μF(104)		0.6(2)			

The part numbering code is shown in each (). The (2) code in T(mm) means number of elements (two).

Dimensions are shown in mm and Rated Voltage in Vdc.

High Dielectric Constant Type GNM2 Series

Part Number	GNM21		
L x W	2.0x1.25		
тс	X7R (R7)		
Rated Volt.	50 (1H)		
Capacitance (Capacitance part numbering code) and T (mm) Dimension (T Dimension part numbering code)			
1000pF(102)	0.6(4)		
10000pF(103)	0.6(4)		

The part numbering code is shown in each (). The (4) code in T(mm) means number of elements (four). Dimensions are shown in mm and Rated Voltage in Vdc.

High Dielectric Constant Type GNM3 Series

Part Number	GNM31								
L x W		3.2x1.6							
тс	X7R (R7)				Y5V (F5)				
Rated Volt.	100 (2A)	50 (1H)	25 (1E)	16 (1C)	100 (2A)	50 (1H)	16 (1C)		
Capacitance (Capacitance part numbering code) and T (mm) Dimension (T Dimension part numbering code)									
220pF(221)	0.8(4)								

Continued on the following page.

ANote Please read rating and ACAUTION (for storage, operating, rating, soldering, mounting and handling) in this PDF catalog to prevent smoking and/or burning, etc. This catalog has only typical specifications. Therefore, you are requested to approve our product specifications or to transact the approval sheet for product specifications before ordering.

 \square Continued from the preceding page.

Part Number	GNM31						
L x W				3.2x1.6			
тс		X (F	7R 8 7)			Y5V (F5)	
Rated Volt.	100 (2A)	50 (1H)	25 (1E)	16 (1C)	100 (2A)	50 (1H)	16 (1C)
Capacitance (Ca	pacitance part nu	mbering code) and	T (mm) Dimension	n (T Dimension par	t numbering code)		1
270pF(271)	0.8 (4)						
330pF(331)	0.8 (4)						
390pF(391)	0.8 (4)	0.8(4)					
470pF(471)	0.8 (4)	0.8(4)					
560pF(561)	0.8(4)	0.8(4)					
680pF(681)	0.8 (4)	0.8 (4)					
820pF(821)	0.8 (4)	0.8(4)					
1000pF(102)	0.8 (4)	0.8(4)					
1200pF(122)	0.8 (4)	0.8(4)					
1500pF(152)	0.8 (4)	0.8(4)					
1800pF(182)	0.8 (4)	0.8(4)					
2200pF(222)	0.8 (4)	0.8 (4)			0.8 (4)		
2700pF(272)	0.8 (4)	0.8 (4)					
3300pF(332)	0.8(4)	0.8 (4)			0.8 (4)		
3900pF(392)	0.8 (4)	0.8 (4)					
4700pF(472)	0.8(4)	0.8 (4)			0.8 (4)		
5600pF(562)		0.8 (4)					
6800pF(682)		0.8(4)					
8200pF(822)		0.8(4)					
10000pF(103)		0.8(4)					
12000pF(123)		0.8(4)					
15000pF(153)		0.8(4)					
18000pF(183)			0.8(4)				
22000pF(223)				0.8(4)		0.8(4)	
27000pF(273)				0.8(4)			
33000pF(333)				0.8(4)		0.8(4)	
39000pF(393)				0.8(4)			
47000pF(473)				1.0(4)		0.8(4)	
68000pF(683)				1.0(4)			0.8(4)
0.10μF(104)				1.0(4)			0.8(4)
0.15μF(154)							0.8(4)

The part numbering code is shown in each (). The (4) code in T(mm) means number of elements (four). Dimensions are shown in mm and Rated Voltage in Vdc.

8

Specifications and Test Methods

			5	Specifications					
No.	lte	em	Temperature Compensating Type	High Dielectric Type		Test Method			
1	Operating Temperatu	ire Range	5C : −55℃ to +125℃	R7 : −55℃ to +125℃ F5 : −30℃ to +85℃					
2	2 Rated Voltage		See the previous pages.		The rated voltage is defined as the maximum voltage whic may be applied continuously to the capacitor. When AC voltage is superimposed on DC voltage, V ^{P-P} or V whichever is larger, should be maintained within the rated age range.		ge which V ^{p.p} or V ^{o.p} , e rated volt-		
3	Appearar	nce	No defects or abnormaliti	es	Visual inspection				
4	Dimensio	n	Within the specified dime	nsions	Using calipers				
5	Dielectric	Strength	No defects or abnormaliti	es	No failure should be c (5C) or 250% of the ra the terminations for 1 charge current is less	observed when 300 ated voltage (R7, F to 5 seconds, prov than 50mA.	0% of the ra 5) is applie vided the cl	ated voltage ed between harge/dis-	
6	6 Insulation Resistance More than 10,000MΩ or 500Ω • F (Whichever is smaller)			500Ω • F	The insulation resista age not exceeding the and within 2 minutes	nce should be mea e rated voltage at 2 of charging.	asured with 25℃ and 75	a DC volt- 5%RH max.	
7	Capacita	nce	Within the specified tolera	ance	The capacitance/Q/D	F. should be meas	sured at 25	℃ at the fre-	
			30pF min. : Q≧1000	Char 251/ min 1/1/ 101/	quency and voltage s	hown in the table.	-	7 66	
8	Q/Dissipation Factor (D.F.)		30pF max. : Q≤400+20C	R7 0.025 max. 0.035 max. 0.035 max.	Item Char	5C	R.	/, F5	
-			C : Nominal Capacitance	F5 0.05 max. 0.07 max	Voltage	0.5 to 5Vr m s	1.0+0	2Vrms	
9	Capacitance Temperature Characteristics	Capacitance Change Temperature Coefficient Capacitance Drift	(pF) Within the specified tolerance (Table A) Within the specified tolerance (Table A) Within ±0.2% or ±0.05 pF (Whichever is larger)	Char. Temp. Range Reference Temp. Cap. Change R7 -55 to +125°C 25°C Within±15% F5 -30 to +85°C 25°C Within±22%	The capacitance char each specified tempe (1) Temperature Com The temperature Com The temperature Com capacitance meas When cycling the t through 5, the cap tolerance for the te change as Table A The capacitance d differences betwee values in steps 1, 3 Step 1 2 3 4 5 (2) High Dielectric Con The ranges of cap above 25°c value of table should be wit	nge should be mea rature stage. pensating Type oefficient is detern ured in step 3 as a emperature seque acitance should be emperature coeffici rift is calculated by en the maximum ar 3 and 5 by the capa <u>Temper</u> 25 <u>125±3 (for 5C/ R</u> 25 125±3 (for 5C/ 25 nstant Type acitance change c over the temperatu	sured after reference. ntially from within the ent and ca dividing th ad minimun acitance va ature (°C) 5±2 7), -30±3 5±2 7), -30±3 5±2 7), -30±3 5±2 7), -30±3 5±2	r 5 min. at g the specified pacitance e n measured lue in step 3. (for F5) (F5) it (F5)	
10	10 Adhesive Strength of Termination		No removal of the terminations or other defect should occur.		$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				

Continued on the following page.

Continued from the preceding page.

			S	specifications				
No.	lte	m	Temperature Compensating Type	High Dielectric Type	Test Method			
		Appearance	No defects or abnormalitie	es	Solder the capacitor to the test jig (glass epoxy board) in the			
		Capacitance	Within the specified tolera	ance	The capacitor should be subjected to a simple harmonic motion			
11	Vibration Resistance	Q/D.F.	30pF min. : Q≧1000 30pF max. : Q≧400+20C C : Nominal Capacitance (pF)	Char. 25V min. 16V 10V R7 0.025 max. 0.035 max. 0.035 max. F5 0.05 max. 0.07 max. -	having a total amplitude of 1.5mm, the frequency being varied uniformly between the approximate limits of 10 and 55Hz. The frequency range, from 10 to 55Hz and return to 10Hz, should be traversed in approximately 1 minute. This motion should be applied for a period of 2 hours in each of 3 mutually perpendicular directions (total of 6 hours).			
	12 Deflection		No cracking or marking de	efects should occur.	Solder the capacitor on the test jig (glass epoxy board) shown			
				•GNM□□2	in Fig. 2 using a eutectic solder. Then apply a force in the direction shown in Fig. 3 for 5 ± 1 sec. The soldering should be done either with an iron or using the reflow method and should be conducted with care so that the soldering is uniform and free of defects such as heat shock. $ \begin{array}{c} 20 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 1$			
12			Type a GNM1M 2.0±0 GNM21 2.0±0 GNM31 2.5±0	b c d 1.0 0	R230 Flexure : ≤1 Capacitance meter 45 45 (in mm) Fig. 3			
				Fig. 2	t=0.8mm (GNM21), 1.6mm (GNM31)			
13	Solderability of 75% of the terminations are to be soldered evenly and continuously.			re to be soldered evenly and	Immerse the capacitor in a solution of ethanol (JIS-K-8101) and rosin (JIS-K-5902) (25% rosin in weight proportion). Preheat at 80 to 120°C for 10 to 30 seconds. After preheating, immerse in eutectic solder solution for 2±0.5 seconds at 230±5°C.			
			The measured and obsers specifications in the follow	ved characteristics should satisfy the ving table.				
		Appearance	No marking defects		Preheat the capacitor at 120 to 150°C for 1 minute. Immerse the			
		Capacitance Change	Within ±2.5% or ±0.25pF (Whichever is larger)	R7 : Within ±7.5% F5 : Within ±20%	capacitor in a eutectic solder solution at 270±5°C for 10±0.5 seconds. Let sit at room temperature for 24±2 hours (tempera-			
14	Resistance to Soldering Heat	Q/D.F.	30pF min. : Q≧1000 30pF max. : Q≧400+20C C. : Nominal Capacitance	Char. 25V min. 16V 10V R7 0.025 max. 0.035 max. 0.035 max. F5 0.05 max. 0.07 max. -	 ture compensating type) or 48±4 hours (high dielectric constant type), then measure. Initial measurement for high dielectric constant type 			
			(pF)		Let sit for 48 ± 4 hours at room temperature. Perform the initial			
		I.R.	More than 10,000M Ω or 5	500Ω • F (Whichever is smaller)	measurement.			
		Dielectric Strength	No failure					
			The measured and obsers specifications in the follow	ved characteristics should satisfy the ving table.	Fix the capacitor to the supporting jig in the same manner and under the same conditions as (10). Perform the five cycles			
		Appearance	No marking defects		according to the four heat treatments listed in the following			
		Capacitance Change	Within $\pm 2.5\%$ or $\pm 0.25pF$ (Whichever is larger)	R7 : Within ±7.5% F5 : Within ±20%	or 48 ± 4 hours (high dielectric constant type) at room tempera- ture, then measure			
15	Temperature Cycle	Q/D.F.	30pF min. : Q≥1000 30pF max. : Q≥400+20C C : Nominal Capacitance (pF)	Char. 25V min. 16V 10V R7 0.025 max. 0.035 max. 0.035 max. F5 0.05 max. 0.07 max. -	Step 1 2 3 4 Temp. (°C) Min. Operating Temp. ± 3 Room Temp. ± 3 Max. Operating Temp. ± 3 Room Temp. ± 3 Time (min.) 30±3 2 to 3 30±3 2 to 3			
		I.R.	More than 10,000MΩ or 5	500Ω • F (Whichever is smaller)	• Initial measurement for high dielectric constant type Perform a heat treatment at $150 \pm 90^{\circ}$ for one hour and then			
		Dielectric Strength	No failure	· · · ·	let sit for 48 ± 4 hours at room temperature. Perform the initial measurement.			

Continued on the following page.

8

Specifications and Test Methods

Continued from the preceding page.

			Specifications				
No.	Ite	m	Temperature Compensating Type	High Dielectric Type	Test Method		
			The measured and observed characteristics should satisfy the specifications in the following table.				
		Appearance	No marking defects				
		Capacitance Change	Within \pm 5% or \pm 0.5pF (Whichever is larger)	R7 : Within ±12.5% F5 : Within ±30%	Let the capacitor sit at 40 ± 2 °C and 90 to 95% humidity for		
16	Humidity Steady State	Q/D.F.	30pF and over : Q≥350 10pF and over, 30pF and below : Q≥275+5C/2 10pF and below : Q≥200+10C C : Nominal Capacitance (pF)	Char. 25V min. 16V 10V R7 0.025 max. 0.035 max. 0.035 max. F5 0.05 max. 0.07 max. -	500±12 hours. Remove and let sit for 24±2 hours (temperature compensating type) or 48±4 hours (high dielectric constant type) at room temperature, then measure.		
		I.R.	More than 1,000M Ω or 50	$\Omega \bullet F$ (Whichever is smaller)			
		Dielectric Strength	No failure				
		The measured and observe specifications in the following		ved characteristics should satisfy the ving table.			
		Appearance	No marking defects				
17		Capacitance Change	Within ±7.5% or ±0.75pF (Whichever is larger)	R7 : Within ±12.5% F5 : Within ±30%	Apply the roted values of $40\pm2^{\circ}$ and 40 to $0.50'$ hypridity for		
	Humidity Load	Q/D.F.	30pF and over : Q≥200 30pF and below : Q≥100+10C/3 C : Nominal Capacitance (pF)	Char. 25V min. 16V 10V R7 0.025 max. 0.035 max. 0.035 max. F5 0.05 max. 0.07 max. -	500 \pm 12 hours. Remove and let sit for 24 \pm 2 hours (temperature compensating type) or 48 \pm 4 hours (high dielectric constant type) at room temperature, then measure. The charge/discharge current is less than 50mA.		
		I.R.	More than 500M Ω or 25 Ω	• F (Whichever is smaller)			
		Dielectric Strength	No failure				
			The measured and obser specifications in the follow	ved characteristics should satisfy the ving table.			
		Appearance	No marking defects				
		Capacitance Change	Within ±3% or ±0.3pF (Whichever is larger)	R7 : Within ±12.5% F5 : Within ±30%	Apply 200% of the rated voltage for 1000 ± 12 hours at the maximum operation temperature $\pm3\%$. Let git for 24 ± 2 hours		
18	High Temperature Load	Q/D.F.	30pF and over : Q≧350 10pF and over, 30pF and below : Q≧275+5C/2 10pF and below : Q≧200+10C C : Nominal Capacitance	Char. 25V min. 16V 10V R7 0.025 max. 0.035 max. 0.035 max. F5 0.05 max. 0.07 max. -	 Inaximum operating temperature ±3 c. Let sit for 24±2 hours (temperature compensating type) or 48±4 hours (high dielectric constant type) at room temperature, then measure. The charge/discharge current is less than 50mA. Initial measurement for high dielectric constant type. Apply 200% of the rated DC voltage for one hour at the maximum operating temperature ±3°C. Remove and let sit for 48±4 hours of room temperature. 		
			(pF)				
		I.R.	More than 1,000M Ω or 50	$\Omega \Omega \bullet F$ (Whichever is smaller)			
		Dielectric Strength	No failure				

Table A

		Capacitance Change from 25°C (%)						
Char.	Nominal Values	-55		-30		-10		
	(ppin/c) Note i	Max.	Min.	Max.	Min.	Max.	Min.	
5C	0±30	0.58	-0.24	0.40	-0.17	0.25	-0.11	

Note 1 : Nominal values denote the temperature coefficient within a range of 25°C to 125°C.

Chip Monolithic Ceramic Capacitors

muRata

for Ultrasonic Sensors

Features

1. Proper compensation for ultrasonic sensors

2. Small chip size and high capacitance value

Application

Ultrasonic sensor (back sonar, corner sonar, etc.)

Dort Number	Dimensions (mm)					
Fait Number	L	W	Т	е	g min.	
GRM219	2.0 ±0.1	1.25 ±0.1	0.85 ±0.1	0.2 to 0.7	0.7	

Part Number	TC Code	Rated Voltage (Vdc)	Capacitance (pF)	Length L (mm)	Width W (mm)	Thickness T (mm)
GRM2199E2A102KD42	ZLM (Murata)	100	1000 ±10%	2.0	1.25	0.85
GRM2199E2A152KD42	ZLM (Murata)	100	1500 ±10%	2.0	1.25	0.85

No.	Ite	em	Specifications	Test Method		
1	Operating Temperat) ture	−25℃ to +85℃			
2	Rated Vol	ltage	See the previous pages.	The rated voltage is defined as the maximum voltage which may be applied continuously to the capacitor. When AC voltage is superimposed on DC voltage, V ^{P-P} or V ^{O-P} , whichever is larger, should be maintained within the rated volt- age range.		
3	Appearan	nce	No defects or abnormalities	Visual inspection.		
4	Dimensio	ns	Within the specified dimensions	Using calipers.		
5	Dielectric	Strength	No defects or abnormalities	No failure should be observed when 300% of the rated voltage is applied between the terminations for 1 to 5 seconds, provid- ed the charge/discharge current is less than 50mA.		
6	Insulation (I.R.)	Resistance	More than 10,000M Ω or 500 Ω • F. (Whichever is smaller)	The insulation resistance should be measured with a DC volt- age not exceeding the rated voltage at 20°C and 75%RH max. and within 2 minutes of charging.		
7	Capacitar	nce	Within the specified tolerance	The experimentation of D E should be measured at 20% with		
8	Dissipatio (D.F.)	n Factor	0.01 max.	1±0.1kHz in frequency and 1±0.2Vr.m.s. in voltage.		
9	Capacitar Temperati Character	nce ure istics	Within −4,700 ^{±1} .2000 ppm/°C (at −25 to +20°C) Within −4,700 ^{±500} / _{−1.0000} ppm/°C (at +20 to +85°C)	The temperature coefficient is determined using the capacitance measured in step 1 as a reference.When cycling the temperature sequentially from step 1 through 5, the capacitance should be within the specified tolerance for the temperature coefficient.The capacitance change should be measured after 5 min. at each specified temperature stage.StepTemperature(°C)120±2		
				$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		
10	10 Adhesive Strength of Termination		Adhesive Strength of Termination No removal of the terminations or other defect should occur. Solder the capacitor to the test jig Fig.1 using a eutectic solder. The direction of the arrow. The soldering should be done eit reflow method and should be cor soldering is uniform and free of defect should occur. Adhesive Strength of Termination No removal of the terminations or other defect should occur. Image: Comparison of the termination of termination of termination of termination of termination of termination of terminatin of termination of termination of terminatin		Solder the capacitor to the test jig (glass epoxy board) shown in Fig.1 using a eutectic solder. Then apply 10N force in the direction of the arrow. The soldering should be done either with an iron or using the reflow method and should be conducted with care so that the soldering is uniform and free of defects such as heat shock.	
		Appearance	No defects or abnormalities	Solder the capacitor to the test jig (glass epoxy board) in the		
		Capacitance	Within the specified tolerance	same manner and under the same conditions as (10).		
11	Vibration Resistance	D.F.	0.01 max.	The capacitor should be subjected to a simple harmonic motion having a total amplitude of 1.5mm, the frequency being varied uniformly between the approximate limits of 10 and 55Hz. The frequency range, from 10 to 55Hz and return to 10Hz, should be traversed in approximately 1 minute. This motion should be applied for a period of 2 hours in each of 3 mutually perpendicular directions (total of 6 hours).		

Continued on the following page.

Continued from the preceding page.

No.	Ite	m	Specifications			Test Method		
			No cracking or marking defects should occur.	Solder the capa in Fig. 2 using a Then apply a for	citor to the eutectic s rce in the	e test jig (glas solder. direction sho	ss epoxy b wn in Fig. :	oards) shown 3.
12	Deflection	ı	Type a b c GRM21 1.2 4.0 1.65 (in mm) Fig. 2	The soldering should be done either with an iron of using the reflow method and should be conducted with care so that the soldering is uniform and free of defects such as heat shock. $\begin{array}{c} \begin{array}{c} 20 \\ \hline \end{array} \\ \begin{array}{c} 9 \\ \hline \end{array} \\ \begin{array}{c} 20 \\ \hline \end{array} \\ \begin{array}{c} 9 \\ \hline \end{array} \end{array} $ \\ \begin{array}{c} 9 \\ \hline \end{array} \\ \begin{array}{c} 9 \\ \hline \end{array} \end{array} \\ \begin{array}{c} 9 \\ \hline \end{array} \end{array} \\ \begin{array}{c} 9 \\ \hline \end{array} \end{array} \\ \begin{array}{c} 9 \\ \hline \end{array} \end{array} \\ \begin{array}{c} 9 \\ \hline \end{array} \end{array} \\ \begin{array}{c} 9 \\ \hline \end{array} \end{array} \\ \begin{array}{c} 9 \\ \hline \end{array} \end{array} \\ \begin{array}{c} 9 \\ \hline \end{array} \end{array} \\ \begin{array}{c} 9 \\ \hline \end{array} \end{array} \\ \begin{array}{c} 9 \\ \hline \end{array} \end{array} \\ \begin{array}{c} 9 \\ \hline \end{array} \end{array} \\ \begin{array}{c} 9 \\ \hline \end{array} \end{array} \\ \begin{array}{c} 9 \\ \hline \end{array} \end{array} \\ \begin{array}{c} 9 \\ \hline \end{array} \end{array} \\ \begin{array}{c} 9 \\ \hline \end{array} \end{array} \\ \begin{array}{c} 9 \\ \hline \end{array} \end{array} \\ \begin{array}{c} 9 \\ \hline \end{array} \end{array} \\ \begin{array}{c} 9 \\ \hline \end{array} \end{array} \\ \begin{array}{c} 9 \\ \hline \end{array} \end{array} \\ \begin{array}{c} 9 \\ \end{array} \end{array} \\ \begin{array}{c} 9 \\ \end{array} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} 9 \\ \end{array} \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \\ \end{array} \\ \end{array}				num)
13	Solderabi Terminati	lity of on	75% of the terminations are to be soldered evenly and continuously	Immerse the capacitor in a solution of ethanol (JIS-K-8101) and rosin (JIS-K-5902) (25% rosin in weight proportion). Preheat at 80 to 120° for 10 to 30 seconds. After preheating, immerse in eutectic solder solution for 2±0.5 seconds at $230\pm5^{\circ}$ C.				
		Appearance	No defects or abnormalities					
	Resistance to Soldering Heat	Capacitance Change	Within ±7.5%	Preheat the capacitor at 120 to 150°C for 1 minute. Immerse the				
14		D.F.	0.01 max.	seconds. Let sit	at room t	der solution a	at 270±5℃ or 24±2 ho	for 10±0.5 ours. then
		I.R.	More than 10,000M Ω or 500 Ω • F (Whichever is smaller)	measure.				
		Dielectric Strength	No failure					
		Appearance	No defects or abnormalities	Fix the capacito	r to the su	pporting jig i	n the same	manner and
	Tomporaturo	Capacitance Change	Within ±7.5%	Perform the five cycles according to the four heat treatments listed in the following table. Let sit for 24 ± 2 hours at room tem-			treatments at room tem-	
15	Cycle	D.F.	0.01 max.	perature, then m	neasure.	2	2	
		I.R.	More than 10,000M Ω or 500 Ω • F (Whichever is smaller)	Temp. (℃)		∠ RoomTemp.	3 85 + 3	4 RoomTemp.
		Dielectric Strength	No failure	Time (min.)	30±3	2 to 3	30±3	2 to 3
		Appearance	No defects or abnormalities	_				
	Humidity,	Capacitance Change	Within ±12.5%	Sit the capacitor	r at 40±2°	C and 90 to 9	5% humidi	ty for 500 \pm 12
16	Steady State	D.F.	0.02 max.	Remove and let	sit for 24:	±2 hours at r	oom tempe	erature, then
		I.R.	More than 1,000M22 or 5022 • F (Whichever is smaller)	measure.				
		Dielectric Strength	No failure					
		Appearance	No defects or abnormalities	Apply the roted	voltogo ot	10±2°⊂ and	00 to 05%	humidity for
17	Humidity Load	Capacitance Change	Within ±12.5%	500±12 hours. I perature, then m	Remove a neasure. 1	nd let sit for 2 he charge/di	24±2 hours ischarge cu	s at room tem- urrent is less
		D.F.	0.02 max.	than 50mA.		-	-	
		I.R.	More than 500M Ω or 25 Ω • F (Whichever is smaller)					
		Appearance	No defects or abnormalities	_				
18	High Temperature	Capacitance Change	Within ±12.5%	Apply 200% of t Let sit for 24±2	he rated v hours at r	oltage for 1,0 oom tempera	000±12 ho ature, then	urs at 85±3℃. measure.
	Load	D.F.	0.02 max.	The charge/discharge current is less than 50mA.				
		I.R.	More than 1,000M Ω or 50 Ω • F (Whichever is smaller)					

muRata

Chip Monolithic Ceramic Capacitors

Low ESL

Features

- 1. Low ESL, good for noise reduction for high frequency
- 2. Small, high capacitance

Applications

- 1. High speed micro processors
- 2. High frequency digital equipment

Part Numbor		Dimensions (mm)	
Fait Nullibei	L	W	Т
LLL185	1.6 ±0.1	0.8 ±0.1	0.6 max.
LLL216	20401	1 25 +0 1	0.6 ±0.1
LLL219	2.0 ±0.1	1.25 ±0.1	0.85 ±0.1
LLL317	2 2 ±0 1E	1 4 ±0 1E	0.7 ±0.1
LLL31M	3.2 ±0.15	1.0 ±0.15	1.15 ±0.1

LLL18 Series

Part Number	LLL18							
L x W			1.6x0.8					
тс		X7R (R7)						
Rated Volt.	50 (1H)	25 (1E)	16 (1C)	10 (1A)	25 (1E)			
Capacitance (Capacitance part numbering code) and T (mm) Dimension (T Dimension part numbering code)								
2200pF(222)	0.5 (5)							
3300pF(332)	0.5 (5)							
4700pF(472)	0.5 (5)							
6800pF(682)		0.5 (5)						
10000pF(103)		0.5 (5)						
15000pF(153)		0.5 (5)						
22000pF(223)		0.5(5)			0.5(5)			
33000pF(333)			0.5 (5)					
47000pF(473)			0.5 (5)					
68000pF(683)			0.5 (5)					
0.10μF(104)				0.5 (5)				

The part numbering code is shown in ().

Dimensions are shown in mm and Rated Voltage in Vdc.

LLL21 Series

Part Number		LLL21					
L×W		2.0x	1.25				
тс		X7R (R7)					
Rated Volt.	50 (1H)	25 (1E)	16 (1C)	10 (1A)			
Capacitance (Ca	pacitance part numbering code)	and T (mm) Dimension (T Dimen	sion part numbering code)				
4700pF(472)	0.6 (6)						
6800pF(682)	0.6 (6)						
10000pF(103)	0.6 (6)						
15000pF(153)	0.6 (6)						
22000pF(223)	0.6 (6)						
33000pF(333)	0.85 (9)	0.6 (6)	0.6 (6)				
47000pF(473)		0.6 (6)	0.6 (6)				

ANote Please read rating and ACAUTION (for storage, operating, rating, soldering, mounting and handling) in this PDF catalog to prevent smoking and/or burning, etc. This catalog has only typical specifications. Therefore, you are requested to approve our product specifications or to transact the approval sheet for product specifications before ordering.

Continued from the preceding page.

Part Number	LLL21				
LxW		2.0x	1.25		
тс	X7R (R7)				
Rated Volt.	50 (1H)	25 (1E)	16 (1C)	10 (1A)	
Capacitance (Ca	pacitance part numbering code)	and T (mm) Dimension (T Dimen	sion part numbering code)		
68000pF(683)		0.6 (6)	0.6 (6)		
0.10μF(104)		0.6 (6)	0.6 (6)		
0.15μF(154)		0.85(9)	0.6 (6)		
0.22µF(224)			0.85 (9)	0.6(6)	
0.33µF(334)				0.6(6)	
0.47µF(474)				0.85 (9)	

The part numbering code is shown in ().

Dimensions are shown in mm and Rated Voltage in Vdc.

LLL31 Series

Part Number	LLL31				
LxW	3.2x1.6				
тс		X (F	7R (7)		
Rated Volt.	50 (1H)	25 (1E)	16 (1C)	10 (1A)	
Capacitance (Ca	pacitance part numbering code)	and T (mm) Dimension (T Dimen	ision part numbering code)		
10000pF(103)	0.7(7)				
15000pF(153)	0.7(7)				
22000pF(223)	0.7(7)				
33000pF(333)	0.7(7)				
47000pF(473)	0.7(7)				
68000pF(683)	0.7(7)				
0.10μF(104)	1.15(M)	0.7(7)	0.7(7)		
0.15μF(154)		0.7(7)	0.7(7)		
0.22μF(224)		1.15(M)	0.7(7)		
0.33μF(334)		1.15(M)	0.7(7)		
0.47μF(474)		1.15(M)	0.7(7)		
0.68µF(684)			1.15(M)	0.7(7)	
1.0μF(105)			1.15(M)	0.7(7)	
1.5μF(155)				1.15(M)	
2.2µF(225)				1.15(M)	

The part numbering code is shown in $% \left({\left. {{{\bf{n}}_{\rm{s}}}} \right)_{\rm{s}}} \right)$ ().

Dimensions are shown in mm and Rated Voltage in Vdc.

No.	Item		Specifications	Test Method		
1	Operating Temperature Range		R7 : −55℃ to +125℃ F5 : −30℃ to +85℃			
2	Rated Voltage		See the previous pages.	The rated voltage is defined as the maximum voltage which may be applied continuously to the capacitor. When AC voltage is superimposed on DC voltage, V ^{P,P} or V ^{O,P} , whichever is larger, should be maintained within the rated voltage range.		
3	Appearance		No defects or abnormalities	Visual inspection		
4	Dimensions		Within the specified dimension	Using calipers		
5	Dielectric Strer	ngth	No defects or abnormalities	No failure should be observed when 250% of the rated voltage is applied between the terminations for 1 to 5 seconds, provid- ed the charge/discharge current is less than 50mA.		
6	Insulation Resist (I.R.)	tance	More than 10,000M Ω or 500 Ω • F (Whichever is smaller)	The insulation resistance should be measured with a DC volt- age not exceeding the rated voltage at 25°C and 75%RH max. and within 2 minutes of charging.		
7	Capacitance		Within the specified tolerance	The capacitance/D.F. should be measured at 25℃ at the		
8	Dissipation Fact (D.F.)	tor	Char. 25V min. 16V R7 0.025 max. 0.035 max. F5 0.05 max. -	frequency and voltage shown in the table. Item Char. R7 Frequency 1±0.1kHz Voltage 1±0.2Vr.m.s.		
9	Capacitance Char. Temp. Range (°C) Reference Temp. Cap. Change. 9 Temperature Characteristics R7 -55 to +125 25°C Within±15% F5 -30 to +85 25°C Within+22/-82%		Char. Temp. Range (°C) Reference Temp. Cap. Change. R7 -55 to +125 25°C Within±15% F5 -30 to +85 25°C Within±22/-82%	The ranges of capacitance change compared with the 25°C value over the temperature ranges shown in the table should be within the specified ranges. The capacitance change should be measured after 5 min. at each specified temperature stage.		
10	10 Adhesive Strength of Termination		No removal of the terminations or other defect should occur.	Solder the capacitor to the test jig (glass epoxy board) shown in Fig. 1 using a eutectic solder. Then apply 10N* force in the direction of the arrow. *5N: LLL18 The soldering should be done either with an iron or using the reflow method and should be conducted with care so that the soldering is uniform and free of defects such as heat shock.		
	Appea	arance	No defects or abnormalities	Solder the capacitor to the test jig (glass epoxy board) in the		
	Capaci	itance	Within the specified tolerance	same manner and under the same conditions as (10).		
11	Vibration Resistance D.F.		Char. 25V min. 16V R7 0.025 max. 0.035 max. F5 0.05 max. -	The capacitor should be subjected to a simple harmonic motion having a total amplitude of 1.5mm, the frequency being varied uniformly between the approximate limits of 10 and 55Hz. The frequency range, from 10 to 55Hz and return to 10Hz, should be traversed in approximately 1 minute. This motion should be applied for a period of 2 hours in each of 3 mutually perpendicular directions (total of 6 hours).		

Continued on the following page.

Continued from the preceding page.

No.	lte	m	Specifications	Test Method			
			No crack or marked defect should occur.	Solder the capacitor to the test jig (glass epoxy boards) shown in Fig. 2 using a eutectic solder. Then apply a force in the direction shown in Fig. 3. The soldering should be done either with an iron or using the reflow method and should be conducted with care so that the soldering is uniform and free of defects such as heat shock.			
12	2 Deflection		Type a b c 100 t:1.6mm LLL18 0.3 1.2 2.0 LLL21 0.6 1.6 2.4 LLL31 1.0 3.0 3.7	20 50 Pressurizing speed : 1.0mm/sec. Pressurize Flexure : ≤1 (in mm) Fig. 2			
			Fig. 2	Fly. S			
13	13 Solderability of Termination 75% of the terminations are to be soldered evenly and continuously.			Immerse the capacitor in a solution of ethanol (JIS-K-8101) and rosin (JIS-K-5902) (25% rosin in weight proportion). Preheat at 80 to 120° C for 10 to 30 seconds. After preheating, immerse in eutectic solder solution for 2 ± 0.5 seconds at $230\pm5^{\circ}$ C.			
		Appearance	No defects or abnormalities				
		Capacitance Change	R7 : Within±7.5% F5 : Within±20%	Preheat the capacitor at 120 to 150°C for 1 minute. Immerse the capacitor in a eutectic solder solution at 270±5°C for 10±0.5 – seconds. Let sit at room temperature for 48±4 hours , then			
14	Resistance to Soldering Heat	D.F.	Char. 25V min. 16V R7 0.025 max. 0.035 max. F5 0.05 max. -	Initial measurement.			
		I.R.	More than 10,000M Ω or 500 Ω • F (Whichever is smaller)	Perform a heat treatment at $150 \pm 10^{\circ}$ C for one hour and then let sit for 48±4 hours at room temperature. Perform the initial			
		Dielectric Strength	No failure	measurement.			
		Appearance	No defects or abnormalities	Fix the capacitor to the supporting jig in the same manner and			
		Capacitance Change	R7 : Within±7.5% F5 : Within±20%	under the same conditions as (10). Perform the five cycles according to the four heat treatments			
			Char. 25V min. 16V	Isted in the following table. Let sit for 48±4 hours at room tem- perature, then measure.			
		D.F.	R7 0.025 max. 0.035 max.	Step 1 2 3 4			
15	Temperature Cycle		F5 0.05 max	Temp. (°C) Min. Operating Room Max. Operating Room			
	e joie	I.R.	More than 10,000M Ω or 500 Ω • F (Whichever is smaller)	$\frac{1}{1} \frac{1}{1} \frac{1}$			
		Dielectric Strength	No failure	•Initial measurement. Perform a heat treatment at $150^{\pm0}_{-10}$ °C for one hour and then let sit for 48±4 hours at room temperature. Perform the initial measurement.			
		Appearance	No defects or abnormalities				
	Humidity,	Capacitance Change	R7 : Within±12.5% F5 : Within±30%	Let the capacitor sit at 40±2°C and 90 to 95% humidity for			
16	Steady State	D.F.	Char. 25V min. 16V R7 0.05 max. 0.05 max. F5 0.075 max. -	Remove and let sit for 48±4 hours at room temperature, then measure.			
		I.R.	More than 1,000M Ω or 50 $\Omega \bullet F$ (Whichever is smaller)				
		Appearance	No defects or abnormalities				
		Capacitance Change	R7 : Within±12.5% F5 : Within±30%				
17	Humidity Load	D.F.	Char. 25V min. 16V R7 0.05 max. 0.05 max. F5 0.075 max. -	Apply the rated voltage at 40±2°C and 90 to 95% humidity for 500±12 hours. Remove and let sit for 48±4 hours at room temperature, then measure. The charge/discharge current is less than 50mA.			
		I.R.	More than 500M Ω or 25 Ω • F (Whichever is smaller)				
		Dielectric Strength	No failure				

Continued from the preceding page.

No.	Ite	m	Specifications			Test Method
18		Appearance Capacitance Change	No defects or R7 : Within±1 F5 : Within±3	abnormalities 2.5% 0%		Apply 200% of the rated voltage for 1,000±12 hours at maxi- mum operating temperature ±3°C. Let sit for 48±4 hours at room temperature, then measure.
	High Temperature Load	D.F.	Char. R7 F5	25V min. 0.05 max. 0.075 max.	16V 0.05 max. —	The charge/discharge current is less than 50mA. Initial measurement. Apply 200% of the rated DC voltage for one hour at the maxi-
	-	I.R.	More than 1,0	More than 1,000M Ω or 50 $\Omega \bullet F$ (Whichever is smaller)		mum operating temperature ±3°C.
		Dielectric Strength	No failure			Perform initial measurement.

Chip Monolithic Ceramic Capacitors

High Frequency for Flow/Reflow Soldering

Features

- 1. HiQ and low ESR at VHF, UHF, Microwave
- 2. Feature improvement, low power consumption for mobile telecommunication. (Base station, terminal, etc.)

Applications

High frequency circuit (Mobile telecommunication, etc.)

Dart Number	Dimensions (mm)						
Fait Number	L	W	Т	е	g min.		
GQM188	1.6 ±0.1	0.8 ±0.1	0.8 ±0.1	0.2 to 0.5	0.5		
GQM219	2.0 ±0.1	1.25 ±0.1	0.85 ±0.1	0.2 to 0.7	0.7		

Part Number	GQM18 1.60x0.80		GQM21 2.00x1.25		
L x W					
тс	C0G (5C)		C00 (5C	G)	
Rated Volt.	100 (2A)	50 (1H)	100 (2A)	50 (1H)	
Capacitance (Capacit	ance part numbering code) an	d T (mm) Dimension (T Dime	nsion part numbering code)		
0.50pF(R50)	0.80(8)		0.85 (9)		
0.75pF(R75)	0.80(8)		0.85 (9)		
1.0pF(1R0)	0.80 (8)		0.85(9)		
1.1pF(1R1)	0.80 (8)		0.85 (9)		
1.2pF(1R2)	0.80 (8)		0.85 (9)		
1.3pF(1R3)	0.80(8)		0.85(9)		
1.5pF(1R5)	0.80(8)		0.85(9)		
1.6pF(1R6)	0.80(8)		0.85(9)		
1.8pF(1R8)	0.80(8)		0.85(9)		
2.0pF(2R0)	0.80(8)		0.85 (9)		
2.2pF(2R2)	0.80(8)		0.85 (9)		
2.4pF(2R4)	0.80(8)		0.85(9)		
2.7pF(2R7)	0.80(8)		0.85(9)		
3.0pF(3R0)	0.80(8)		0.85 (9)		
3.3pF(3R3)	0.80(8)		0.85 (9)		
3.6pF(3R6)	0.80(8)		0.85 (9)		
3.9pF(3R9)	0.80(8)		0.85(9)		
4.0pF(4R0)	0.80(8)		0.85(9)		
4.3pF(4R3)	0.80(8)		0.85(9)		
4.7pF(4R7)	0.80(8)		0.85(9)		
5.0pF(5R0)	0.80(8)		0.85(9)		
5.1pF(5R1)	0.80(8)		0.85(9)		
5.6pF(5R6)	0.80(8)		0.85(9)		
6.0pF(6R0)	0.80(8)		0.85(9)		
6.2pF(6R2)	0.80(8)		0.85(9)		
6.8pF(6R8)	0.80(8)		0.85(9)		
7.0pF(7R0)		0.80(8)	0.85(9)		
7.5pF(7R5)		0.80(8)	0.85(9)		
8.0pF(8R0)		0.80(8)	0.85(9)		
8.2pF(8R2)		0.80(8)	0.85(9)		
9.0pF(9R0)		0.80(8)	0.85(9)		
9.1pF(9R1)		0.80(8)	0.85(9)		
10pF(100)		0.80(8)	0.85(9)		

ANote Please read rating and ACAUTION (for storage, operating, rating, soldering, mounting and handling) in this PDF catalog to prevent smoking and/or burning, etc. This catalog has only typical specifications. Therefore, you are requested to approve our product specifications or to transact the approval sheet for product specifications before ordering

C02E10.pdf 04.1.20

Continued from the preceding page.

Part Number	GQM18		GQM21		
L×W	1.60>	<0.80	2.00x1.25		
тс	C0 (5)G C)		C0G (5C)	
Rated Volt.	100 (2A)	50 (1H)	100 (2A)	50 (1H)	
Capacitance (Ca	pacitance part numbering code)	and T (mm) Dimension (T Dimen	sion part numbering code)		
11pF(110)		0.80(8)	0.85 (9)		
12pF(120)		0.80(8)	0.85 (9)		
13pF(130)		0.80(8)	0.85(9)		
15pF(150)		0.80(8)	0.85(9)		
16pF(160)		0.80(8)	0.85(9)		
18pF(180)		0.80(8)	0.85(9)		
20pF(200)		0.80(8)		0.85(9)	
22pF(220)		0.80(8)		0.85(9)	
24pF(240)		0.80(8)		0.85(9)	
27pF(270)				0.85(9)	
30pF(300)				0.85(9)	
33pF(330)				0.85(9)	
36pF(360)				0.85(9)	
39pF(390)				0.85(9)	
43pF(430)				0.85(9)	
47pF(470)				0.85(9)	

The part numbering code is shown in $% \left({\left. {{{\bf{n}}_{\rm{s}}}} \right)_{\rm{s}}} \right)$ ().

Dimensions are shown in mm and Rated Voltage in Vdc.

■ Q-Frequency Characteristics

■ Resonant Frequency-Capacitance

No.	lo. Item		Specifications	Test Method			
1	Operating Temperature		5C : −55°C to 125°C				
2	Rated Vo	ltage	See the previous page.	The rated voltage is defined as the maximum voltage may be applied continuously to the capacitor. When AC voltage is superimposed on DC voltage, whichever is larger, should be maintained within the voltage range		Itage which le, V ^{p.p} or V ^{O.p} , the rated	
3	Appearar	nce	No defects or abnormalities	Visual inspection			
4	Dimensio	n	Within the specified dimensions	Using calipers			
5	Dielectric	Strength	No defects or abnormalities	No failure should be on is applied between th provided the charge/or	observed wh e terminatio discharge cu	nen 300% of the ns for 1 to 5 se irrent is less the	e rated voltage conds, an 50mA.
6	Insulation	Resistance	More than 10,000M Ω or 500 Ω • F (whichever is smaller)	The insulation resistance should be measured with a DC voltage not exceeding the rated voltage at 25°C and 75%RH max. and within 2 minutes of charging.			rith a DC and 75%RH
7	Capacita	nce	Within the specified tolerance	The capacitance/Q sh	hould be me	asured at 25℃	at the
8	Q		30pF min. : Q≧1000 30pF max. : Q≧400+20C C : Nominal Capacitance (pF)	Item Char Frequency Voltage	r. 5C	ne table. (1000pF and t 1±0.1MHz 0.5 to 5Vrms	pelow)
		Capacitance Change	Within the specified tolerance (Table A)	The temperature coefficient is determined using the capac tance measured in step 3 as a reference.			the capaci-
		Temperature Coefficient	Within the specified tolerance (Table A)	When cycling the temperature sequentially from step 1 thro the capacitance should be within the specified tolerance for temperature coefficient and capacitance change as in Table		step 1 through 5 erance for the as in Table A	
9	Capacitance Temperature Characteristics	Capacitance Drift	Within ±0.2% or ±0.05pF (Whichever is larger.)	temperature coefficient and capacitance change as in Table A. The capacitance drift is calculated by dividing the differences between the maximum and minimum measured values in the steps 1, 3 and 5 by the capacitance. value in step 3. Step Temperature (°C) 1 25±2 2 -55±3 3 25±2 4 125±3 5 25±2			e differences values in the p 3.
10	10 Adhesive Strength of Termination		No removal of the terminations or other defect should occur.	Solder the capacitor to the test jig (glass epoxy board) Fig. 1 using a eutectic solder. Then apply 10N* force in with the test jig for 10±1sec. The soldering should be done either with an iron or usi reflow method and should be conducted with care so t soldering is uniform and free of defects such as heat si *5N Type a b GQM18 1.0 3.0 GQM32 2.2 5.0 Fig. 1 Fig. 1		ard) shown in ce in parallel or using the so that the pat shock. *5N (GQM188) c 1.2 1.65 2.9 (in mm)	
		Appearance	No defects or abnormalities	Solder the capacitor t	to the test iid	ı (glass epoxv l	ooard) in the
11	Vibration Resistance	Capacitance	Within the specified tolerance 30pF min. : Q≥1000 30pF max. : Q≥400+20C	same manner and un The capacitor should having a total amplitu uniformly between the frequency range, from be traversed in appro-	ider the sam be subjecte ide of 1.5mm e approxima n 10 to 55Hz ximately 1 n	to a simple h n, the frequenc te limits of 10 a and return to ninute.	y being varied armonic motion y being varied and 55Hz. The 10Hz, should
			C : NominalCapacitance (pF)	This motion should be 3 mutually perpendice	e applied for ular directior	a period of 2 h ns (total of 6 ho	ours in each of urs).

Continued on the following page.

Continued from the preceding page.

No.	Ite	m	Specifications	Test Method			
			No crack or marked defect should occur.	Solder the capacitor on the test jig (glass epoxy board) shown in Fig. 2 using a eutectic solder. Then apply a force in the direction shown in Fig. 3.			
12	12 Deflection		Type a b c GQM18 1.0 3.0 1.2 GQM32 2.2 5.0 2.9 (in mm)	reflow method and should be conducted with care so that the soldering is uniform and free of defects such as heat shock. $\begin{array}{c} \downarrow 0 \\ \downarrow 0$			
13	13 Solderability of Termination		75% of the terminations are to be soldered evenly and continuously.	Immerse the capacitor in a solution of ethanol (JIS-K-8101) and rosin (JIS-K-5902) (25% rosin in weight proportion). Preheat at 80 to 120°C for 10 to 30 seconds. After preheating, immerse in eutectic solder solution for 2 ± 0.5 seconds at 230 ± 5 °C.			
			The measured and observed characteristics should satisfy the specifications in the following table.				
	[Appearance	No marking defects				
	Resistance	Capacitance Change	Within ±2.5% or ±0.25 pF (Whichever is larger)	Preheat the capacitor at 120 to 150°C for 1 minute. Immerse the			
14	to Soldering Heat	Q	30pF min. : Q≧1000 30pF max. : Q≧400+20C	capacitor in a eutectic solder solution at $270\pm5^{\circ}$ for 10 ± 0.5 seconds. Let sit at room temperature for 24 ± 2 hours.			
			C : Nominal Capacitance (pF)				
		I.R.	More than 10,000M Ω or 500 Ω • F (Whichever is smaller)				
	Dielectric Strength		No failure				
			The measured and observed characteristics should satisfy the specifications in the following table.				
		Appearance	No marking defects	Fix the capacitor to the supporting jig in the same manner and under the same conditions as (10).			
		Capacitance Change	Within ±2.5% or ±0.25pF (Whichever is larger)	Perform the five cycles according to the four heat treatments listed in the following table.			
15	Temperature Cycle		30pF min. : Q≧1000	Let sit for 24 ± 2 hours at room temperature, then measure.			
		Q	Supr max Q≤400+20C	Tomp (°c) Min. Operating Room Max. operating Room			
			C : Nominal Capacitance (pF)	Temp: (c) Temp.+0/-3 Temp. Temp.+3/-0 Temp. Time (min) 20+2 24+2 20+2 24+2 <td< td=""></td<>			
	·	I.R. Dielectric Strength	More than 10,000MΩ or 500Ω • F (Whichever is smaller) No failure				
			The measured and observed characteristics should satisfy the specifications in the following table.				
	[Appearance	No marking defects				
		Capacitance Change	Within ±5% or ±0.5pF (Whichever is larger)	Lat the connector sit at $40\pm2\%$ and 90 to 95% humidity for			
16	Humidity Steady State	Q	30pF min. : Q≧350 10pF and over, 30pF and below : Q≧275+5C/2 10pF max. : Q≧200+10C	Solution for the capacitor sit at 40 \pm 2 c and so to 35% numbers of 500 \pm 12 hours. Remove and let sit for 24 \pm 2 hours (temperature compensating type) at room temperature, then measure.			
			C : Nominal Capacitance (pF)				
		I.R.	More than 1,000M Ω or 50 Ω • F (Whichever is smaller)				
		Dielectric Strength	No failure				

Continued on the following page.

Continued from the preceding page.

No.	b. Item		Specifications	Test Method	
			The measured and observed characteristics should satisfy the specifications in the following table.		
		Appearance	No marking defects		
		Capacitance Change	Within ±7.5% or ±0.75pF (Whichever is larger)	Apply the rated voltage at 40±2℃ and 90 to 95% humidity for	
17	Humidity Load	Q	30pF min. : Q≥200 30pF max. : Q≥100+10C/3	500 \pm 12 hours. Remove and let sit for 24 \pm 2 hours at room temperature then measure. The charge/discharge current is less than 50mA.	
			C : Nominal Capacitance (pF)		
		I.R.	More than 500M or 25 $\Omega \bullet F$ (Whichever is smaller)		
		Dielectric Strength	No failure		
			The measured and observed characteristics should satisfy the specifications in the following table.		
		Appearance	No marking defects		
		Capacitance Change	Within ±3% or ±0.3pF (Whichever is larger)	Apply 200% of the rated voltage for 1000±12 hours at the	
18	High Temperature Load	Q	30pF min. : Q≧350 10pF and over, 30pF and below : Q≧275+5C/2 10pF max. : Q≧200+10C	maximum operating temperature ± 3 °C. Let sit for 24 ± 2 hours (temperature compensating type) at room temperature, then measure. The charge/discharge current is less than 50mA.	
			C : Nominal Capacitance (pF)		
		I.R.	More than 1,000M Ω or 50 Ω • F (Whichever is smaller)		
		Dielectric Strength	No failure		

Table A

Char.			Capacitance Change from 25°C (%)								
	Nominal Values	Ţ	55	—:	30	-10					
		Max.	Min.	Max.	Min.	Max.	Min.				
5C	0±30	0.58	-0.24	0.40	-0.17	0.25	-0.11				

Note1 : Nominal values denote the temperature coefficient within a range of 25°C to 125°C (for 5C)

Chip Monolithic Ceramic Capacitors

muRata

High-Q & High Power Type

SMD Type

Features (ERF Series)

- 1. The dielectric is composed of low dielectric loss ceramic. This series is perfectly suited to high frequency applications (VHS-microwave band).
- 2. The series is ultraminiature, yet has a high-power capacity. This is the best capacitor available for transmitter and amplifier circuits such as those in broadcasting equipment and mobile base stations.
- 3. ERF1D type is designed for both flow and reflow soldering and ERF22 type is designed for reflow soldering

1.15(**M**)

4.7pF(4R7)

2.30(**X**)

Part Number	ER	F1D					EF	RF22				
LxW	1.40	x1.40		2.80x2.80								
TC	C0G (5C)	CH (6C)		C0G (5C)					CH (6C)			
Rated Volt.	50 (1H)	50 (1H)	500 (2H)	300 (YD)	200 (2D)	100 (2A)	50 (1H)	500 (2H)	300 (YD)	200 (2D)	100 (2A)	50 (1H)
Capacitance (Ca	pacitance	part numbe	ering code)	and T (mm) Dimensio	on (T Dimen	sion part r	numbering c	ode)			
0.50pF(R50)	1.15(M)	1.15(M)	2.30(X)					2.30(X)				
0.6pF(R60)	1.15(M)		2.30(X)									
0.7pF(R70)	1.15(M)		2.30(X)									
0.75pF(R75)		1.15(M)						2.30(X)				
0.8pF(R80)	1.15(M)		2.30(X)									
0.9pF(R90)	1.15(M)		2.30(X)									
1.0pF(1R0)	1.15(M)	1.15(M)	2.30(X)					2.30(X)				
1.1pF(1R1)	1.15(M)		2.30(X)									
1.2pF(1R2)	1.15(M)		2.30(X)									
1.3pF(1R3)	1.15(M)		2.30(X)									
1.4pF(1R4)	1.15(M)		2.30(X)									
1.5pF(1R5)	1.15(M)	1.15(M)	2.30(X)					2.30(X)				
1.6pF(1R6)	1.15(M)		2.30(X)									
1.7pF(1R7)	1.15(M)		2.30(X)									
1.8pF(1R8)	1.15(M)		2.30(X)									
1.9pF(1R9)	1.15(M)		2.30(X)									
2.0pF(2R0)	1.15(M)	1.15(M)	2.30(X)					2.30(X)				
2.1pF(2R1)	1.15(M)		2.30(X)									
2.2pF(2R2)	1.15(M)		2.30(X)									
2.4pF(2R4)	1.15(M)		2.30(X)									
2.7pF(2R7)	1.15(M)		2.30(X)									
3.0pF(3R0)	1.15(M)	1.15(M)	2.30(X)					2.30(X)				
3.3pF(3R3)	1.15(M)		2.30(X)									
3.6pF(3R6)	1.15(M)		2.30(X)									
3.9pF(3R9)	1.15(M)		2.30(X)									
4.0pF(4R0)		1.15(M)						2.30(X)				
4.3pF(4R3)	1.15(M)		2.30(X)									

Dort Number		Dimensions (mm)								
Part Number	L	W	Т	е						
ERF1DM	1.4 ^{+0.6} -0.4	1.4 ^{+0.6} -0.4	1.15 ^{+0.50} -0.35	0.25 ^{+0.25} -0.15						
ERF22X	2.8 ^{+0.6} - 0.4	2.8 ^{+0.6} - 0.4	2.3 ^{+0.5} -0.3	0.4 +0.4						

ANote Please read rating and ACAUTION (for storage, operating, rating, soldering, mounting and handling) in this PDF catalog to prevent smoking and/or burning, etc. This catalog has only typical specifications. Therefore, you are requested to approve our product specifications or to transact the approval sheet for product specifications before ordering.

C02E10.pdf 04.1.20

Continued from the preceding page.

Part Number	ER	-1D	E				ER	RF22					
LxW	1.40	(1.40					2.80)x2.80					
тс	C0G (5C)	CH (6C)			C0G (5C)					CH (6C)			
Rated Volt.	50 (1H)	50 (1H)	500 (2H)	300 (YD)	200 (2D)	100 (2A)	50 (1H)	500 (2H)	300 (YD)	200 (2D)	100 (2A)	50 (1H)	
Capacitance (Ca	pacitance	part numbe	ering code)	and T (mm) Dimensio	n (T Dimen	sion part n	umbering c	ode)				
5.0pF(5R0)		1.15 (M)						2.30(X)					
5.1pF(5R1)	1.15(M)		2.30(X)										
5.6pF(5R6)	1.15(M)		2.30(X)										
6.0pF(6R0)		1.15 (M)						2.30(X)					
6.2pF(6R2)	1.15 (M)		2.30(X)										
6.8pF(6R8)	1.15(M)		2.30(X)										
7.0pF(7R0)		1.15(M)						2.30(X)					
7.5pF(7R5)	1.15(M)		2.30(X)										
8.0pF(8R0)		1.15(M)						2.30(X)					
8.2pF(8R2)	1.15(M)		2.30(X)										
9.0pF(9R0)		1.15(M)						2.30(X)					
9.1pF(9R1)	1.15(M)		2.30(X)					(17)					
10pF(100)	1.15(M)	1.15(M)	2.30(X)					2.30(X)					
11pF(110)	1.15(M)	1.15(M)	2.30(X)					2.30(X)					
12pF(120)	1.15(IVI)	1.15(IVI)	2.30(X)					2.30(X)					
13pF(130)	1.15(IVI)	1.15(IVI)	2.30(X)					2.30(X)					
16pF(150)	1.15(IVI)	1.15(IVI)	2.30(X)					2.30(X)					
18pF(180)	1.15(M)	1.15(W)	2.30(X)					2.30(X)					
20pF(200)	1.15(M)	1.15(M)	2.30(X)					2.30(X)					
22pF(220)	1.15(M)	1.15(M)	2.30(X)					2.30(X)					
24pF(240)	1.15(M)	1.15(M)	2.30(X)					2.30(X)					
27pF(270)	1.15(M)	1.15(M)	2.30(X)					2.30(X)					
30pF(300)	1.15(M)	1.15(M)	2.30(X)					2.30(X)					
33pF(330)	1.15(M)	1.15(M)	2.30(X)					2.30(X)					
36pF(360)	1.15(M)	1.15(M)	2.30(X)					2.30(X)					
39pF(390)	1.15(M)	1.15(M)	2.30(X)					2.30(X)					
43pF(430)	1.15(M)	1.15(M)	2.30(X)					2.30(X)					
47pF(470)	1.15(M)	1.15(M)	2.30(X)					2.30(X)					
51pF(510)	1.15(M)	1.15(M)	2.30(X)					2.30(X)					
56pF(560)	1.15(M)	1.15(M)	2.30(X)					2.30(X)					
62pF(620)	1.15(M)	1.15(M)	2.30(X)					2.30(X)					
68pF(680)	1.15(M)	1.15(M)	2.30(X)					2.30(X)					
75pF(750)	1.15(M)	1.15(M)	2.30(X)					2.30(X)					
82pF(820)	1.15(M)	1.15(M)	2.30(X)					2.30(X)					
91pF(910)	1.15(M)	1.15(M)	2.30(X)					2.30(X)					
100pF(101)	1.15(M)	1.15(M)	2.30(X)	(1.1)				2.30(X)	(2.1)				
110pF(111)				2.30(X)					2.30(X)				
120pF(121)				2.30(X)					2.30(X)				
150pF(131)				2.30(X)					2.30(X)				
160pF(151)				2.30(x)					2.30(X)				
180pF(181)				2.30(X)					2.30(X)				
200pF(201)				2.30(X)					2.30(X)				
220pF(221)				2.00(1)	2,30(X)				2.00(1)	2,30(X)			
240pF(241)					2.30(X)					2.30(X)			
270pF(271)					2.30(X)					2.30(X)			
300pF(301)					2.30(X)					2.30(X)			
330pF(331)					2.30(X)					2.30(X)			
360pF(361)					2.30(X)					2.30(X)			
390pF(391)					2.30(X)					2.30(X)			
430pF(431)					2.30(X)					2.30(X)			

Continued on the following page.

Note Please read rating and
 &CAUTION (for storage, operating, rating, soldering, mounting and handling) in this PDF catalog to prevent smoking and/or burning, etc.
 This catalog has only typical specifications. Therefore, you are requested to approve our product specifications or to transact the approval sheet for product specifications before orderi

C02E10.pdf 04.1.20

Continued from the preceding page.

Part Number	ERI	F1D		ERF22								
L x W	1.40	x1.40					2.80>	x2.80				
тс	C0G (5C)	CH (6C)		C0G (5C)				CH (6C)				
Rated Volt.	50 (1H)	50 (1H)	500 (2H)	300 (YD)	200 (2D)	100 (2A)	50 (1H)	500 (2H)	300 (YD)	200 (2D)	100 (2A)	50 (1H)
Capacitance (Ca	pacitance	part numbe	ering code)	and T (mm) Dimensio	n (T Dimen	sion part nu	umbering c	ode)			
470pF(471)					2.30(X)					2.30(X)		
510pF(511)						2.30(X)					2.30(X)	
560pF(561)						2.30(X)					2.30(X)	
620pF(621)						2.30(X)					2.30(X)	
680pF(681)						2.30(X)					2.30(X)	
750pF(751)							2.30(X)					2.30(X)
820pF(821)							2.30(X)					2.30(X)
910pF(911)							2.30(X)					2.30(X)
1000pF(102)							2.30(X)					2.30(X)

The part numbering code is shown in ().

Dimensions are shown in mm and Rated Voltage in Vdc.

Ribbon Terminal

■ Features (ERH Series)

- 1. The dielectric is composed of low dielectric loss ceramics. This series is perfectly suited to high frequency applications (VHS-microwave band).
- 2. The series is ultraminiature, yet has a high power capacity. This is the best capacitor available for transmitter and amplifier circuits such as those in broadcasting equipment and mobile base stations.
- 3. ERH1X/3X Series capacitors withstand high temperatures because ribbon leads are attached with silver paste.
- 4. ERH1X/3X Series capacitors are easily soldered and especially well suited in applications where only a soldering iron can be used.

Applications

High frequency and high power circuits

Dart Number	Dimensions (mm)									
Fait Number	L	W	T max.	l	w					
ERH1XC	1.6 ±0.4	1.4 ±0.4	1.6	5.0 min.	1.3 ±0.4					
ERH3XX	3.2 ±0.4	2.8 ±0.4	3.0	9.0 ±2.0	2.35 ±0.15					

Part Number	ER	H1X		ERH3X								
L x W	1.60	x1.40					3.20	Jx2.80				
тс	C0G (5C)	CH (6C)			C0G (5C)					CH (6C)		
Rated Volt.	50 (1H)	50 (1H)	500 (2H)	300 (YD)	200 (2D)	100 (2A)	50 (1H)	500 (2H)	300 (YD)	200 (2D)	100 (2A)	50 (1H)
Capacitance (Ca	pacitance	acitance part numbering code) and T (mm) Dimension (T Dimension part numbering code)										
0.50pF(R50)	1.60(C)	1.60(C)	3.00(X)					3.00(X)				
0.6pF(R60)	1.60(C)		3.00(X)									
0.7pF(R70)	1.60(C)		3.00(X)									
0.75pF(R75)		1.60(C)						3.00(X)				
0.8pF(R80)	1.60(C)		3.00(X)									
0.9pF(R90)	1.60(C)		3.00(X)									
1.0pF(1R0)	1.60(C)	1.60(C)	3.00(X)					3.00(X)				
1.1pF(1R1)	1.60(C)		3.00(X)									
1.2pF(1R2)	1.60(C)		3.00(X)									
1.3pF(1R3)	1.60(C)		3.00(X)									
1.4pF(1R4)	1.60(C)		3.00(X)									
1.5pF(1R5)	1.60(C)	1.60(C)	3.00(X)					3.00(X)				

ANote Please read rating and ACAUTION (for storage, operating, rating, soldering, mounting and handling) in this PDF catalog to prevent smoking and/or burning, etc. This catalog has only typical specifications. Therefore, you are requested to approve our product specifications or to transact the approval sheet for product specifications before ordering.

C02E10.pdf 04.1.20

Continued from the preceding page.

Part Number	ERI	H1X				ER	ERH3X					
LxW	1.60	x1.40					3.20	x2.80				
тс	C0G (5C)	CH (6C)			C0G (5C)					CH (6C)		
Rated Volt.	50 (1H)	50 (1H)	500 (2H)	300 (YD)	200 (2D)	100 (2A)	50 (1H)	500 (2H)	300 (YD)	200 (2D)	100 (2A)	50 (1H)
Capacitance (Ca	pacitance	part numbe	ering code)	and T (mm) Dimensio	n (T Dimen	sion part n	umbering c	ode)			
1.6pF(1R6)	1.60(C)		3.00(X)									
1.7pF(1R7)	1.60(C)		3.00(X)									
1.8pF(1R8)	1.60(C)		3.00(X)									
1.9pF(1R9)	1.60(C)		3.00(X)									
2.0pF(2R0)	1.60(C)	1.60(C)	3.00(X)					3.00(X)				
2.1pF(2R1)	1.60(C)		3.00(X)									
2.2pF(2R2)	1.60(C)		3.00(X)									
2.4pF(2R4)	1.60(C)		3.00(X)									
2.7pF(2R7)	1.60(C)		3.00(X)									
3.0pF(3R0)	1.60(C)	1.60(C)	3.00(X)					3.00(X)				
3.3pF(3R3)	1.60(C)		3.00(X)									
3.6pF(3R6)	1.60(C)		3.00(X)									
3.9pF(3R9)	1.60(C)	4 (0/5)	3.00(X)					0.000				<u> </u>
4.0pF(4R0)		1.60(C)						3.00(X)				
4.3pF(4R3)	1.60(C)		3.00(X)									
4./pF(4R7)	1.60(C)	1 (0)	3.00(X)					2.00(14)				
5.0pF(5R0)	1 (0)	1.60(C)	2.00(11)					3.00(X)				
5.1pF(5R1)	1.60(C)		3.00(X)									
5.6pF(5R6)	1.60(C)	1 60(0)	3.00(X)					2.00(Y)				
6.0pF(6R0)	1 60(1.60(C)	2 00(Y)					3.00(A)				
6 8pE(6P8)	1.60(C)		3.00(x)									
7.0pE(7R0)	1.00(•)	1.60(C)	3.00(x)					3.00(X)				
7.5pF(7R5)	1.60(C)	1.00(0)	3 00(X)					5.00(X)				
8.0pF(8R0)	1.00(0)	1 60(C)	0.00(1)					3 00(X)				
8.2pF(8R2)	1.60(C)		3.00(X)					0100(1)				
9.0pF(9R0)		1.60(C)						3.00(X)				
9.1pF(9R1)	1.60(C)		3.00(X)									
10pF(100)	1.60(C)	1.60(C)	3.00(X)					3.00(X)				
11pF(110)	1.60(C)	1.60(C)	3.00(X)					3.00(X)				
12pF(120)	1.60(C)	1.60(C)	3.00(X)					3.00(X)				
13pF(130)	1.60(C)	1.60(C)	3.00(X)					3.00(X)				
15pF(150)	1.60(C)	1.60(C)	3.00(X)					3.00(X)				
16pF(160)	1.60(C)	1.60(C)	3.00(X)					3.00(X)				
18pF(180)	1.60(C)	1.60(C)	3.00(X)					3.00(X)				
20pF(200)	1.60(C)	1.60(C)	3.00(X)					3.00(X)				
22pF(220)	1.60(C)	1.60(C)	3.00(X)					3.00(X)				
24pF(240)	1.60(C)	1.60(C)	3.00(X)					3.00(X)				
27pF(270)	1.60(C)	1.60(C)	3.00(X)					3.00(X)				
30pF(300)	1.60(C)	1.60(C)	3.00(X)					3.00(X)				
33pF(330)	1.60(C)	1.60(C)	3.00(X)					3.00(X)				
36pF(360)	1.60(C)	1.60(C)	3.00(X)					3.00(X)				
39pF(390)	1.60(C)	1.60(C)	3.00(X)					3.00(X)				
43pF(430)	1.60(C)	1.60(C)	3.00(X)					3.00(X)				<u> </u>
4/p⊦(470)	1.60(C)	1.60(C)	3.00(X)					3.00(X)				
51pF(510)	1.60(C)	1.60(C)	3.00(X)					3.00(X)				
56pF(560)	1.60(C)	1.60(C)	3.00(X)					3.00(X)				
62pF(620)	1.6U(C)	1.60(C)	3.00(X)					3.00(X)				
7505(750)	1.60(0)	1.00(0)	3.00(X)					3.00(X)				
82nE(830)	1.00(C)	1.00(C)	3.00(x)					3.00(X)				
91nF(Q10)	1.60(C)	1.60(C)	3.00(x)					3.00(X)				
(010)			5.00(A)			1		0.00(n)				

ANote Please read rating and ACAUTION (for storage, operating, rating, soldering, mounting and handling) in this PDF catalog to prevent smoking and/or burning, etc. This catalog has only typical specifications. Therefore, you are requested to approve our product specifications or to transact the approval sheet for product specifications before ordering.

C02E10.pdf 04.1.20

Continued from the preceding page.

Part Number	ER	H1X		ERH3X									
LxW	1.60	x1.40					3.20)x2.80					
тс	C0G (5C)	CH (6C)			C0G (5C)					CH (6C)			
Rated Volt.	50 (1H)	50 (1H)	500 (2H)	300 (YD)	200 (2D)	100 (2A)	50 (1H)	500 (2H)	300 (YD)	200 (2D)	100 (2A)	50 (1H)	
Capacitance (Ca	pacitance	part numbe	ering code)	and T (mm) Dimensio	n (T Dimen	sion part n	umbering c	ode)				
100pF(101)	1.60(C)	1.60(C)	3.00(X)					3.00(X)					
110pF(111)				3.00(X)					3.00(X)				
120pF(121)				3.00(X)					3.00(X)				
130pF(131)				3.00(X)					3.00(X)				
150pF(151)				3.00(X)					3.00(X)				
160pF(161)				3.00(X)					3.00(X)				
180pF(181)				3.00(X)					3.00(X)				
200pF(201)				3.00(X)					3.00(X)				
220pF(221)					3.00(X)					3.00(X)			
240pF(241)					3.00(X)					3.00(X)			
270pF(271)					3.00(X)					3.00(X)			
300pF(301)					3.00(X)					3.00(X)			
330pF(331)					3.00(X)					3.00(X)			
360pF(361)					3.00(X)					3.00(X)			
390pF(391)					3.00(X)					3.00(X)			
430pF(431)					3.00(X)					3.00(X)			
470pF(471)					3.00(X)					3.00(X)			
510pF(511)						3.00(X)					3.00(X)		
560pF(561)						3.00(X)					3.00(X)		
620pF(621)						3.00(X)					3.00(X)		
680pF(681)						3.00(X)					3.00(X)		
750pF(751)							3.00(X)					3.00(X)	
820pF(821)							3.00(X)					3.00(X)	
910pF(911)							3.00(X)					3.00(X)	
1000pF(102)		_					3.00(X)					3.00(X)	

The part numbering code is shown in ().

Dimensions are shown in mm and Rated Voltage in Vdc.

No.	lte	em	Specifications		Test Method			
1	Operating Temperatu	ire Range	−55℃ to +125℃					
2	Rated Vo	ltage	See the previous pages.	The rated voltage is de may be applied continu When AC voltage is su whichever is larger, sh age range.	efined as the maximum voltage which uously to the capacitor. uperimposed on DC voltage, V ^{P-P} or V ^{O-P} , ould be maintained within the rated volt-			
3	Appearar	nce	No defects or abnormalities	Visual inspection				
4	Dimensio	ns	Within the specified dimension	Using calipers				
5	Dielectric	Strength	No defects or abnormalities	No failure should be observed when 250% of the rated voltage is applied between the terminations for 1 to 5 seconds, provid- ed the charge/discharge current is less than 50mA.				
6	Insulation Resistance	25℃	C≤ 470pF :1,000,000MΩ min. 470pF <c≤1,000pf 100,000mω="" :="" min.<="" td=""><td colspan="5">The insulation resistance should be measured with a DC volt-</td></c≤1,000pf>	The insulation resistance should be measured with a DC volt-				
	(I.R.) 125℃		C≦ 470pF : 100,000MΩ min. 470pF <c≦1,000pf 10,000mω="" :="" min.<="" td=""><td>humidity and within 2 r</td><td>ninutes of charging.</td></c≦1,000pf>	humidity and within 2 r	ninutes of charging.			
7	Capacitance		Within the specified tolerance.	The capacitance/Q sho	ould be measured at 25°C at the frequen-			
			C≦ 220pF : Q≧10,000	by and voltage shown				
8	Q		$220pF < C \leq 470pF : Q \geq 5,000$ 470pE < C < 1.000pF : O > 3.000	Frequency	1±0.1MHz			
		C : Nominal Capacitance (pF)		Voltage	0.5 to 5Vr.m.s.			
	Capacitance Variation Rate Within the specified tolerance (Table A-		Within the specified tolerance (Table A-7)	The temperature coeffictance measured in ste temperature sequentia	icient is determined using the capaci- p 3 as a reference. When cycling the Illy from step 1 through 5, the capaci-			
		Temperature Coefficient	Within the specified tolerance (Table A-7)	tance should be within ture coefficient and cap The capacitance drift is	the specified tolerance for the tempera- pacitance change as Table A. s calculated by dividing the differences			
9	Capacitance Temperature Characteristics	Capacitance Drift	Within ±0.2% or ±0.05pF (Whichever is larger)	between the maximum 1, 3 and 5 by the capa The capacitance change each specified tempera- Step 1 2 3 4 5	and minimum measured values in steps citance value in step 3. ge should be measured after 5 min. at ature stage. Temperature (°C) 25 ± 2 -55 ± 3 25 ± 2 125 ± 3 25 ± 2			
10	Terminal	Adhesive Strength of Termination (for chip type)	No removal of the terminations or other defects should occur.	Solder the capacitor to Fig. 1 using solder con be done either with an care so the soldering is shock. Then apply a 10	the test jig (alumina substrate) shown in taining 2.5% silver. The soldering should iron or in furnace and be conducted with s uniform and free of defects such as heat DN* force in the direction of the arrow. *ERF1D : 5N *ERF1D : 5N Fig. 1			
	Strength	Tensile Strength (for micro- strip type)	Capacitor should not be broken or damaged.	The capacitor body is t the axial direction until	fixed and a load is applied gradually in its value reaches 10N (5N for ERH1X).			
	-	Bending Strength of lead wire terminal (for micro- strip type)	Lead wire should not be cut or broken.	Position the main body nal is perpendicular, an Bend the main body by tion, bend 90 degrees back to original positio	y of the capacitor so the lead wire termi- nd load 2.5N to the lead wire terminal. y 90 degrees, bend back to original posi- in the reverse direction, and then bend n.			

Continued on the following page. \square

Continued from the preceding page.

No.	Ite	m	S	pecifications	Test Method			
		Appearance	No defects or abnormalitie	S	Solder the capacitor to the test jig (alumina substrate) shown in			
		Capacitance	Within the specified tolera	nce	Fig. 2 using solder containing 2.5% silver. The soldering should be done either with an iron or using the reflow method and should			
11	Vibration Resistance	Q	Satisfies the initial value. $C \le 220 pF : Q \ge 1$ $220 pF < C \le 470 pF : Q \ge$ $470 pF < C \le 1,000 pF : Q \ge$ C : Nominal Capacitance (0,000 5,000 3,000 pF)	be conducted with care so the soluting is uniform and nee of defects such as heat shock. The capacitor should be subjected to a simple harmonic motion having a total amplitude of 1.5mm, the frequency being varied uniformly between the approximate limits of 10 and 55Hz. The frequency range, from 10 to 55Hz and return to 10Hz, should be traversed in approximately 1 minute. This motion should be applied for a period of 2 hours in each of 3 mutually perpendicular directions (total of 6 hours). Image: solution of the solutic of the solution of the solution of the solution of the solution			
					Immerse the capacitor in a solution of ethanol (JIS-K-8101) and			
12	Solderabi Terminati	lity of on	95% of the terminations are ly.	to be soldered evenly and continuous-	rosin (JIS-K-5902) (25% rosin in weight proportion). Preheat at 80 to 120°C for 10 to 30 seconds. After preheating immerse in solder containing 2.5% silver for 5 ± 0.5 seconds at $230\pm5^{\circ}$. The dipping depth for microstrip type capacitors is up to 1 mm from the root of the terminal.			
			The measured and obser	ved characteristics should satisfy the				
			specifications in the follow	ing table.				
			Appearance	No marked defect	Diskast the consistent of 00 to 100% for 0 minutes and then at			
			Capacitance	Within $\pm 2.5\%$ or ± 0.25 pF	150 to 200°C for 5 minutes.			
13	Resistanc	е	Change	C≤ 220pF : Q≥10.000	Immerse in solder containing 2.5% silver for 3 ± 0.5 seconds at			
	to Solderii	ng Heat	Q	220pF <c≦ 470pf="" 5,000<="" :="" q≧="" td=""><td>270±5℃. Set at room temperature for 24±2 hours, then mea-</td></c≦>	270±5℃. Set at room temperature for 24±2 hours, then mea-			
				$\frac{470\text{pF}<\text{C}\leq1,000\text{pF}:\text{Q}\geq3,000}{\text{More than 200% of the initial appendix}}$	2mm from the root of the terminal.			
			I.R.	ification value at 25°C.				
			Dielectric Strength	No failure				
				C : Nominal Capacitance (pF)				
			The measured and obser	ved characteristics should satisfy the	Fix the capacitor to the supporting jig in the same manner and			
			specifications in the follow	ing table.	under the same conditions as (11). Perform the five cycles			
			<u>Item</u>	Specifications	according to the four heat treatments listed in the following table.			
			Capacitance	Within ±1% or ±0.25pF	cycle consisting of immersion in a fresh water at $65 \stackrel{+}{-}{}^{\circ}{}^{\circ}{}^{\circ}$ for 15			
	Temperat	ure	Change	(Whichever is larger)	minutes and immersion in a saturated aqueous solution of salt at			
14	Cycle	ure	0	$C \le 220 pF : Q \ge 10,000$	0 ± 3 °C for 15 minutes.			
			Q	$470 \text{pF} < \text{C} \le 470 \text{pF} : \text{Q} \le 5,000$ $470 \text{pF} < \text{C} \le 1,000 \text{pF} : \text{Q} \ge 3,000$	dry cloth, and allowed to sit at room temperature for 24 ± 2 hours.			
			IR	More than 30% of the initial spec-	Step 1 2 3 4			
			Dielectrie Strength	ification value at 25°C.	Temp.(°C) $-55 \stackrel{+9}{-3}$ RoomTemp. $125 \stackrel{+3}{-3}$ RoomTemp.			
			Dielectric Strength	C : Nominal Capacitance (pF)	Time(min.) 30±3 2 to 3 30±3 2 to 3			
					Apply the 24-hour heat (-10 to $\pm 65^{\circ}$) and humidity (80 to 98%)			
					treatment shown below, 10 consecutive times. Remove, let sit for			
					24±2 hours at room temperature, and measure.			
			The measured and obser	ved characteristics should satisfy the	Humidity Humidity ۵۵–98% ۲۰ Humidity 80–98%			
			specifications in the follow	ing table.	70 90-98% 90-98% 1 Humidity90-98%			
			Item	Specifications				
			Appearance	No marked defect Within ±5% or ±0.5pF				
4.5			Change	(Whichever is larger)				
15	5 Humidity			C≦ 220pF : Q≧10,000				
			Q	$220pF < C \le 470pF : Q \ge 5,000$ $470pF < C \le 1.000pF : O > 3.000$				
				More than 30% of the initial spec-	15 Initial measurement			
			I.K.	ification value at 25°C.				
				C : Nominal Capacitance (pF)				
					One cycle 24 hours			
					0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 2021 22 23 24			
					+ Hours			

Continued on the following page. \square

Continued from the preceding page.

No.	Item	S	pecifications	Test Method
16	High Temperature Load	The measured and observ the specifications in the fo <u>Item</u> Appearance Capacitance Change Q	red characteristics should satisfy llowing table. Specifications No marked defect Within $\pm 2.5\%$ or $\pm 0.25pF$ (Whichever is larger) C $\leq 220pF : Q \geq 10,000$ $220pF < C \leq 470pF : Q \geq 5,000$ $470pF < C \leq 1,000pF : Q \geq 3,000$	Apply 150% of the rated voltage for 2,000±12 hours at 125±3℃. Remove and let sit for 24±2 hours at room temperature, then measure. The charge/discharge current is less than 50mA.
		I.R.	More than 30% of the initial spec- ification value at 25°C.	
			C : Nominal Capacitance (pF)	

Table A

Char. Code	T	Capacitance Change from 25°C Value (%)												
	Iemp. Coeff.	-5	5℃	-3	0°C	−10°C								
	(ppin/c) Note i	Max.	Min.	Max.	Min.	Max.	Min.							
5C	0±30	0.58	-0.24	0.40	-0.17	0.25	-0.11							

Note 1 : Nominal values denote the temperature coefficient within a range of 25 to 125°C.

Chip Monolithic Ceramic Capacitors

High Frequency Type

SMD Type

■ Features (ERA Series)

- 1. Negligible inductance is achieved by its monolithic structure so the series can be used at frequencies above 1GHz.
- 2. Nickel barriered terminations of ERA series improve solderability and decrease solder leaching.
- 3. ERA11A/21A series are designed for both flow and reflow soldering and ERA32 series are designed for reflow soldering.

Applications

Part Number	ERA11							ERA21									ERA32								
L x W				1.25	x1.00)						2.00	x1.25							3.20	x2.50				
тс		C0G (5C)			CH (6C)		CJ (7C)	CK (8C)		C0G (5C)		CH (6C)			CJ (7C)	CK (8C)		C0G (5C)		CH (6C)			CJ (7C)	CK (8C)	
Rated Volt.	200 (2D)	100 (2A)	50 (1H)	200 (2D)	100 (2A)	50 (1H)	200 (2D)	200 (2D)	200 (2D)	100 (2A)	50 (1H)	200 (2D)	100 (2A)	50 (1H)	200 (2D)	200 (2D)	200 (2D)	100 (2A)	50 (1H)	200 (2D)	100 (2A)	50 (1H)	200 (2D)	200 (2D)	
Capacitance (Ca	apacit	ance	part r	humb	ering	code)	and	T (mm	n) Dim	ensio	n (T E	Dimen	sion	oart n	umbe	ring	code)								
0.50pF (R50)	1.00 (A)							1.20 (A)	1.00 (A)							1.00 (A)	1.70 (X)							1.70 (X)	
0.6pF (R60)	1.00 (A)								1.00 (A)								1.70 (X)								
0.7pF (R70)	1.00 (A)								1.00 (A)								1.70 (X)								
0.75pF (R75)								1.20 (A)								1.00 (A)								1.70 (X)	
0.8pF (R80)	1.00 (A)								1.00 (A)								1.70 (X)								
0.9pF (R90)	1.00 (A)								1.00 (A)								1.70 (X)								
1.0pF (1R0)	1.00 (A)							1.20 (A)	1.00 (A)							1.00 (A)	1.70 (X)							1.70 (X)	
1.1pF (1R1)	1.00 (A)								1.00 (A)								1.70 (X)								
1.2pF (1R2)	1.00 (A)								1.00 (A)								1.70 (X)								
1.3pF (1R3)	1.00 (A)								1.00 (A)								1.70 (X)								
1.4pF (1R4)	1.00 (A)								1.00 (A)								1.70 (X)								
1.5pF (1R5)	1.00 (A)							1.20 (A)	1.00 (A)							1.00 (A)	1.70 (X)							1.70 (X)	
1.6pF (1R6)	1.00 (A)								1.00 (A)								1.70 (X)								
1.7pF (1R7)	1.00 (A)								1.00 (A)								1.70 (X)							1	
1.8pF (1R8)	1.00 (A)								1.00 (A)								1.70 (X)								

Part Number

			J										
2	•	L .		-									
Dimensions (mm)													
L	W	T max.	е	g min.									
_E +0.5	1 0 +0.5	1 0+0 2	0 15 min	0.2									

ERA11A	1.25 ^{+0.5} -0.3	1.0 ^{+0.5} -0.3	1.0±0.2	0.15 min.	0.3
ERA21A	2 0 ^{+0.5}	1 25 +0.5	1.0±0.2	0.2 min	0.5
ERA21B	2.0 - 0.3	1.25 - 0.3	1.25±0.2	0.2 11111.	0.5
ERA32X	3.2 + 0.6	2.5 + 0.5	1.7±0.2	0.3 min.	0.5

ANote Please read rating and ACAUTION (for storage, operating, rating, soldering, mounting and handling) in this PDF catalog to prevent smoking and/or burning, etc. This catalog has only typical specifications. Therefore, you are requested to approve our product specifications or to transact the approval sheet for product specifications before ordering.

Continued from the preceding page.

Part Number			g page	FR	Δ11				ERA21								ERA32									
LxW	1.25x1.00								2 00x1 25								3.20x2.50									
тс		C0G (5C)			CH (6C)		CJ (7C)	CK (8C)		C0G (5C)			CH (6C)		CJ (7C)	CK (8C)		C0G (5C)			CH (6C)		CJ (7C)	CK (8C)		
Rated Volt.	200 (2D)	100 (2A)	50 (1H)	200 (2D)	100 (2A)	50 (1H)	200 (2D)	200 (2D)	200 (2D)	100 (2A)	50 (1H)	200 (2D)	100 (2A)	50 (1H)	200 (2D)	200 (2D)	200 (2D)	100 (2A)	50 (1H)	200 (2D)	100 (2A)	50 (1H)	200 (2D)	200 (2D)		
Capacitance (Ca	apacit	ance	part r	humbe	ering	code)	and	T (mm	n) Dim	ensio	n (T C	Dimen	sion p	part n	umbe	ering o	ode)									
1.9pF (1R9)	1.00 (A)								1.00 (A)								1.70 (X)									
2.0pF (2R0)	1.00 (A)							1.20 (A)	1.00 (A)							1.00 (A)	1.70 (X)							1.70 (X)		
2.1pF (2R1)	1.00 (A)								1.00 (A)								1.70 (X)									
2.2pF (2R2)	1.00 (A)								1.00 (A)								1.70 (X)									
2.4pF (2R4)	1.00 (A)								1.00 (A)								1.70 (X)									
2.7pF (2R7)	1.00 (A)								1.00 (A)								1.70 (X)									
3.0pF (3R0)	1.00 (A)						1.20 (A)		1.00 (A)						1.00 (A)		1.70 (X)						1.70 (X)			
3.3pF (3R3)	1.00 (A)								1.00 (A)								1.70 (X)									
3.6pF (3R6)	1.00 (A)								1.00 (A)								1.70 (X)									
3.9pF (3R9)	1.00 (A)								1.00 (A)								1.70 (X)									
4.0pF (4R0)				1.00 (A)								1.00 (A)								1.70 (X)						
4.3pF (4R3)	1.00 (A)								1.00 (A)								1.70 (X)									
4.7pF (4R7)	1.00 (A)								1.00 (A)								1.70 (X)									
5.0pF (5R0)				1.00 (A)								1.00 (A)								1.70 (X)						
5.1pF (5R1)	1.00 (A)								1.00 (A)								1.70 (X)									
5.6pF (5R6)	1.00 (A)								1.00 (A)								1.70 (X)									
6.0pF (6R0)				1.00 (A)								1.00 (A)								1.70 (X)						
6.2pF (6R2)	1.00 (A)								1.00 (A)								1.70 (X)									
6.8pF (6R8)	1.00 (A)								1.00 (A)								1.70 (X)									
7.0pF (7R0)				1.20 (A)								1.00 (A)								1.70 (X)						
7.5pF (7R5)	1.00 (A)								1.00 (A)								1.70 (X)		<u> </u>							
8.0pF (8R0)				1.20 (A)								1.00 (A)								1.70 (X)						
8.2pF (8R2)	1.00 (A)								1.00 (A)								1.70 (X)									
9.0pF (9R0)				1.20 (A)	1.00 (A)							1.25 (B)								1.70 (X)						
9.1pF (9R1)	1.00 (A)								1.25 (B)								1.70 (X)							L		
10pF (100)	1.00 (A)			1.00 (A)	1.00 (A)				1.25 (B)			1.25 (B)					1.70 (X)			1.70 (X)						

ANote Please read rating and ACAUTION (for storage, operating, rating, soldering, mounting and handling) in this PDF catalog to prevent smoking and/or burning, etc. This catalog has only typical specifications. Therefore, you are requested to approve our product specifications or to transact the approval sheet for product specifications before ordering.

C02E10.pdf 04.1.20

Continued from the preceding page.

Bart Number							<u> </u>			ED	1 21				ERA32									
													421								432			
LXW				1.25	x1.00			1				2.00	(1.25		1					3.20>	(2.50			
тс		C0G (5C)	1		CH (6C)	1	CJ (7C)	CK (8C)		C0G (5C)			CH (6C)	I	CJ (7C)	CK (8C)		C0G (5C)	1		CH (6C)	1	CJ (7C)	CK (8C)
Rated Volt.	200 (2D)	100 (2A)	50 (1H)	200 (2D)	100 (2A)	50 (1H)	200 (2D)	200 (2D)	200 (2D)	100 (2A)	50 (1H)	200 (2D)	100 (2A)	50 (1H)	200 (2D)	200 (2D)	200 (2D)	100 (2A)	50 (1H)	200 (2D)	100 (2A)	50 (1H)	200 (2D)	200 (2D)
Capacitance (Ca	apacit	ance	part r	numbe	ering	code)	and ⁻	T (mm	n) Dim	ensio	n (T C	Dimen	sion p	oart n	umbe	ring c	ode)							
11pF (110)	1.00 (A)			1.00 (A)	1.00 (A)				1.25 (B)			1.25 (B)					1.70 (X)			1.70 (X)				
12pF (120)	1.00 (A)			1.00 (A)	1.00 (A)				1.25 (B)			1.25 (B)					1.70 (X)			1.70 (X)				
13pF (130)	1.00 (A)			1.00 (A)	1.00 (A)				1.25 (B)			1.25 (B)					1.70 (X)			1.70 (X)				
15pF (150)		1.00 (A)			1.00 (A)				1.25 (B)			1.25 (B)					1.70 (X)			1.70 (X)				
16pF (160)		1.00 (A)			1.00 (A)	1.00 (A)			1.25 (B)			1.25 (B)					1.00 (X)			1.70 (X)				
18pF (180)		1.00 (A)			1.00 (A)	1.00 (A)			1.25 (B)			1.25 (B)					1.70 (X)			1.70 (X)				
20pF (200)		1.00 (A)			1.00 (A)	1.00 (A)			1.25 (B)			1.25 (B)					1.70 (X)			1.70 (X)				
22pF (220)		1.00 (A)			1.00 (A)	1.00 (A)			1.25 (B)			1.25 (B)					1.70 (X)			1.70 (X)				
24pF (240)			1.00 (A)			1.00 (A)			1.25 (B)			1.25 (B)					1.70 (X)			1.70 (X)				
27pF (270)			1.00 (A)			1.00 (A)			1.25 (B)			1.25 (B)					1.70 (X)			1.70 (X)				
30pF			1.00			1.00			(=) 1.25 (B)			(=) 1.25 (B)					1.70 (X)			1.70 (X)				
33pF			1.00			1.00			(E)			(E)					(x)			(x) 1.70 (x)				
36pF			1.00			1.00			(D)			(D) 1.25					(x)			(x)				
(300) 39pF (200)			(A) 1.00			(A)			(B) 1.25			(B) 1.25					(^)			(x)				
43pF			(A)			(A)			(B) 1.25			(B)					(x)			(x)				
(430) 47pF			(A)			(A)			(B)			(B)					(X)			(X)				
(470) 51pF			(A)			(A)			(B)			(B)					(X)			(X)				
(510) 56pF			(A)			(A)			(B)	1.25		(B)	1.25				(X)			(X) 1.70				
(560) 62pF										(B) 1.25			(B) 1.25				(X) 1.70			(X) 1.70				
(620) 68pF										(B) 1.25			(B) 1.25				(X) 1.70			(X) 1.70				
(680) 75pF										(B) 1.25			(B) 1.25				(X) 1.70			(X) 1.70				
(750) 82pF										(B) 1.25			(B) 1.25				(X) 1.70			(X) 1.70				
(820) 91pF										(B) 1.25			(B) 1.25				(X) 1.70			(X)				
(910)										(B)	1.00		(B)	1 00			(X)			(X)				
(101)											(A)			(A)			(X)			(X)				
(111)											(B)			(B)			(X)			(X)				
120pF (121)											1.25 (B)			1.25 (B)			1.70 (X)			1.70 (X)				

ANote Please read rating and ACAUTION (for storage, operating, rating, soldering, mounting and handling) in this PDF catalog to prevent smoking and/or burning, etc. This catalog has only typical specifications. Therefore, you are requested to approve our product specifications or to transact the approval sheet for product specifications before ordering.

$\sum d$	Continued	from	the	proceding	nogo
	Continueu	110111	the	preceding	page.

Continued from	m the preceding page.																							
Part Number				ER	A11							ER	A21				ERA32							
LxW				1.25	x1.00							2.00	x1.25							3.20>	(2.50			
тс		C0G (5C)			CH (6C)		CJ (7C)	CK (8C)		C0G (5C)			CH (6C)		CJ (7C)	CK (8C)		C0G (5C)			CH (6C)		CJ (7C)	CK (8C)
Rated Volt.	200 (2D)	100 (2A)	50 (1H)	200 (2D)	100 (2A)	50 (1H)	200 (2D)	200 (2D)	200 (2D)	100 (2A)	50 (1H)	200 (2D)	100 (2A)	50 (1H)	200 (2D)	200 (2D)	200 (2D)	100 (2A)	50 (1H)	200 (2D)	100 (2A)	50 (1H)	200 (2D)	200 (2D)
Capacitance (Ca	apacit	ance	part r	numbe	ering	code)	and 1	Г (mm) Dim	ensio	n (T E	Dimen	sion p	oart n	umbe	ring c	ode)							
130pF (131)											1.25 (B)			1.25 (B)			1.70 (X)			1.70 (X)				
150pF (151)											1.25 (B)			1.25 (B)			1.70 (X)			1.70 (X)				
160pF (161)											1.25 (B)			1.25 (B)			1.70 (X)			1.70 (X)				
180pF (181)																		1.70 (X)			1.70 (X)			
200pF (201)																		1.70 (X)			1.70 (X)			
220pF (221)																		1.70 (X)			1.70 (X)			
240pF (241)																		1.70 (X)			1.70 (X)			
270pF (271)																		1.70 (X)			1.70 (X)			
300pF (301)																		1.70 (X)			1.70 (X)			
330pF (331)																		1.70 (X)			1.70 (X)			
360pF (361)																		1.70 (X)			1.70 (X)			
390pF (391)																		1.70 (X)			1.70 (X)			
430pF (431)																		1.70 (X)			1.70 (X)			
470pF (471)																		1.70 (X)			1.70 (X)			
510pF (511)																		1.70 (X)			1.70 (X)			
560pF (561)																			1.70 (X)			1.70 (X)		
620pF (621)																			1.70 (X)			1.70 (X)		
680pF (681)																			1.70 (X)			1.70 (X)		
750pF (751)																			1.70 (X)			1.70 (X)		
820pF (821)																			1.70 (X)			1.70 (X)		
910pF (911)																			1.70 (X)			1.70 (X)		
1000pF (102)																			1.70 (X)			1.70 (X)		

The part numbering code is shown in $% \left({\left. {{{\bf{n}}_{\rm{s}}}} \right)_{\rm{s}}} \right)$ ().

Dimensions are shown in mm and Rated Voltage in Vdc.

Ribbon Terminal

■ Features (ERD Series)

- 1. Negligible inductance is achieved by its monolithic structure so the series can be used at frequencies above 1GHz.
- 2. ERD Series capacitors withstand at high temperatures because ribbon leads are attached with silver paste.
- 3. ERD Series capacitors are easily soldered and are especially well suited in applications where only a soldering iron can be used.

Application

High frequency and high power circuits

Ċ,	Capacitance	Code

Dart Number	Dimensions (mm)							
Part Number	L max.	W max.	T max.					
ERD32D	4.0	3.0	2.3					

Part Number				EF	RD32			
LxW				4.00)x3.00			
тс		C0G (5C)			CH (6C)		CJ (7C)	CK (8C)
Rated Volt.	200 (2D)	100 (2A)	50 (1H)	200 (2D)	100 (2A)	50 (1H)	200 (2D)	200 (2D)
Capacitance (Ca	pacitance part r	numbering code)	and T (mm) Dim	nension (T Dimei	nsion part number	ering code)		·
0.50pF(R50)	2.30(D)							2.30(D)
0.6pF(R60)	2.30(D)							
0.7pF(R70)	2.30(D)							
0.75pF(R75)								2.30(D)
0.8pF(R80)	2.30(D)							
0.9pF(R90)	2.30(D)							
1.0pF(1R0)	2.30(D)							2.30(D)
1.1pF(1R1)	2.30(D)							
1.2pF(1R2)	2.30(D)							
1.3pF(1R3)	2.30(D)							
1.4pF(1R4)	2.30(D)							
1.5pF(1R5)	2.30(D)							2.30(D)
1.6pF(1R6)	2.30(D)							
1.7pF(1R7)	2.30(D)							
1.8pF(1R8)	2.30(D)							
1.9pF(1R9)	2.30(D)							
2.0pF(2R0)	2.30(D)							2.30(D)
2.1pF(2R1)	2.30(D)							
2.2pF(2R2)	2.30(D)							
2.4pF(2R4)	2.30(D)							
2.7pF(2R7)	2.30(D)							
3.0pF(3R0)	2.30(D)						2.30(D)	
3.3pF(3R3)	2.30(D)							
3.6pF(3R6)	2.30(D)							
3.9pF(3R9)	2.30(D)							
4.0pF(4R0)				2.30(D)				
4.3pF(4R3)	2.30(D)							
4.7pF(4R7)	2.30(D)							
5.0pF(5R0)				2.30(D)				
5.1pF(5R1)	2.30(D)							
5.6pF(5R6)	2.30(D)							
6.0pF(6R0)				2.30(D)				
6.2pF(6R2)	2.30(D)							
6.8pF(6R8)	2.30(D)							
7.0pF(7R0)				2 30(D)				

ANote Please read rating and ACAUTION (for storage, operating, rating, soldering, mounting and handling) in this PDF catalog to prevent smoking and/or burning, etc. This catalog has only typical specifications. Therefore, you are requested to approve our product specifications or to transact the approval sheet for product specifications before ordering.

Continued from the preceding page.

Part Number				ERD32								
L x W				4.00	x3.00							
тс		C0G (5C)			CH (6C)		CJ (7C)	CK (8C)				
Rated Volt.	200 (2D)	100 (2A)	50 (1H)	200 (2D)	100 (2A)	50 (1H)	200 (2D)	200 (2D)				
Capacitance (Ca	pacitance part n	numbering code)	and T (mm) Dim	ension (T Dimer	nsion part numbe	ring code)						
7.5pF(7R5)	2.30(D)											
8.0pF(8R0)				2.30(D)								
8.2pF(8R2)	2.30(D)											
9.0pF(9R0)				2.30(D)								
9.1pF(9R1)	2.30(D)											
10pF(100)	2.30(D)			2.30(D)								
11pF(110)	2.30(D)			2.30(D)								
12pF(120)	2.30(D)			2.30(D)								
13pF(130)	2.30(D)			2.30(D)								
15pF(150)	2.30(D)			2.30(D)								
16pF(160)	2.30(D)			2.30(D)								
18pF(180)	2.30(D)			2.30(D)								
20pF(200)	2.30(D)			2.30(D)								
22pF(220)	2.30(D)			2.30(D)								
24pF(240)	2.30(D)			2.30(D)								
27pF(270)	2.30(D)			2.30(D)								
30pF(300)	2.30(D)			2.30(D)								
26pE(350)	2.30(D)			2.30(D)								
39pF(300)	2.30(D)			2.30(D)								
43pF(430)	2.30(D)			2.30(D)								
47pF(470)	2.30(D)			2.30(D)								
51pF(510)	2.30(D)			2.30(D)								
56pF(560)	2.30(D)			2.30(D)								
62pF(620)	2.30(D)			2.30(D)								
68pF(680)	2.30(D)			2.30(D)								
75pF(750)	2.30(D)			2.30(D)								
82pF(820)	2.30(D)			2.30(D)								
91pF(910)	2.30(D)			2.30(D)								
100pF(101)	2.30(D)			2.30(D)								
110pF(111)	2.30(D)			2.30(D)								
120pF(121)	2.30(D)			2.30(D)								
130pF(131)	2.30(D)			2.30(D)								
150pF(151)	2.30(D)			2.30(D)								
160pF(161)	2.30(D)	0.00/=		2.30(D)	0.00/5							
180pF(181)		2.30(D)			2.30(D)							
200pF(201)		2.30(D)			2.30(D)							
220pF(221)		2.30(D)			2.30(D)							
240pF(241)		2.30(D)			2.30(D)							
270pF(271)		2.30(D)			2.30(D)							
330nF(331)		2.30(D)			2.30(D)							
360pF(361)		2.30(D)			2.30(D)							
390pF(391)		2.30(D)			2.30(D)							
430pF(431)		2.30(D)			2.30(D)							
470pF(471)		2.30(D)			2.30(D)							
510pF(511)		2.30(D)			2.30(D)							
560pF(561)			2.30(D)			2.30(D)						
620pF(621)			2.30(D)			2.30(D)						
680pF(681)			2.30(D)			2.30(D)						
750pF(751)			2.30(D)			2.30(D)						
820pF(821)			2 30(D)	1	1	2 30(D)						

ANote Please read rating and ACAUTION (for storage, operating, rating, soldering, mounting and handling) in this PDF catalog to prevent smoking and/or burning, etc. This catalog has only typical specifications. Therefore, you are requested to approve our product specifications or to transact the approval sheet for product specifications before ordering.

C02E10.pdf 04.1.20

Continued from the preceding page.

Part Number		ERD32												
L x W		4.00x3.00												
тс		C0G (5C)			CH (6C)		CJ (7C)	CK (8C)						
Rated Volt.	200 (2D)	100 (2A)	50 (1H)	200 (2D)	100 (2A)	50 (1H)	200 (2D)	200 (2D)						
Capacitance (Ca	pacitance part n	umbering code)	and T (mm) Dim	ension (T Dimen	sion part numbe	ring code)								
910pF(911)			2.30(D)			2.30(D)								
1000pF(102)			2.30(D)			2.30(D)								

The part numbering code is shown in ().

Dimensions are shown in mm and Rated Voltage in Vdc.

75

13

No.	lte	em	Specifications		Test Method
1	Operating Temperatu	ure Range	−55℃ to +125℃		
2	Rated Vo	ltage	See the previous pages.	The rated voltage is d may be applied contin When AC voltage is s whichever is larger, sh age range.	efined as the maximum voltage which uously to the capacitor. uperimposed on DC voltage, V ^{P-P} or V ^{O-P} , nould be maintained within the rated volt-
3	Appearar	nce	No defects or abnormalities	Visual inspection	
4	Dimensio	ns	Within the specified dimension	Using calipers	
5	Dielectric	Strength	No defects or abnormalities	No failure should be on is applied between the ed the charge/dischar	bserved when 300% of the rated voltage e terminations for 1 to 5 seconds, provid- ge current is less than 50mA.
6	Insulation (I.R.)	Resistance	10,000MΩ min.	The insulation resistan age not exceeding the humidity and within 2	nce should be measured with a DC volt- rated voltage at 25°C and standard minutes of charging.
7	Capacita	nce	Within the specified tolerance	The capacitance/Q sh	ould be measured at 25℃ at the frequen-
8	Q		C≤ 220pF : Q≥10,000 220pF <c≤ 470pf="" 5,000<br="" :="" q≥="">470pF<c≤1,000pf 3,000<br="" :="" q≥="">C : Nominal Capacitance (pF)</c≤1,000pf></c≤>	cy and voltage shown Item Cha Frequency Voltage	in the table. ar. COG (1,000pF and below) 1±0.1MHz 0.5 to 5Vr.m.s.
		Capacitance Variation Rate	Within the specified tolerance (Table A-6)	The temperature coeff tance measured in stee temperature sequentiation	ficient is determined using the capaci- p 3 as a reference. When cycling the ally from step 1 through 5, the capaci-
		Temperature Coefficient	Within the specified tolerance (Table A-6)	tance should be within ture coefficient and ca The capacitance drift	the specified tolerance for the tempera- pacitance change as Table A. is calculated by dividing the differences
9	Capacitance Temperature Characteristics	Capacitance Drift	Within ±0.2% or ±0.05pF (Whichever is larger)	between the maximum 1, 3 and 5 by the capa The capacitance char each specified temper Step 1 2 3 4 5	n and minimum measured values in steps acitance value in step 3. Ige should be measured after 5 min. at rature stage. Temperature(°C) 25±2 -55±3 25±2 125±2 125±3 25±2
10	Terminal	Adhesive Strength of Termination (for chip type)	No removal of the terminations or other defects should occur.	Solder the capacitor to Fig.1 using solder con be done either with an care so the soldering i shock. Then apply a 1	b the test jig (alumina substrate) shown in taining 2.5% silver. The soldering should i ron or in furnace and be conducted with s uniform and free of defects such as heat ON* force in the direction of the arrow. *5N (ERA11)
10	Strength	Tensile Strength (for micro- strip type)	Capacitor should not be broken or damaged.	The capacitor body is the axial direction unti	fixed and a load is applied gradually in I its value reaches 5N.
	Bending Strength of lead wire terminal (for micro- strip type)		Lead wire should not be cut or broken.	Position the main bod nal is perpendicular, a Bend the main body b tion, bend 90 degrees back to original positio	y of the capacitor so the lead wire termi- ind load 2.5N to the lead wire terminal. y 90 degrees, bend back to original posi- in the reverse direction, and then bend on.

Continued from the preceding page.

No.	Ite	m	S	pecifications		Test Method					
		Appearance	No defects or abnormalitie	S	Solder the capacitor	to the test jig (alumina substrate) shown in					
		Capacitance	Within the specified toleral	nce	Fig. 2 using solder c	ontaining 2.5% silver. The soldering should					
11	Vibration Resistance	Q	Satisfies the initial value. C≦ 220pF : Q≧1 220pF <c≦ 470pf="" :="" q≧<br="">470pF<c≦1,000pf :="" q≧<br="">C : Nominal Capacitance (</c≦1,000pf></c≦>	0,000 5,000 3,000 pF)	be conducted with a be conducted with c defects such as heat a simple harmonic m frequency being varie of 10 and 55Hz. Th return to 10Hz, shou This motion should be mutually perpendicula	are so the soldering is uniform and free of shock. The capacitor should be subjected to otion having a total amplitude of 1.5mm, the ad uniformly between the approximate limits e frequency range, from 10 to 55Hz and ld be traversed in approximately 1 minute. e applied for a period of 2 hours in each of 3 ar directions (total of 6 hours).					
12	Solderabi Terminati	lity of on	75% of the terminations are ly.	to be soldered evenly and continuous-	Immerse the capacitor in a solution of ethanol (JIS-K-8101) and rosin (JIS-K-5902) (25% rosin in weight proportion). Preheat at 80 to 120°C for 10 to 30 seconds. After preheating immerse in solder containing 2.5% silver for 5 ± 0.5 seconds at 230 ± 5 °C. The dipping depth for microstrip type capacitors is up to 1 mm from the root of the terminal.						
			The measured and obser	ved characteristics should satisfy the							
			specifications in the follow	ing table.	Preheat according to	the conditions listed in the table below.					
			Appearance	No marked defect	Immerse in solder co	intaining 2.5% silver for 3 ± 0.5 seconds at					
			Capacitance	Within $\pm 2.5\%$ or ± 0.25 pF	sure. The dipping de	oth for microstrip type capacitors is up to					
13	Resistanc	e	Change	(Whichever is larger)	2mm from the root of	the terminal.					
	to Soldering	ng Heat		C≦ 220pF : Q≧10,000	Chip Size	Preheat Condition					
			Q	220pF <c≦ 470pf="" 5,000<="" :="" q≧="" td=""><td>2.0×1.25mm max</td><td>1minute at 120 to 150°C</td></c≦>	2.0×1.25mm max	1minute at 120 to 150°C					
			Distantia Otas anth	470pF <c≦1,000pf 3,000<="" :="" q≧="" td=""><td>3.2×2.5mm</td><td>Each 1 minute at 100 to 120°C and then 170 to 200°C</td></c≦1,000pf>	3.2×2.5mm	Each 1 minute at 100 to 120°C and then 170 to 200°C					
			Dielectric Strength								
				C : Nominal Capacitance (pF)							
			The measured and observe	ved characteristics should satisfy the							
			specifications in the follow	ing table.							
			Item	Specifications	Fix the capacitor to the	e supporting jig in the same manner and					
			Appearance	Within +5% or +0 5pE	under the same conditions as (11). Perform the five cycles						
	Tomporat		Change	(Whichever is larger)	according to the four	at room temperature, then measure					
14	Cvcle	urc		C≧30pF : Q≧350	Ston 1						
	-)		Q	10pF≦C<30pF : Q≧275+ ½ C	$Temp(^{\circ})$ -55	+9 PoomTomp $125+3$ PoomTomp					
				C<10pF : Q≧200+10C	Time(min)	-3 (contremp.) 125 - 8 125 - 8 125 1					
			I.R.	1,000MΩ min.		20 2 10 3 30 13 2 10 3					
			Dielectric Strength	No failure							
				C : Nominal Capacitance (pF)							
					Apply the 24-hour heat treatment shown belo 24±2 hours at room t	at (-10 to +65°C) and humidity (80 to 98%) w, 10 consecutive times. Remove, let sit for emperature, and measure.					
			The measured and obser	ved characteristics should satisfy the	70 Humidity 70 90–98%	80–98% Humidity 80–98% Teit 1 90–98% Lief / Lief Humidity90–98% Lief /					
			specifications in the follow	ing table.	65						
			Item	Specifications	55	$+ \mathbb{N} + \mathbb{A} + \mathbb{N} $					
			Capacitance	Within ±5% or ±0.5pE	45						
15	5 Humidity		Change	(Whichever is larger)							
13				C≧30pF : Q≧350							
			Q	10pF≦C<30pF : Q≧275+ ½ C							
				C<10pF : Q≧200+10C							
			<u> </u>	1,000MΩ min.	5						
				C : Nominal Capacitance (pF)		blied voltage 50Vdc					
					-10						
						One cycle 24 hours					
					0 1 2 3 4	5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 2021 22 23 24					
						Hours					

Continued from the preceding page.

No.	Item	S	pecifications	Test Method			
		The measured and obserspecifications in the follow	ved characteristics should satisfy the ving table.				
		Item	Specifications				
		Appearance	No marked defect	Analy 2000/ of the rate durations for 1,000 J 10 hours at 105 J 200			
		Capacitance	Within ±3% or ±0.3pF	Apply 200% of the rated voltage for $1,000\pm12$ hours at 125 ± 3 C.			
16	High Temperature	Change	(Whichever is larger)	Remove and let sit for 24 ± 2 hours at room temperature, then			
	Load	Q	C≧30pF : Q≧350 10pF≦C<30pF : Q≧275+ 5/2 C C<10pF : Q≧200+10C	measure. The charge/discharge current is less than 50mA.			
		I.R. 1,000MΩ min.					
			C : Nominal Capacitance (pF)				

Table A

Char. Code	Tanana kana Ora filalarak	Capacitance Change from 25°C Value (%)									
	I emperature Coefficient	-5	5℃	-3	0℃	−10°C					
	(ppin/c) Note i	Max.	Min.	Max.	Min.	Max.	Min.				
5C	0±30	0.58	-0.24	0.40	-0.17	0.25	-0.11				

Note 1 : Nominal values denote the temperature coefficient within a range of 25 to 125°C.

ERA/ERD/ERF/ERH Series Data

Q-Frequency Characteristics

Impedance-Frequency Characteristics

ERF Series

ERF Series

ERA Series

ERA Series

7HF

100

ERA/ERD/ERF/ERH Series Data

Continued from the preceding page.

Resonant Frequency-Capacitance

ERF Series

■ Allowable Voltage-Frequency

■ Allowable Apparent Power-Frequency

100G

10G

1G

100ML 0.1

Series Resonant Frequency to [Hz]

ERA Series

ERA33

10

Capacitance [pF]

■ Allowable Effective Power-Frequency

Packaging Code

Packaging Type Tape Carrier Packaging	Tapo Carrier Dackaging	Pulk Case Dackaging	Bulk Packaging		
	Tape Carrier Packaging	Bulk Case Packaging	Bulk Packaging in a bag	Bulk Packaging in a tray	
Packaging Code	D, L, K, J, E, F	С	В	т	

Minimum Quantity Guide

	Dimonsions (mm)			Quantity (pcs.)							
Part Nu	mber	Dim	ensions	(mm)	ø180mm reel ø330m			330mm reel			
		L	w	Т	Paper Tape	Plastic Tape	Paper Tape	Plastic Tape	Bulk Case	Bulk Bag	
Ultra Miniaturized	GRM03	0.6	0.3	0.3	15.000	-	50.000	-	-	1.000	
onia miniatarizoa	GRM18	1.6	0.8	0.8	4 000	-	10,000	-	15 000	1,000	
	CIUNIO	1.0	0.0	0.0	4,000	-	10,000	-	10,000	1,000	
				0.85	4 000	_	10,000	-	-	1,000	
	GRM21	2.0	1.25	1.0	-	3 000	-	10.000	-	1,000	
For Flow/Reflow				1.0	-	3,000	_	10,000	5 000 ³⁾	1,000	
				0.6	4 000	-	10 000	-	-	1,000	
				0.85	4,000	-	10,000	-	-	1,000	
	GRM31	3.2	1.6	1.15	-	3.000	-	10,000	-	1,000	
				1.6	-	2,000	-	6,000	-	1,000	
	GRM155	1.0	0.5	0.5	10 000		50,000	-	50,000	1,000	
	GRM15X	1.0	0.5	0.25	10,000	-	50,000	-	-	1,000	
	Chillion	1.0	0.0	1.15	-	3.000	-	10,000	-	1,000	
				1.35	-	2 000	-	8,000	-	1,000	
	GRM32	32	25	1.8/1.6	-	1,000		4 000	-	1,000	
	U.I.I.U	0.2	2.0	2.0		1,000		4 000	-	1,000	
				2.5		1,000	_	4,000	-	1,000	
For Peflow				1 15		1,000		5,000		1,000	
I OI KENOW				1.35/1.6		1,000		3,000 4,000		1,000	
	GRM43	4.5	3.2	1.8/2.0		500		2,000		1,000	
				2.5		500		2,000		1,000	
				2.0		1 000		5,000		1,000	
	GRM55 5.7			1.35/1.6		1,000		3,000		1,000	
		5.7	5.0	1.8/2.0	-	500		4,000	-	500	
				2.5	-	300	-	2,000	-	500	
	G IM03	0.6	0.3	0.3	-	300	50,000	1,500	-	1 000	
High Power Type	G IE/C IM15	1.0	0.5	0.5	10,000	-	50,000	-	50,000	1,000	
	G10/GJM15	2.0	1.25	1.25	10,000	- 3 000	50,000	-	50,000	1,000	
	00221	2.0	1.25	1.25	-	3,000	-	10,000	-	-	
	GJ231	3.2	1.6	1.15		3,000		8,000			
Smoothing ¹⁾	GJ232 3.2			1.55		2,000		6,000			
Shibothing		3.2	2.5	1.0		2,000		4,000			
	GJ243	J243 4.5		1.0	_	1,000	_	3,000		_	
			4.5 3.2	2.2		500		3,000			
	GOM18	16	0.8	0.8	4 000	500	10.000	2,000		1 000	
	GOM21	2.0	1.25	0.0	4,000		10,000			1,000	
	FRA11	1.0	1.20	1.00	+,000			-	-	1,000	
High Frequency	ERA21	20	1.0	1 0/1 25		3,000			-	1,000	
ingittequency	FRA32	32	25	17	-	2,000		-	-	1,000	
	ERE1D	1.4	1.0	1.7		2,000		-		1,000	
	ERF22	2.8	2.8	23		1,000				1,000	
For I Iltrasonic	GRM21	2.0	1.25	0.85	4 000	1,000	10,000	-		1,000	
	GMA05	0.5	0.5	0.00	4,000		10,000			400 2)	
Micro Chip	GMA08	0.5	0.5	0.35	-	-	-	-	-	400 2)	
	GNM1M	1 27	1.0	0.5	- 4 000	-	-	-	-	1 000	
	GIVINI HVI	1.37	1.0	0.0	4,000	-	10,000	-	-	1,000	
Array	GNM31	3.2	1.6	1.0	4,000	- 2 000	10,000	-	-	1,000	
	GNM21	20	1.05	0.6/0.95	-	3,000	-	10,000	-	1,000	
		2.0	1.20	0.0/0.05	4,000	-	10,000	-	-	1,000	
	LLLIO	0.0	1.0	0.0	4,000	-	10,000	-	-	1,000	
	LLL21	1.25	2.0	0.0	-	4,000	-	10,000	-	1,000	
LOW ESL				0.05	-	3,000	-	10,000	-	1,000	
	LLL31	1.6	3.2	0.7	-	4,000	-	10,000	-	1,000	
	LLLS		1	1	G1.1	-	3,000	-	10,000	-	1,000

muRata

1) Available in tape/reel only. 2) Tray 3) 3.3/4.7 μF of 6.3 R6 rated are not available by bulk case.

Continued from the preceding page.

■ Tape Carrier Packaging

(1) Dimensions of Reel

(2) Dimensions of Paper Tape

Part Number	A*	B*
GJM03 GRM03	0.37	0.67
GJM15 GRM15	0.65	1.15

*Nominal Value

(in mm)

Continued on the following page. \square

Continued from the preceding page.

(3) Dimensions of Plastic Tape

12mm width 8mm pitch Tape

<u>4.0±0.1</u>

8.0±0.1

Part Number

GRM43, GJ243

GRM55

2.0±0,1

Direction of feed

A*

3.6

5.2

φ1.5^{+0.1}

1.75±0.1

5±0.

2.0±0.

2.5 max

for GRM43/GRM55

(3.7 max. for T=2.5mm)

(4.7 max. for T≥3.0mm)

В*

4.9

6.1

*Nominal Value

0.3±0.1

(4) Taping Method

- ① Tapes for capacitors are wound clockwise. The sprocket holes are to the right as the tape is pulled toward the user.
- ② Part of the leader and part of the empty tape should be attached to the end of the tape as follows.
- ③ The top tape and base tape are not attached at the end of the tape for a minimum of 5 pitches.
- ④ Missing capacitors number within 0.1% of the number per reel or 1 pc, whichever is greater, and are not continuous.
- (5) The top tape and bottom tape should not protrude beyond the edges of the tape and should not cover sprocket holes.
- (6) Cumulative tolerance of sprocket holes, 10 pitches : ± 0.3 mm.
- ⑦ Peeling off force : 0.1 to 0.6N* in the direction shown below. *GRM03 GJM03

Continued on the following page. \square

Continued from the preceding page.

Dimensions of Bulk Case Packaging

The bulk case uses antistatic materials. Please contact Murata for details.

Note Please read rating and ①CAUTION (for storage, operating, rating, soldering, mounting and handling) in this PDF catalog to prevent smoking and/or burning, etc.
 This catalog has only typical specifications. Therefore, you are requested to approve our product specifications or to transact the approval sheet for product specifications before order

ACaution

■ Storage and Operating Conditions

Chip monolithic ceramic capacitors (chips) can experience degradation of termination solderability when subjected to high temperature or humidity, or if exposed to sulfur or chlorine gases. Storage environment must be at an ambient temperature of 5-40 degree C and an ambient humidity of 20-70%RH. Use chip within 6 months. If 6 months or more have elapsed, check solderability before use. (Reference Data 1. Solderability) FAILURE TO FOLLOW THE ABOVE CAUTIONS MAY RESULT, WORST CASE, IN A SHORT CIRCUIT AND FUMING WHEN THE PRODUCTS IS USED.

Handling

1. Inspection

Thrusting force of the test probe can flex the PCB, resulting in cracked chips or open solder joints. Provide support pins on the back side of the PCB to prevent warping or flexing.

- 2. Board Separation (or depanalization)
- (1) Board flexing at the time of separation causes cracked chips or broken solder.
- (2) Severity of stresses imposed on the chip at the time of board break is in the order of : Pushback<Slitter<V Slot<Perforator.

- (3) Board separation must be performed using special jigs, not with hands.
- 3. Reel and bulk case

In the handling of reel and case, please be careful and do not drop it.

Please do not use chips from a case which has been dropped.

FAILURE TO FOLLOW THE ABOVE CAUTIONS MAY RESULT, WORST CASE, IN A SHORT CIRCUIT AND FUMING WHEN THE PRODUCTS IS USED.

Soldering and Mounting

1. Mounting Position

Choose a mounting position that minimizes the stress imposed on the chip during flexing or bending of the board.

[Component Direction]

Locate chip horizontal to the direction in which stress acts

[Chip Mounting Close to Board Separation Point]

Chip arrangement Worst A-C-(B<u>~</u>D) Best

(Reference Data 2. Board bending strength for solder fillet height) (Reference Data 3. Temperature cycling for solder fillet height) (Reference Data 4. Board bending strength for board material)

2. Solder Paste Printing

Overly thick application of solder paste results in excessive fillet height solder.

This makes the chip more susceptible to mechanical and thermal stress on the board and may cause cracked chips.

- Too little solder paste results in a lack of adhesive strength on the outer electrode, which may result in chips breaking loose from the PCB.
- Make sure the solder has been applied smoothly to the end surface to a height of 0.2mm min.

3. Chip Placing

- An excessively low bottom dead point of the suction nozzle imposes great force on the chip during mounting, causing cracked chips. So adjust the suction nozzle's bottom dead point by correcting warp in the board. Normally, the suction nozzle's bottom dead point must be set on the upper surface of the board. Nozzle pressure for chip mounting must be a 1 to 3N static load.
- Dirt particles and dust accumulated between the suction nozzle and the cylinder inner wall prevent the nozzle from moving smoothly. This imposes great force on the chip during mounting, causing cracked chips. And the locating claw, when worn out, imposes uneven forces on the chip when positioning, causing cracked chips. The suction nozzle and the locating claw must be maintained, checked and replaced periodically. (Reference Data 5. Break strength)

Continued from the preceding page.

- 4. Reflow Soldering
- Sudden heating of the chip results in distortion due to excessive expansion and construction forces within the chip causing cracked chips. So when preheating, keep temperature differential, ΔT, within the range shown in Table 1. The smaller the ΔT, the less stress on the chip.
- When components are immersed in solvent after mounting, be sure to maintain the temperature difference (ΔT) between the component and solvent within the range shown in the above table.

Table 1

Part Number	Temperature Differential
GRM03/15/18/21/31	
GJ615, GJ221/31	
LLL18/21/31	∆T≦190℃
ERA11/21/32, ERF1D	
GQM18/21	
GRM32/43/55	
GNM, GJ232/43	∆T≦130℃
ERA32, ERF22	

Inverting the PCB

Make sure not to impose an abnormal mechanical shock on the PCB.

5. Leaded Component Insertion

If the PCB is flexed when leaded components (such as transformers and ICs) are being mounted, chips may crack and solder joints may break.

Before mounting leaded components, support the PCB using backup pins or special jigs to prevent warping.

Continued from the preceding page.

- 6. Flow Soldering
- Sudden heating of the chip results in thermal distortion causing cracked chips. And an excessively long soldering time or high soldering temperature results in leaching of the outer electrodes, causing poor adhesion or a reduction in capacitance value due to loss of contact between electrodes and end termination.
- When preheating, keep the temperature differential between solder temperature and chip surface temperature, ΔT, within the range shown in Table 2. The smaller the ΔT, the less stress on the chip.
 When components are immersed in solvent after mounting, be sure to maintain the temperature difference between the component and solvent within the range shown in Table 2.

Do not apply flow soldering to chips not listed in Table 5.

Та	b	le	2
10			~

Part Number	Temperature Differential
GRM18/21/31	
LLL21/31	
ERA11/21, ERF1D	$\Delta 1 \ge 150 \text{ C}$
GQM18/21	

• Optimum Solder Amount for Flow Soldering

[Allowable Soldering Temperature and Time]

In case of repeated soldering, the accumulated soldering time must be within the range shown above.

Continued from the preceding page.

7. Correction with a Soldering Iron

- (1) For Chip Type Capacitors <Except GJ2 Series>
- Sudden heating of the chip results in distortion due to a high internal temperature differential, causing cracked chips. When preheating, keep temperature differential, ΔT, within the range shown in Table 3. The smaller the ΔT, the less stress on the chip.

Та	h	ام	З
Iа	D	e	J

Part Number	Temperature Differential
GRM15/18/21/31	
GJ615	
LLL18/21/31	∆T≦190℃
GQM18/21	
ERA11/21, ERF1D	
GRM32/43/55	
GNM	∆T≦130℃
ERA32, ERF22	

Soldering Time (sec.)

90

The accumulated soldering Time / temperature including reflow / flow soldering must be within the range shown above.

60

30

0

(2) For GJ2 Series

• When solder GJ2 series chip capacitor, keep the following conditions.

<Soldering iron method>

Part Number	Pre-heating	Temperature of iron tip	Soldering iron wattage	Diameter of iron tip	Soldering time	Soldering amount	Restriction
GJ221/31/32/43	∆≦130℃	300℃ max.	20W max.	φ 3mm max.	5 sec. max.	≦1/2 of chip thickness	Do not allow the iron tip to directly touch the ceramic element.

(3) For Microstrip Types

- Solder 1mm away from the ribbon terminal base, being careful that the solder tip does not directly contact the capacitor. Preheating is unnecessary.
- Complete soldering within 3 seconds with a soldering tip less than 270°C in temperature.

Caution

Continued from the preceding page.

8. Washing

Excessive output of ultrasonic oscillation during cleaning causes PCBs to resonate, resulting in cracked chips or broken solder. Take note not to vibrate PCBs.

Failure to follow the above cautions may result, worst case, in a short circuit and fuming when the product is used.

Rating

- Die Bonding/Wire Bonding (GMA Series)
- 1. Die Bonding of Capacitors
- Use the following materials Braze alloy : Au-Si (98/2) 400 to 420 degree C in N2 atmosphere Au-Sn (80/20) 300 to 320 degree C in N2 atmosphere Au-Ge (88/12) 380 to 400 degree C in N2 atmosphere
 Mounting
- Control the temperature of the substrate so that it matches the temperature of the braze alloy.
- (2) Place braze alloy on substrate and place the capacitor on the alloy. Hold the capacitor and

gently apply the load. Be sure to complete the operation in 1 minute.

- 2. Wire Bonding
- •Wire
 - Gold wire :

20mm (0.0008 inch), 25mm (0.001 inch) diameter •Bonding

- (1) Thermocompression, ultrasonic ball bonding.
- (2) Required stage temperature : 150 to 250 degree C
- (3) Required wedge or capillary weight : 0.5N to 2N.
- (4) Bond the capacitor and base substrate or other devices with gold wire.

■ Soldering and Mounting

1. PCB Design

(1) Notice for Pattern Forms

Unlike leaded components, chip components are susceptible to flexing stresses since they are mounted directly on the substrate.

They are also more sensitive to mechanical and thermal stresses than leaded components.

Excess solder fillet height can multiply these stresses and cause chip cracking. When designing substrates, take land patterns and dimensions into consideration to eliminate the possibility of excess solder fillet height.

Pattern Forms

Continued from the preceding page.

(2) Land Dimensions

Table 1 Flow Soldering Method

Dimensions Part Number	Dimensions (L×W)	а	b	С	
GRM18 GQM18	1.6×0.8	0.6—1.0	0.8-0.9	0.6-0.8	
GRM21 GQM21	2.0×1.25	1.0-1.2	0.9—1.0	0.8-1.1	
GRM31	3.2×1.6	2.2-2.6	1.0-1.1	1.0-1.4	
LLL21	1.25×2.0	0.4-0.7	0.5-0.7	1.4-1.8	
LLL31	1.6×3.2	0.6-1.0	0.8-0.9	2.6-2.8	
ERA11	1.25×1.0	0.4-0.6	0.6-0.8	0.8-1.0	
ERA21	2.0×1.25	1.0-1.2	0.9-1.0	0.8-1.0	
ERF1D	1.4×1.4	0.5-0.8	0.8-0.9	1.0-1.2	

(in mm)

Table 2 Reflow Soldering Method

Dimensions Part Number	Dimensions (L \times W)	а	b	С	
GRM03	0.6×0.3	0.2-0.3	0.2-0.35	0.2-0.4	
GRM15	1.0×0.5	0.3-0.5	0.35-0.45	0.4-0.6	
GRM18	4.020.0	0.0.00	0.0.07	0.0.00	
GQM18	1.0×0.8	0.6-0.8	0.6-0.7	0.6-0.8	
GRM21					
GQM21	2.0×1.25	1.0-1.2	0.6-0.7	0.8-1.1	
GJ221					
GRM31	2.224.0	22.24	0.0.00	10.14	
GJ231	3.2 × 1.0	2.2-2.4	0.8-0.9	1.0-1.4	
GRM32	2 2 2 2 5	20.24	10.10	4.0.00	
GJ232	3.2×2.5	2.0-2.4	1.0-1.2	1.0-2.3	
GRM43	45×22	20.25	10 14	22.20	
GJ243	4.5×3.2	3.0-3.5	1.2-1.4	2.3-3.0	
GRM55	5.7×5.0	4.0-4.6	1.4—1.6	3.5-4.8	
LLL18	0.8×1.6	0.2-0.4	0.3-0.4	1.0-1.4	
LLL21	1.25×2.0	0.4-0.6	0.3-0.5	1.4-1.8	
LLL31	1.6×3.2	0.6-0.8	0.6-0.7	2.6-2.8	
ERA11	1.25×1.0	0.4-0.6	0.6-0.8	0.8-1.0	
ERA21	2.0×1.25	1.0-1.2	0.6-0.8	0.8-1.0	
ERA32	3.2×2.5	2.2-2.5	0.8-1.0	1.9-2.3	
ERF1D	1.4×1.4	0.4-0.8	0.6-0.8	1.0-1.2	
ERF22	2.8×2.8	1.8-2.1	0.7-0.9	2.2-2.6	

(in mm)

Continued on the following page. \square

Continued from the preceding page.

GNM Series for reflow soldering method

Table 3

Part Number	Dimensions (mm)							
Fait Number	L	W	а	b	С	р		
GNM1M2	1.37	1.0	0.45~0.5	0.5~0.55	0.3~0.35	0.64+/-0.1		
GNM212	2.0	1.25	0.6~0.7	0.5~0.7	0.4~0.5	1.0+/-0.1		
GNM214	2.0	1.25	0.6~0.7	0.5~0.7	0.25~0.35	0.5+/-0.05		
GNM314	3.2	1.6	0.8~1.0	0.7~0.9	0.3~0.4	0.8+/-0.05		

2. Adhesive Application

- Thin or insufficient adhesive causes chips to loosen or become disconnected when flow soldered. The amount of adhesive must be more than dimension C shown in the drawing below to obtain enough bonding strength. The chip's electrode thickness and land thickness must be taken into consideration.
- Low viscosity adhesive causes chips to slip after mounting. Adhesive must have a viscosity of 5000Pa•s (500ps) min. (at 25℃)

Adhesive Coverage*

Part Number	Adhesive Coverage*				
GRM18	0.05mm Min				
GQM18	0.05mg Min.				
GRM21	0.1mg Min.				
GQM21					
GRM31	0.15mg Min.				

*Nominal Value

3. Adhesive Curing

Insufficient curing of the adhesive causes chips to disconnect during flow soldering and causes deteriorated insulation resistance between outer electrodes due to moisture absorption.

Control curing temperature and time in order to prevent insufficient hardening.

Inverting the PCB

Make sure not to impose an abnormal mechanical shock on the PCB.

Continued from the preceding page.

- 4. Flux Application
- An excessive amount of flux generates a large quantity of flux gas, causing deteriorated solderability. So apply flux thinly and evenly throughout. (A foaming system is generally used for flow soldering).
- Flux containing too high a percentage of halide may cause corrosion of the outer electrodes unless sufficiently
- 5. Flow Soldering
- Set temperature and time to ensure that leaching of the outer electrode does not exceed 25% of the chip end area as a single chip (full length of the edge A-B-C-D shown below) and 25% of the length A-B shown below as mounted on substrate.

cleaned. Use flux with a halide content of 0.2wt% max. But do not use strong acidic flux.

Wash thoroughly because water soluble flux causes deteriorated insulation resistance between outer electrodes unless sufficiently cleaned.

[As a Single Chip]					
A D C Outer Electrode					
[As Mounted on Substrate]					
A					

(Reference Data 6. Thermal shock) (Reference Data 7. Solder heat resistance)

Others

1. Resin Coating When selecting resi

When selecting resin materials, select those with low contraction.

2. Circuit Design

The capacitors listed in the previous sections of this catalog are not safety recognized products.

3. Remarks

The above notices are for standard applications and conditions. Contact us when the products are used in special mounting conditions. Select optimum conditions for operation as they determine the reliability of the product after assembly. The data herein are given in typical values, not guaranteed ratings.

1. Solderability

(1) Test Method

Subject the chip capacitor to the following conditions. Then apply flux (a ethanol solution of 25% rosin) to the chip and dip it in 230°C eutectic solder for 2 seconds. Conditions :

Expose prepared at room temperature (for 6 months and 12 months, respectively)

Prepared at high temperature (for 100 hours at 85°C) Prepared left at high humidity (for 100 hours under 90%RH to 95%RH at 40°C)

Table 1

 Prepared at Room Temperature
 Prepared at High Temperature for 100 Hours at 90 to 95% RH and 40°C

 GRM21 for flow/reflow soldering
 95 to 100%
 95 to 100%
 95%
 90 to 95%
 905%
 95%

(2) Test Samples

(4) Results

(3) Acceptance Criteria

Refer to Table 1.

GRM21 : Products for flow/reflow soldering.

With a 60-power optical microscope, measure the surface area of the outer electrode that is covered with solder.

2. Board Bending Strength for Solder Fillet Height

(1) Test Method

Solder the chip capacitor to the test PCB with the amount of solder paste necessary to achieve the fillet heights. Then bend the PCB using the method illustrated and measure capacitance.

(2) Test Samples

GRM21 C0G/X7R/Y5V Characteristics T=0.6mm

(3) Acceptance Criteria

Products shall be determined to be defective if the change in capacitance has exceeded the values specified in Table 2.

Tab	le 2
-----	------

Characteristics	Change in Capacitance			
COG	Within $\pm 5\%$ or ± 0.5 pF, whichever is greater			
X7R	Within ±12.5%			
Y5V	Within ±20%			

 \Box Continued from the preceding page.

(4) Results

3. Temperature Cycling for Solder Fillet Height

(1) Test Method

Solder the chips to the substrate various test fixtures using sufficient amounts of solder to achieve the required fillet height. Then subject the fixtures to the cycle illustrated below 200 times.

Alumina substrates are typically designed for reflow

Glass epoxy or paper phenol substrates are typically

(Thickness: 0.64mm)

(Thickness: 1.6 mm)

(Thickness: 1.6 mm)

(1) Solder Amount

used for flow soldering.

soldering.

(2) Material

Alumina

Glass epoxy

Paper phenol

Continued from the preceding page.

(2) Test Samples

GRM40 C0G/X7R/Y5V Characteristics T=0.6mm

(3) Acceptance Criteria

Products are determined to be defective if the change in capacitance has exceeded the values specified in Table 3.

Table 3

Characteristics	Change in Capacitance			
COG	Within $\pm 2.5\%$ or ± 0.25 pF, whichever is greater			
X7R	Within ±7.5%			
Y5V	Within ±20%			

(4) Results

Continued from the preceding page.

4. Board Bending Strength for Board Material

(1) Test Method

Solder the chip to the test board. Then bend the board using the method illustrated below, to measure capacitance.

(2) Test Samples

GRM21 C0G/X7R/Y5V Characteristics T=0.6mm typical

(3) Acceptance Criteria

Products shall be determined to be defective if the change in capacitance has exceeded the values specified in Table 4.

Table 4

Characteristics	Change in Capacitance
COG	Within $\pm 5\%$ or ± 0.5 pF, whichever is greater
X7R	Within ±12.5%
Y5V	Within ±20%

(4) Results

5. Break Strength

(1) Test Method

Place the chip on a steel plate as illustrated on the right. Increase load applied to a point near the center of the test sample.

(2) Test Samples

GRM21 C0G/X7R/Y5V Characteristics GRM31 C0G/X7R/Y5V Characteristics

(3) Acceptance Criteria

Define the load that has caused the chip to break or crack, as the bending force.

(4) Explanation

Break strength, P, is proportionate to the square of the thickness of the ceramic element and is expressed as a curve of secondary degree.

(N/mm²)

Χ7R

Y5V

1.2

1.6

Cog

0.8

Thickness of Ceramic Element (mm)

The formula is :

$$\mathsf{P}=\frac{2\gamma\mathsf{W}\mathsf{T}^2}{3\mathsf{L}}\quad(\mathsf{N})$$

- W: Width of ceramic element (mm)
- T : Thickness of element (mm)
- L : Distance between fulcrums (mm)

GRM21

γ : Bending stress

140

120

100

80

60

40

20

0

0.4

Bending-break Strength (N)

(5) Results

Dipping Speed : 25mm/sec.

the chip in a solder bath (6×4 eutectic solder) in accordance with the following

6. Thermal Shock

(1) Test method

conditions :

(2) Test samples

GRM21 C0G/X7R/Y5V Characteristics T=0.6mm typical

After applying flux (an ethanol solution of 25% rosin), dip

(3) Acceptance criteria

Visually inspect the test sample with a 60-power optical microscope. Chips exhibiting breaks or cracks shall be determined to be defective.

- Continued from the preceding page.
- (4) Results

After dipping the test sample with a pair of tweezers in

static solder (eutectic solder), check for leaching that

may have occurred on the outer electrode.

(4) Flux to be used : An ethanol solution of 25% rosin.

③ Dip soldering :

7. Solder Heat Resistance

(1) Test Method

1 Reflow soldering :

Apply about 300 μ m of solder paste over the alumina substrate. After reflow soldering, remove the chip and check for leaching that may have occurred on the outer electrode.

2 Flow soldering :

After dipping the test sample with a pair of tweezers in wave solder (eutectic solder), check for leaching that may have occurred on the outer electrode.

(2) Test samples

GRM21 : For flow/reflow soldering T=0.6mm

(3) Acceptance criteria

The starting time of leaching should be defined as the time when the outer electrode has lost 25 % of the total edge length of A-B-C-D as illustrated :

(4) Results

Outer Electrode

Continued from the preceding page.

8. Thermal Shock when Making Corrections with a Soldering Iron

(1) Test Method

Apply a soldering iron meeting the conditions below to the soldered joint of a chip that has been soldered to a paper phenol board, while supplying wire solder. (Note: the soldering iron tip should not directly touch the ceramic element of the chip.)

(2) Test Samples

GRM21 C0G/X7R/Y5V Characteristics T=0.6mm

(3) Acceptance Criteria for Defects

Observe the appearance of the test sample with a 60-power optical microscope. Those units displaying any breaks or cracks are determined to be defective.

Chip Monolithic Ceramic Capacitors

muRata

Medium-voltage Low Dissipation Factor

Features

- 1. Murata's original internal electrode structure realizes high flash-over voltage.
- 2. A new monolithic structure for small, surfacemountable devices capable of operating at high voltage levels.
- 3. Sn-plated external electrodes realize good solderability.
- 4. Use the GRM31 type with flow or reflow soldering, and other types with reflow soldering only.
- $\ensuremath{\mathsf{5}}.$ Low-loss and suitable for high frequency circuits.
- 6. The temperature characteristics C0G and SL are temperature compensating type, and R is high dielectric constant type.

Applications

- Ideal for use on high frequency pulse circuits such as snubber circuits for switching power supplies, DC/DC converters, ballasts (inverter fluorescent lamps), etc.
- 2. Ideal for use as the ballast in liquid crystal back lighting inverters.
- Please contact our sales representatives or engineers before using our products for other applications not specified above.

· L · · w ·								
Dart Number	Dimensions (mm)							
Part Number	L W T		e min.	g min.				
GRM31A	22402	14402	1.0 +0,-0.3		1 5*			
GRM31B	3.2 ±0.2	1.0 ±0.2	1.25 +0,-0.3		1.0			
GRM32Q	3.2 ±0.2	2.5 ±0.2	1.5 +0,-0.3		1.8			
GRM42A			1.0 +0,-0.3	0.2				
GRM42B	4.5 ±0.3	2.0 ±0.2	1.25 +00.3	0.3				
GRM42D			2.0 ±0.3		2.9			
GRM43D	4 5 10 2	22102	2.0 +0,-0.3					
GRM43E	4.5 ± 0.3	3.2 ± 0.3	2.5 +0,-0.3					

* GRM31B1X3D : 1.8mm min.

Part Number	Rated Voltage (V)	TC Code (Standard)	Capacitance (pF)	Length L (mm)	Width W (mm)	Thickness T (mm)	Electrode g min. (mm)	Electrode e (mm)
GRM31AR32J101KY01D	DC630	R (JIS)	100 ±10%	3.2	1.6	1.0	1.5	0.3 min.
GRM31AR32J151KY01D	DC630	R (JIS)	150 ±10%	3.2	1.6	1.0	1.5	0.3 min.
GRM31AR32J221KY01D	DC630	R (JIS)	220 ±10%	3.2	1.6	1.0	1.5	0.3 min.
GRM31AR32J331KY01D	DC630	R (JIS)	330 ±10%	3.2	1.6	1.0	1.5	0.3 min.
GRM31BR32J471KY01L	DC630	R (JIS)	470 ±10%	3.2	1.6	1.25	1.5	0.3 min.
GRM31BR32J681KY01L	DC630	R (JIS)	680 ±10%	3.2	1.6	1.25	1.5	0.3 min.
GRM31BR32J102KY01L	DC630	R (JIS)	1000 ±10%	3.2	1.6	1.25	1.5	0.3 min.
GRM31AR33A470KY01D	DC1000	R (JIS)	47 ±10%	3.2	1.6	1.0	1.5	0.3 min.
GRM31AR33A680KY01D	DC1000	R (JIS)	68 ±10%	3.2	1.6	1.0	1.5	0.3 min.
GRM31AR33A101KY01D	DC1000	R (JIS)	100 ±10%	3.2	1.6	1.0	1.5	0.3 min.
GRM31AR33A151KY01D	DC1000	R (JIS)	150 ±10%	3.2	1.6	1.0	1.5	0.3 min.
GRM31AR33A221KY01D	DC1000	R (JIS)	220 ±10%	3.2	1.6	1.0	1.5	0.3 min.
GRM31AR33A331KY01D	DC1000	R (JIS)	330 ±10%	3.2	1.6	1.0	1.5	0.3 min.
GRM31BR33A471KY01L	DC1000	R (JIS)	470 ±10%	3.2	1.6	1.25	1.5	0.3 min.
GRM31B1X3D100JY01L	DC2000	SL (JIS)	10 ±5%	3.2	1.6	1.25	1.8	0.3 min.
GRM31B1X3D120JY01L	DC2000	SL (JIS)	12 ±5%	3.2	1.6	1.25	1.8	0.3 min.
GRM31B1X3D150JY01L	DC2000	SL (JIS)	15 ±5%	3.2	1.6	1.25	1.8	0.3 min.
GRM31B1X3D180JY01L	DC2000	SL (JIS)	18 ±5%	3.2	1.6	1.25	1.8	0.3 min.
GRM31B1X3D220JY01L	DC2000	SL (JIS)	22 ±5%	3.2	1.6	1.25	1.8	0.3 min.
GRM32Q1X3D270JY01L	DC2000	SL (JIS)	27 ±5%	3.2	2.5	1.5	1.8	0.3 min.
GRM32Q1X3D330JY01L	DC2000	SL (JIS)	33 ±5%	3.2	2.5	1.5	1.8	0.3 min.
GRM32Q1X3D390JY01L	DC2000	SL (JIS)	39 ±5%	3.2	2.5	1.5	1.8	0.3 min.
GRM32Q1X3D470JY01L	DC2000	SL (JIS)	47 ±5%	3.2	2.5	1.5	1.8	0.3 min.
GRM32Q1X3D560JY01L	DC2000	SL (JIS)	56 ±5%	3.2	2.5	1.5	1.8	0.3 min.

ANote Please read rating and ACAUTION (for storage, operating, rating, soldering, mounting and handling) in this PDF catalog to prevent smoking and/or burning, etc. This catalog has only typical specifications. Therefore, you are requested to approve our product specifications or to transact the approval sheet for product specifications before ordering.

Continued from the preceding page.

Part Number	Rated Voltage (V)	TC Code (Standard)	Capacitance (pF)	Length L (mm)	Width W (mm)	Thickness T (mm)	Electrode g min. (mm)	Electrode e (mm)
GRM32Q1X3D680JY01L	DC2000	SL (JIS)	68 ±5%	3.2	2.5	1.5	1.8	0.3 min.
GRM32Q1X3D820JY01L	DC2000	SL (JIS)	82 ±5%	3.2	2.5	1.5	1.8	0.3 min.
GRM43D1X3D121JY01L	DC2000	SL (JIS)	120 ±5%	4.5	3.2	2.0	2.9	0.3 min.
GRM43D1X3D151JY01L	DC2000	SL (JIS)	150 ±5%	4.5	3.2	2.0	2.9	0.3 min.
GRM43D1X3D181JY01L	DC2000	SL (JIS)	180 ±5%	4.5	3.2	2.0	2.9	0.3 min.
GRM43D1X3D221JY01L	DC2000	SL (JIS)	220 ±5%	4.5	3.2	2.0	2.9	0.3 min.
GRM42A5C3F100JW01L	DC3150	COG (EIA)	10 ±5%	4.5	2.0	1.0	2.9	0.3 min.
GRM42A5C3F120JW01L	DC3150	COG (EIA)	12 ±5%	4.5	2.0	1.0	2.9	0.3 min.
GRM42A5C3F150JW01L	DC3150	COG (EIA)	15 ±5%	4.5	2.0	1.0	2.9	0.3 min.
GRM42A5C3F180JW01L	DC3150	COG (EIA)	18 ±5%	4.5	2.0	1.0	2.9	0.3 min.
GRM42A5C3F220JW01L	DC3150	COG (EIA)	22 ±5%	4.5	2.0	1.0	2.9	0.3 min.
GRM42D1X3F560JY02L	DC3150	SL (JIS)	56 ±5%	4.5	2.0	2.0	2.9	0.3 min.
GRM42D1X3F680JY02L	DC3150	SL (JIS)	68 ±5%	4.5	2.0	2.0	2.9	0.3 min.
GRM42D1X3F820JY02L	DC3150	SL (JIS)	82 ±5%	4.5	2.0	2.0	2.9	0.3 min.
GRM43E1X3F101JY01L	DC3150	SL (JIS)	100 ±5%	4.5	3.2	2.5	2.9	0.3 min.

Please contact us for SL characteristics information.

DC3150V items are considered to use for the application which is not LCD back lighting inverters circuit.

105

		Specifi	cations				
No.	Item	Temperature Compensating Type (C0G, SL Char.)	High Dielectric Constant Type (R Char.)	-	Test Method		
1	Operating Temperature Range	−55 to +125℃					
2	Appearance	No defects or abnormalities		Visual inspection			
3	Dimensions	Within the specified dimension		Using calipers			
4	Dielectric Strength	No defects or abnormalities		No failure should be o between the terminatic discharge current is le <u>Rated voltage</u> DC630V DC1kV, DC2kV DC3.15kV	bserved when voltage in Table is applied ons for 1 to 5 sec., provided the charge/ ss than 50mA. Test voltage 150% of the rated voltage 120% of the rated voltage DC4095V		
5	Insulation Resistance (I.R.)	More than 10,000MΩ		The insulation resistar and within 60±5 sec.	nce should be measured with DC500±50V of charging.		
6	Capacitance	Within the specified tolerance		The capacitance/Q/D.	F. should be measured at 20°C at the		
7	Q/ Dissipation Factor (D.F.)	C0G char. : Q≥1,000 SL char. : C≥30pF : Q≥1,000 C<30pF : Q≥400+20C* ²	D.F.≦0.01	 frequency and voltage shown as follows. (1) Temperature Compensating Type Frequency : 1±0.2MHz Voltage : AC0.5 to 5V (r.m.s.) (2) High Dielectric Constant Type Frequency : 1±0.2kHz Voltage : AC1±0.2V (r.m.s.) • Pretreatment Perform a heat treatment at 150[±]Ω_o ℃ for 60±5 min. an then let sit for 24±2 hrs. at *'room condition 			
8	Capacitance Temperature Characteristics	Temp. Coefficient C0G char. : 0±30ppm/°C (Temp. Range : -55 to +125°C) SL char. : +350 to -1,000 ppm/°C (Temp. Range : +20 to +85°C)	Cap. Change Within ±15%	 (1) Temperature Com The temperature con capacitance measu When cycling the to through 5 (SL : +2) within the specified Step 1 2 3 4 5 (2) High Dielectric Cor The range of capaci within -55 to +125 • Pretreatment Perform a heat treat then let sit for 24±2 	pensating Type oefficient is determined using the ured in step 3 as a reference. emperature sequentially from step 1 0 to +85 °C) the capacitance should be I tolerance for the temperature coefficient. Temperature (°C) 20 \pm 2 (25 \pm 2 for COG char.) Min. Operating Temp. \pm 3 20 \pm 2 (25 \pm 2 for COG char.) Max. Operating Temp. \pm 2 20 \pm 2 (25 \pm 2 for COG char.) Max. Operating Temp. \pm 2 20 \pm 2 (25 \pm 2 for COG char.) nstant Type citance change compared to the 20°C value 5°C should be within the specified range. attent at 150 \pm ° _C °C for 60 \pm 5 min. and 2 hrs. at *iroom condition.		
9	Adhesive Strength of Termination No removal of the terminations		or other defect should occur.	Solder the capacitor to in Fig. 1 using a euteo Then apply 10N force The soldering should I reflow method and sho soldering is uniform ar	b the testing jig (glass epoxy board) shown tic solder. in the direction of the arrow. be done either with an iron or using the bould be conducted with care so that the hold free of defects such as heat shock.		

*1 "Room condition" Temperature : 15 to 35°C, Relative humidity : 45 to 75%, Atmospheric pressure : 86 to 106kPa

*2 "C" expresses nominal capacitance value (pF).

Continued from the preceding page.

			Spec	ifications	
No.	lte	em	Temperature Compensating Type (C0G, SL Char.)	High Dielectric Constant Type (R Char.)	Test Method
		Appearance	No defects or abnormalities		Solder the capacitor to the test jig (glass epoxy board).
		Capacitance	Within the specified tolerance		The capacitor should be subjected to a simple harmonic motion
10	Vibration Resistance	Q/D.F.	C0G char. : Q≥1,000 SL char. : C≥30pF : Q≥1,000 C<30pF : Q≥400+20C*²	D.F.≦0.01	uniformly between the approximate limits of 10 and 55Hz. The frequency range, from 10 to 55Hz and return to 10Hz, should be traversed in approximately 1 min. This motion should be applied for a period of 2 hrs. in each 3 mutually perpendicular directions (total of 6 hrs.).
			No cracking or marking defect	s should occur.	Solder the capacitor to the testing jig (glass epoxy board) shown
11	11 Deflection		L×W (mm) a 3.2×1.6 2.2 3.2×2.5 2.2 4.5×2.0 3.5 4.5×3.2 3.5	•4.5 •4.5 ••4.5 ••4.5 ••1 ••1 ••1	in Fig. 2 using a eutectic solder. Then apply a force in the direction shown in Fig. 3. The soldering should be done either with an iron or using the reflow method and should be conducted with care so that the soldering is uniform and free of defects such as heat shock. $ \frac{20^{50} \text{ Pressurizing}}{\text{Speed : 1.0mm/s}} + \frac{1000}{\text{Fressurize}} + \frac{1000}{Fressur$
12	Solderab Terminati	ility of on	75% of the terminations are to b and continuously.	be soldered evenly	Immerse the capacitor in a solution of ethanol (JIS-K-8101) and rosin (JIS-K-5902) (25% rosin in weight proportion). Immerse in eutectic solder solution for 2±0.5 sec. at 235±5°C. Immersing speed : 25±2.5mm/s
		Appearance	No marking defects		Preheat the capacitor at 120 to 150°C* for 1 min.
		Capacitance Change	Within $\pm 2.5\%$ or $\pm 0.25pF$ (Whichever is larger)	Within ±10%	Immerse the capacitor in eutectic solder solution at 260±5°C for 10±1 sec. Let sit at *1room condition for 24±2 hrs., then measure
13	Resistance to Soldering Heat	Q/D.F.	C0G char. : Q≥1,000 SL char. : C≥30pF : Q≥1,000 C<30pF : Q≥400+20C* ²	D.F.≦0.01	 Immersing speed : 25±2.5mm/s Pretreatment for high dielectric constant type Perform a heat treatment at 150⁺⁰/₁₀ °C for 60±5 min. and then let sit for 24±2 hrs. at *1room condition.
		I.R.	More than 10,000M Ω		*Preheating for more than 3.2×2.5mm
		Dielectric			Step Temperature Time
		Strength	In accordance with item No.4		2 170°C to 200°C 1 min.

*1 "Room condition" Temperature : 15 to 35°C, Relative humidity : 45 to 75%, Atmospheric pressure : 86 to 106kPa *2 "C" expresses nominal capacitance value (pF).

Continued from the preceding page.

			Specifi					
No.	lte	em	Temperature Compensating Type (C0G, SL Char.)	High Dielectric Constant Type (R Char.)			Test Method	
		Appearance	No marking defects		Fix the capacitor to the supporting jig (glass epoxy board) in Fig. 4 using a eutectic solder. Perform the 5 cycles according to the 4 heat treatments li the following table.			epoxy board) shown
		Capacitance Change	Within $\pm 2.5\%$ or ± 0.25 pF (Whichever is larger)	Within ±10%				treatments listed in
			C0G char. : Q≧1.000		Let sit for 24±	2 hrs. at *1rc	oom condition, then	measure.
			SL char. :	D E <0.01	Step	Temp	erature (℃)	Time (min.)
		Q/D.I .	C≥30pF : Q≥1,000 C<30pF : Q≥400+20C* ²	D.1.=0.01		Min. Oper	rating Temp.±3	<u>30±3</u>
					2	Max Ope	rating Tomp +2	2 to 3 30+3
		ID	More than 10,000MO		3	Roc		2 to 3
14	Temperature	I.R.						2.00
	Cycle	Dielectric Strength	In accordance with item No.4		•Pretreatment for high dielectric constant type Perform a heat treatment at 150 ⁺ C ₀ ° C for 60±5 min. and then let sit for 24±2 hrs. at *'room condition.			e 50±5 min. and then [•] resist
		Appearance	No marking defects					
		Capacitance Change	Within ±5.0% or ±0.5pF (Whichever is larger)	Within ±10%	Let the capaci	tor sit at 40-	+2℃ and relative h	unidity of 90 to 95%
15	Humidity (Steady State)	Q/D.F.	C0G char. : Q≥350 SL char. : C≥30pF : Q≥350 C<30pF : Q≥275+ 5/2 C*2	D.F.≦0.01	 for 500^{±2}3 hrs. Remove and let sit for 24±2 hrs. at *1room condition, the measure. Pretreatment for high dielectric constant type Perform a heat treatment at 150[±]₁3°C for 60±5 min. ar 		pondition, then e 60 ± 5 min. and then	
		I.R.	More than 1,000MΩ		let sit for 24±	:2 hrs. at *1ro	oom condition.	
		Dielectric Strength	In accordance with item No.4		_			
		Appearance	No marking defects		Apply the volta	age in follow	ing table for 1,000	⁺⁴⁸ ohrs. at
		Capacitance Change	Within ±3.0% or ±0.3pF (Whichever is larger)	Within ±10%	maximum ope Remove and I measure	erating tempo et sit for 24:	erature ±3℃. ±2 hrs. at *1room co	ondition, then
16	Life	Q/D.F.	CoG char. : Q≧350 SL char. : C≧30pF : Q≧350 C<30pF : Q≧275+ 5/2 C*2	D.F.≦0.02	The charge/dia •Pretreatment Apply test vo Remove and	scharge cur for high die ltage for 60: let sit for 24	rent is less than 50 lectric constant type ±5 min. at test temp l±2 hrs. at *1room o	mA. e perature. condition.
		I.R.	More than 1,000M Ω		Rated	voltage	Test v	oltage
		Dielectric			More than	DC1kV	Rated	voltage
		Strength	In accordance with item No.4	accordance with item No.4		DC1kV	120% of the	rated voltage

*1 "Room condition" Temperature : 15 to 35°C, Relative humidity : 45 to 75%, Atmospheric pressure : 86 to 106kPa

*2 "C" expresses nominal capacitance value (pF).

muRata

Medium-voltage High-Capacitance for General-Use

Features

- 1. A new monolithic structure for small, high capacitance capable of operating at high voltage levels.
- 2. Sn-plated external electrodes realized good solderability.
- Use the GRM18/21/31 types with flow or reflow soldering, and other types with reflow soldering only.

Applications

- 1. Ideal for use as a hot-cold coupling for DC/DC converter.
- 2. Ideal for use on line filters and ringer detectors for telephones, facsimiles and modems.
- 3. Ideal for use on diode-snubber circuits for switching power supplies.

Part Number		Dimensions (mm)							
Fart Number	Ĺ	Ŵ	T	е	g min.				
GRM188	1.6 ±0.1	0.8 ±0.1	0.8 ±0.1	0.2 to 0.5	0.4				
GRM21A	20+02	1.25 ±0.2 -	1.0 +0,-0.3		0.7				
GRM21B	2.0 ±0.2		1.25 ±0.2						
GRM31B	22102	1 (10 2	1.25 +0,-0.3						
GRM31C	3.2 ±0.2	1.0 ±0.2	1.6 ±0.2	1	1 0				
GRM32Q	22402	25402	1.5 +0,-0.3	0.3 min.	1.2				
GRM32D	3.∠ ±0.3	2.5 ±0.2	2.0 +0,-0.3						
GRM43Q	4 5 10 4	22102	1.5 +0,-0.3	1					
GRM43D	4.5 ± 0.4	3.∠ ±0.3	2.0 +0,-0.3		2.2				
GRM55D	5.7 ±0.4	5.0 ±0.4	2.0 +0,-0.3		3.2*				
* GRM55DR73A : 2.5mm min.									

Part Number	Rated Voltage (V)	TC Code (Standard)	Capacitance	Length L (mm)	Width W (mm)	Thickness T (mm)	Electrode g min. (mm)	Electrode e (mm)
GRM188R72E221KW07D	DC250	X7R (EIA)	220pF ±10%	1.6	0.8	0.8	0.4	0.2 to 0.5
GRM188R72E331KW07D	DC250	X7R (EIA)	330pF ±10%	1.6	0.8	0.8	0.4	0.2 to 0.5
GRM188R72E471KW07D	DC250	X7R (EIA)	470pF ±10%	1.6	0.8	0.8	0.4	0.2 to 0.5
GRM188R72E681KW07D	DC250	X7R (EIA)	680pF ±10%	1.6	0.8	0.8	0.4	0.2 to 0.5
GRM188R72E102KW07D	DC250	X7R (EIA)	1000pF ±10%	1.6	0.8	0.8	0.4	0.2 to 0.5
GRM21AR72E102KW01D	DC250	X7R (EIA)	1000pF ±10%	2.0	1.25	1.0	0.7	0.3 min.
GRM188R72E152KW07D	DC250	X7R (EIA)	1500pF ±10%	1.6	0.8	0.8	0.4	0.2 to 0.5
GRM21AR72E152KW01D	DC250	X7R (EIA)	1500pF ±10%	2.0	1.25	1.0	0.7	0.3 min.
GRM188R72E222KW07D	DC250	X7R (EIA)	2200pF ±10%	1.6	0.8	0.8	0.4	0.2 to 0.5
GRM21AR72E222KW01D	DC250	X7R (EIA)	2200pF ±10%	2.0	1.25	1.0	0.7	0.3 min.
GRM21AR72E332KW01D	DC250	X7R (EIA)	3300pF ±10%	2.0	1.25	1.0	0.7	0.3 min.
GRM21AR72E472KW01D	DC250	X7R (EIA)	4700pF ±10%	2.0	1.25	1.0	0.7	0.3 min.
GRM21AR72E682KW01D	DC250	X7R (EIA)	6800pF ±10%	2.0	1.25	1.0	0.7	0.3 min.
GRM21BR72E103KW03L	DC250	X7R (EIA)	10000pF ±10%	2.0	1.25	1.25	0.7	0.3 min.
GRM31BR72E153KW01L	DC250	X7R (EIA)	15000pF ±10%	3.2	1.6	1.25	1.2	0.3 min.
GRM31BR72E223KW01L	DC250	X7R (EIA)	22000pF ±10%	3.2	1.6	1.25	1.2	0.3 min.
GRM31CR72E333KW03L	DC250	X7R (EIA)	33000pF ±10%	3.2	1.6	1.6	1.2	0.3 min.
GRM31CR72E473KW03L	DC250	X7R (EIA)	47000pF ±10%	3.2	1.6	1.6	1.2	0.3 min.
GRM32QR72E683KW01L	DC250	X7R (EIA)	68000pF ±10%	3.2	2.5	1.5	1.2	0.3 min.
GRM31CR72E104KW03L	DC250	X7R (EIA)	0.10μF ±10%	3.2	1.6	1.6	1.2	0.3 min.
GRM32DR72E104KW01L	DC250	X7R (EIA)	0.10μF ±10%	3.2	2.5	2.0	1.2	0.3 min.
GRM43QR72E154KW01L	DC250	X7R (EIA)	0.15µF ±10%	4.5	3.2	1.5	2.2	0.3 min.
GRM32DR72E224KW01L	DC250	X7R (EIA)	0.22µF ±10%	3.2	2.5	2.0	1.2	0.3 min.
GRM43DR72E224KW01L	DC250	X7R (EIA)	0.22µF ±10%	4.5	3.2	2.0	2.2	0.3 min.
GRM43DR72E334KW01L	DC250	X7R (EIA)	0.33µF ±10%	4.5	3.2	2.0	2.2	0.3 min.
GRM55DR72E334KW01L	DC250	X7R (EIA)	0.33µF ±10%	5.7	5.0	2.0	3.2	0.3 min.
GRM43DR72E474KW01L	DC250	X7R (EIA)	0.47µF ±10%	4.5	3.2	2.0	2.2	0.3 min.
GRM55DR72E474KW01L	DC250	X7R (EIA)	0.47µF ±10%	5.7	5.0	2.0	3.2	0.3 min.
GRM55DR72E105KW01L	DC250	X7R (EIA)	1.0μF ±10%	5.7	5.0	2.0	3.2	0.3 min.
GRM31BR72J102KW01L	DC630	X7R (EIA)	1000pF ±10%	3.2	1.6	1.25	1.2	0.3 min.
GRM31BR72J152KW01L	DC630	X7R (EIA)	1500pF ±10%	3.2	1.6	1.25	1.2	0.3 min.
GRM31BR72J222KW01L	DC630	X7R (EIA)	2200pF ±10%	3.2	1.6	1.25	1.2	0.3 min.

15

ANote Please read rating and ACAUTION (for storage, operating, rating, soldering, mounting and handling) in this PDF catalog to prevent smoking and/or burning, etc. This catalog has only typical specifications. Therefore, you are requested to approve our product specifications or to transact the approval sheet for product specifications before ordering.

Ľ	Continued	from	the	preceding	page.
---	-----------	------	-----	-----------	-------

_

Part Number	Rated Voltage (V)	TC Code (Standard)	Capacitance	Length L (mm)	Width W (mm)	Thickness T (mm)	Electrode g min. (mm)	Electrode e (mm)
GRM31BR72J332KW01L	DC630	X7R (EIA)	3300pF ±10%	3.2	1.6	1.25	1.2	0.3 min.
GRM31BR72J472KW01L	DC630	X7R (EIA)	4700pF ±10%	3.2	1.6	1.25	1.2	0.3 min.
GRM31BR72J682KW01L	DC630	X7R (EIA)	6800pF ±10%	3.2	1.6	1.25	1.2	0.3 min.
GRM31BR72J103KW01L	DC630	X7R (EIA)	10000pF ±10%	3.2	1.6	1.25	1.2	0.3 min.
GRM31CR72J153KW03L	DC630	X7R (EIA)	15000pF ±10%	3.2	1.6	1.6	1.2	0.3 min.
GRM32QR72J223KW01L	DC630	X7R (EIA)	22000pF ±10%	3.2	2.5	1.5	1.2	0.3 min.
GRM32DR72J333KW01L	DC630	X7R (EIA)	33000pF ±10%	3.2	2.5	2.0	1.2	0.3 min.
GRM32DR72J473KW01L	DC630	X7R (EIA)	47000pF ±10%	3.2	2.5	2.0	1.2	0.3 min.
GRM43QR72J683KW01L	DC630	X7R (EIA)	68000pF ±10%	4.5	3.2	1.5	2.2	0.3 min.
GRM43DR72J104KW01L	DC630	X7R (EIA)	0.10µF ±10%	4.5	3.2	2.0	2.2	0.3 min.
GRM55DR72J154KW01L	DC630	X7R (EIA)	0.15µF ±10%	5.7	5.0	2.0	3.2	0.3 min.
GRM55DR72J224KW01L	DC630	X7R (EIA)	0.22µF ±10%	5.7	5.0	2.0	3.2	0.3 min.
GRM31BR73A102KW01L	DC1000	X7R (EIA)	1000pF ±10%	3.2	1.6	1.25	1.2	0.3 min.
GRM31BR73A152KW01L	DC1000	X7R (EIA)	1500pF ±10%	3.2	1.6	1.25	1.2	0.3 min.
GRM31BR73A222KW01L	DC1000	X7R (EIA)	2200pF ±10%	3.2	1.6	1.25	1.2	0.3 min.
GRM31BR73A332KW01L	DC1000	X7R (EIA)	3300pF ±10%	3.2	1.6	1.25	1.2	0.3 min.
GRM31BR73A472KW01L	DC1000	X7R (EIA)	4700pF ±10%	3.2	1.6	1.25	1.2	0.3 min.
GRM32QR73A682KW01L	DC1000	X7R (EIA)	6800pF ±10%	3.2	2.5	1.5	1.2	0.3 min.
GRM32QR73A103KW01L	DC1000	X7R (EIA)	10000pF ±10%	3.2	2.5	1.5	1.2	0.3 min.
GRM32DR73A153KW01L	DC1000	X7R (EIA)	15000pF ±10%	3.2	2.5	2.0	1.2	0.3 min.
GRM32DR73A223KW01L	DC1000	X7R (EIA)	22000pF ±10%	3.2	2.5	2.0	1.2	0.3 min.
GRM43DR73A333KW01L	DC1000	X7R (EIA)	33000pF ±10%	4.5	3.2	2.0	2.2	0.3 min.
GRM43DR73A473KW01L	DC1000	X7R (EIA)	47000pF ±10%	4.5	3.2	2.0	2.2	0.3 min.
GRM55DR73A104KW01L	DC1000	X7R (EIA)	0.10μF ±10%	5.7	5.0	2.0	2.5	0.3 min.

No.	Item		Specifications	Test Method
1	Operating Temperature	Range	-55 to +125℃	_
2	Appearance	;	No defects or abnormalities	Visual inspection
3	Dimensions		Within the specified dimensions	Using calipers
4	4 Dielectric Strength		No defects or abnormalities	No failure should be observed when 150% of the rated voltage (200% of the rated voltage in case of rated voltage : DC250V, 120% of the rated voltage in case of rated voltage : DC1kV) is applied between the terminations for 1 to 5 sec., provided the charge/discharge current is less than 50mA.
5	Insulation Resi (I.R.)	istance	C≧0.01μF : More than 100MΩ • μF C<0.01μF : More than 10,000MΩ	The insulation resistance should be measured with DC500 \pm 50V (DC250 \pm 50V in case of rated voltage : DC250V) and within 60 \pm 5 sec. of charging.
6	Capacitance	e	Within the specified tolerance	The capacitance/D.F. should be measured at 25°C at a frequency of 1±0.2kHz and a voltage of AC1±0.2V (r.m.s.) •Pretreatment
7	Dissipation Factor (D.F.))	0.025 max.	Perform a heat treatment at 150^{+0}_{-10} °C for 60±5 min. and then let sit for 24±2 hrs. at *room condition.
8	Capacitance TemperatureCap. Change Within ±15% (Temp. Range : -55 to +125°C)			The range of capacitance change compared with the 25°C value within -55 to +125°C should be within the specified range. •Pretreatment Perform a heat treatment at 150 ⁺⁰ / ₋₁₀ °C for 60±5 min. and then let sit for 24±2 hrs. at *room condition.
9	9 Adhesive Strength of Termination		No removal of the terminations or other defect should occur.	Solder the capacitor to the testing jig (glass epoxy board) shown in Fig. 1 using a eutectic solder. Then apply 10N force in the direction of the arrow. The soldering should be done either with an iron or using the reflow method and should be conducted with care so that the soldering is uniform and free of defects such as heat shock.
10	$10 Vibration \\ Resistance \\ I \\ $		No defects or abnormalities Within the specified tolerance	Solder the capacitor to the test jig (glass epoxy board). The capacitor should be subjected to a simple harmonic motion having a total amplitude of 1.5mm, the frequency being varied uniformly between the approximate limits of 10 and 55Hz. The frequency range, from 10 to 55Hz and return to 10Hz, should be traversed in approximately 1 min. This motion should be applied for a period of 2 hrs. in each 3 mutually perpendicular directions (total of 6 hrs.).
			0.025 max.	EZ EZ EZ EZ EZ EZ EZ EZ FZ FZ EZ EZ → Solder resist Glass Epoxy Board
11			No cracking or marking defects should occur. $\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Solder the capacitor to the testing jig (glass epoxy board) shown in Fig. 2 using a eutectic solder. Then apply a force in the direction shown in Fig. 3. The soldering should be done either with an iron or using the reflow method and should be conducted with care so that the soldering is uniform and free of defects such as heat shock. $\underbrace{\begin{array}{c} & & \\ & $

* "Room condition" Temperature : 15 to 35°C, Relative humidity : 45 to 75%, Atmospheric pressure : 86 to 106kPa

Continued on the following page. \square

Continued from the preceding page.

No.	o. Item		Specifications			Test Method		
12	Solderabi Terminati	ility of on	75% of the terminations are to be soldered evenly and continuously.	Im ros Im Im	Immerse the capacitor in a solution of ethanol (JIS-K-810 rosin (JIS-K-5902) (25% rosin in weight proportion). Immerse in eutectic solder solution for 2±0.5 sec. at 235- Immersing speed : 25±2.5mm/s			
		Appearance	No marking defects	Pr	eheat the ca	apacitor at 120 to 150℃* for 1	min.	
	Resistance to Soldering Heat	Capacitance Change	Within ±10%	Im 10	Immerse the capacitor in eutectic solder solution at $260\pm5^{\circ}$ C for 10 ± 1 sec. Let sit at *room condition for 24 ± 2 hrs., then measure.			
		D.F.	0.025 max.	•Pretreatment				
13		I.R.	C≧0.01μF : More than 100MΩ • μF C<0.01μF : More than 10,000MΩ	Perform a heat treatment at 150 [±] ₁ 8°C for 60±5 min. a let sit for 24±2 hrs. at *room condition.			60±5 min. and then	
				*F	Preheating for	or more than 3.2×2.5mm		
		Dielectric	In accordance with item No.4		Step	Temperature	Time	
		Strength			2	170°C to 200°C	1 min.	
		Annearance	No marking defects	Fib	the canacit	tor to the supporting iig (glass	epoxy board) shown	
		Canacitance		in	Fig. 4 using	a eutectic solder.	opony boardy chowin	
		Change	Within ±7.5%	Pe	erform the 5	cycles according to the 4 hea	t treatments listed in	
		D.F.	0.025 max.	Let sit for 24 ± 2 hrs. at *room condition, then measure.				
		IP	C≧0.01μF : More than 100MΩ ∙ μF	1	Step	Temperature (°C)	Time (min.)	
		I.K.	C<0.01μF : More than 10,000MΩ		1	Min. Operating Temp.±3	30±3 2 to 3	
					3	Max. Operating Temp.±2	30±3	
	Temperature			.	4	Room Temp.	2 to 3	
14	Cycle			•P	retreatment	t		
				P	erform a he	at treatment at 150^{+}_{-1} °C for	60±5 min. and then	
		Dielectric	In accordance with item No.4		1 511 101 241			
		Strength	In accordance with item No.4					
						- Solde	er resist	
						Glass Epoxy Board		
						Fig. 4		
		Appearance	No marking defects					
		Capacitance Change	Within ±15%	Le for	t the capaci 500 ^{±24} 0 hr	tor sit at 40±2℃ and relative h s.	numidity of 90 to 95%	
15	Humidity (Steady	D.F.	0.05 max.	Re	emove and le	et sit for 24±2 hrs. at *room o	ondition, then	
	State)	LR.	C≥0.01µF : More than 10MΩ • µF	•P	retreatment	: 		
			C<0.01μF : More than 1,000MΩ	P	erform a he	at treatment at 150^{+}_{-1} °C for 2 brs at *room condition	60±5 min. and then	
		Dielectric Strength	In accordance with item No.4					
		Appearance	No marking defects	Ap	ply 120% of	f the rated voltage (150% of th	ne rated voltage in	
		Capacitance	Within $\pm 15\%$ (rated voltage : DC250V, DC630V) Within $\pm 20\%$ (rated voltage : DC14V)	ca	se of rated v	/oltage : DC250V, 110% of th	e rated voltage in	
				op	erating temp	perature $\pm 3^{\circ}$ C. Remove and le	et sit for 24 \pm 2 hrs. at	
16	Life	D.F.		*ro	om conditio	n, then measure.	D A	
		I.R.	$C \le 0.01 \mu F$: More than 1,000M Ω	•P	retreatment	i	JMA.	
		Dielectric Strength	In accordance with item No.4	Apply test voltage for 60 ± 5 min. at test temperature. Remove and let sit for 24 ± 2 hrs. at *room condition.			perature. condition.	
		Appearance	No marking defects					
	Humidity	Capacitance Change	Within ±15%	Apply the rated voltage at $40\pm2^{\circ}$ C and relative humidity of 90 to 95% for $500\pm^{+2}$ 6 hrs.				
17	(Application :	D.F.	0.05 max.	Re	move and l	et sit for 24±2 hrs. at *room c	ondition, then	
17	DC250V,		C≧0.01μF : More than 10MΩ ∙ μF	•P	easure. retreatment	t		
	DC630V item)	I.R.	C<0.01 μ F : More than 1,000M Ω	Apply test voltage for 60±5 min. at test temperature.				
	item)	item) Dielectric Strength In accordance with item No.4 Application		Remove and let sit for 24 ± 2 hrs. at *room condition.				

* "Room condition" Temperature : 15 to 35°C, Relative humidity : 45 to 75%, Atmospheric pressure : 86 to 106kPa

muRata

Only for Information Devices/Tip & Ring

Features

- 1. These items are designed specifically for telecommunication devices (IEEE802.3) in Ethernet LAN.
- 2. A new monolithic structure for small, high capacitance capable of operating at high voltage levels.
- 3. Sn-plated external electrodes realizes good solderability.
- 4. Only for reflow soldering.
- 5. The low-profile type (thickness: 1.5mm max.) is available. Fit for use on thinner type equipment.

Applications

Ideal for use on telecommunication devices in Ethernet LAN.

Dont Number	Dimensions (mm)						
Part Number	L	W	Т	g min.			
GR442Q	4.5 ±0.3	2.0 ±0.2	1.5 +0, -0.3	2.5			
GR443D		22402	2.0 +0, -0.3	2.2*			
GR443Q	4.5 ±0.4	3.2 ±0.3	1.5 +0, -0.3	2.5			

* GR443DR73D : 2.5mm min.

Part Number	Rated Voltage (V)	TC Code (Standard)	Capacitance (pF)	Length L (mm)	Width W (mm)	Thickness T (mm)	Electrode g min. (mm)	Electrode e (mm)
GR442QR73D101KW01L	DC2000	X7R (EIA)	100 ±10%	4.5	2.0	1.5	2.5	0.3 min.
GR442QR73D121KW01L	DC2000	X7R (EIA)	120 ±10%	4.5	2.0	1.5	2.5	0.3 min.
GR442QR73D151KW01L	DC2000	X7R (EIA)	150 ±10%	4.5	2.0	1.5	2.5	0.3 min.
GR442QR73D181KW01L	DC2000	X7R (EIA)	180 ±10%	4.5	2.0	1.5	2.5	0.3 min.
GR442QR73D221KW01L	DC2000	X7R (EIA)	220 ±10%	4.5	2.0	1.5	2.5	0.3 min.
GR442QR73D271KW01L	DC2000	X7R (EIA)	270 ±10%	4.5	2.0	1.5	2.5	0.3 min.
GR442QR73D331KW01L	DC2000	X7R (EIA)	330 ±10%	4.5	2.0	1.5	2.5	0.3 min.
GR442QR73D391KW01L	DC2000	X7R (EIA)	390 ±10%	4.5	2.0	1.5	2.5	0.3 min.
GR442QR73D471KW01L	DC2000	X7R (EIA)	470 ±10%	4.5	2.0	1.5	2.5	0.3 min.
GR442QR73D561KW01L	DC2000	X7R (EIA)	560 ±10%	4.5	2.0	1.5	2.5	0.3 min.
GR442QR73D681KW01L	DC2000	X7R (EIA)	680 ±10%	4.5	2.0	1.5	2.5	0.3 min.
GR442QR73D821KW01L	DC2000	X7R (EIA)	820 ±10%	4.5	2.0	1.5	2.5	0.3 min.
GR442QR73D102KW01L	DC2000	X7R (EIA)	1000 ±10%	4.5	2.0	1.5	2.5	0.3 min.
GR442QR73D122KW01L	DC2000	X7R (EIA)	1200 ±10%	4.5	2.0	1.5	2.5	0.3 min.
GR442QR73D152KW01L	DC2000	X7R (EIA)	1500 ±10%	4.5	2.0	1.5	2.5	0.3 min.
GR443QR73D182KW01L	DC2000	X7R (EIA)	1800 ±10%	4.5	3.2	1.5	2.5	0.3 min.
GR443QR73D222KW01L	DC2000	X7R (EIA)	2200 ±10%	4.5	3.2	1.5	2.5	0.3 min.
GR443QR73D272KW01L	DC2000	X7R (EIA)	2700 ±10%	4.5	3.2	1.5	2.5	0.3 min.
GR443QR73D332KW01L	DC2000	X7R (EIA)	3300 ±10%	4.5	3.2	1.5	2.5	0.3 min.
GR443QR73D392KW01L	DC2000	X7R (EIA)	3900 ±10%	4.5	3.2	1.5	2.5	0.3 min.
GR443DR73D472KW01L	DC2000	X7R (EIA)	4700 ±10%	4.5	3.2	2.0	2.5	0.3 min.

No.	Ite	m	Specifications	Test Method			
1	Operating Temperatu	ire Range	-55 to +125℃		_		
2	Appearar	ice	No defects or abnormalities	Visual inspection			
3	Dimensio	ns	Within the specified dimensions	Using calipers			
4	Dielectric Strength No defects or abnormalities		No defects or abnormalities	No failure should be between the termina is less than 50mA. Rated voltage DC2kV	observed when voltage in tab ations, provided the charge/dis Test Voltage 120% of the rated voltage AC1500V (r.m.s.)	le is applied charge current <u>Time</u> 60±1 sec. 60±1 sec.	
5	Pulse Vol (Applicati DC2kV ite	tage on : em)	No self healing break downs or flash-overs have taken place in the capacitor.	10 impulse of alternating polarity is subjected. (5 impulse for each polarity) The interval between impulse is 60 sec. Applied Voltage : 2.5kV zero to peak			
6	Insulation F (I.R.)	Resistance	More than $6,000M\Omega$	The insulation resist and within 60±5 sec	ance should be measured with c. of charging.	h DC500±50V	
7	Capacita	nce Within the specified tolerance		The capacitance/D.I of 1±0.2kHz and a	F. should be measured at 25°C voltage of AC1±0.2V (r.m.s.)	at a frequency	
8	Bissipation Factor (D.F.)		ation 0.025 max.		Perform a heat treatment at 150^{+0}_{-10} °C for 60 ± 5 min. and then let sit for 24±2 hrs. at *room condition.		
9	Capacitance Temperature Characteristics		Cap. Change within ±15% (Temp. Range : −55 to +125℃)	 The range of capacitance change compared with the 25℃ value within the specified range. Pretreatment Perform a heat treatment at 150⁺/_{Po}^o℃ for 60±5 min. and then let sit for 24±2 hrs. at *room condition. 			
10	Adhesive Strength of Termination		No removal of the terminations or other defect should occur.	cur. Solder the capacitor to the testing jig (glass epoxy boat in Fig. 1 using a eutectic solder. Then apply 10N force in the direction of the arrow. The soldering should be done either with an iron or us reflow method and should be conducted with care so soldering is uniform and free of defects such as heat : <u>10N, 10±1s</u> Speed : 1.0mm/s Glass Epoxy Board		board) shown or using the so that the eat shock.	
		Appearance	No defects or abnormalities	Solder the capacitor	to the test iig (glass epoxy bo	ard).	
		Capacitance	Within the specified tolerance	The capacitor shoul	d be subjected to a simple har	monic motion	
11	Vibration Resistance	/ibration Resistance D.F. 0.025 max.		naving a total amplit uniformly between th frequency range, fro traversed in approxi for a period of 2 hrs. (total of 6 hrs.).	ude of 1.5mm, the frequency in a approximate limits of 10 an im 10 to 55Hz and return to 10 mately 1 min. This motion sho in each 3 mutually perpendic	being varied d 55Hz. The OHz, should be uld be applied ular directions	

* "Room condition" Temperature : 15 to 35°C, Relative humidity : 45 to 75%, Atmospheric pressure : 86 to 106kPa

Continued on the following page.

16

Continued from the preceding page.

No.	Ite	em	Specifications	Test Method			
12	12 Deflection		No cracking or marking defects should occur. $\begin{array}{c c} & & & & & & & \\ \hline & & & & & & \\ \hline & & & &$	Solder the capacitor to the testing jig (glass epoxy board) shown in Fig. 2 using a eutectic solder. Then apply a force in the direction shown in Fig. 3. The soldering should be done either with an iron or using the reflow method and should be conducted with care so that the soldering is uniform and free of defects such as heat shock. $\underbrace{20_{0}}_{\text{Fressurizing}} \xrightarrow{50_{0}}_{\text{Fressurizing}} \xrightarrow{\text{Fressurize}}_{\text{Flexure=1}} (in mm)$ Fig. 3			
13	Solderabi Terminati	ility of on	75% of the terminations are to be soldered evenly and continuously.	Immerse the capacitor in a solution of ethanol (JIS-K-8101) and rosin (JIS-K-5902) (25% rosin in weight proportion). Immerse in eutectic solder solution for 2±0.5 sec. at 235±5°C.			
		Appearance	No marking defects	Preheat the capacitor at 120 to 150°C* for 1 min.			
14	Resistance to Soldering Heat	Capacitance Change	Within ±10%	Immerse the capacitor in eutectic solder solution at 260±5°C for 10±1 sec. Let sit at *room condition for 24±2 hrs., then measure. Immersing speed : 25±2.5mm/s			
		D.F.	0.025 max.	•Pretreatment			
		I.R.	More than 1,000M Ω	Perform a heat treatment at $150 \pm 18^{\circ}$ for 60 ± 5 min. and then			
		Dielectric Strength	In accordance with item No.4	Step Temperature Time 1 100°C to 120°C 1 min. 2 170°C to 200°C 1 min.			
		Appearance	No marking defects	Fix the capacitor to the supporting jig (glass epoxy board) shown			
		Capacitance Change	Within ±15%	in Fig. 4 using a eutectic solder. Perform the 5 cycles according to the 4 heat treatments listed in the following table.			
		D.F.		Let sit for 24±2 hrs. at 'room condition, then measure.			
		I.R.	More than 3,000MΩ	StepTemperature (C)Time (min.)1Min. Operating Temp.±330±32Room Temp.2 to 33Max. Operating Temp.±230±3			
15	Temperature Cycle	Imperature Dielectric In accordance with item No.4		4 Room Temp. 2 to 3 •Pretreatment Perform a heat treatment at 150±1% °C for 60±5 min. and then let sit for 24±2 hrs. at *room condition. Image: Constraint of the second sec			
		Appearance	No marking defects				
	Humidite	Capacitance Change	Within ±15%	Let the capacitor sit at $40\pm2^{\circ}$ C and relative humidity of 90 to 95% for $500\pm^{24}$ hrs.			
16	(Steady	D.F.	0.05 max.	measure.			
	State)	LR.	More than 1 000MQ	Pretreatment			
	-	State) I.R. More than 1,000MΩ Dielectric In accordance with item No.4		In accordance with item No.4	Perform a heat treatment at $150 \pm 18^{\circ}$ °C for 60 ± 5 min. and then let sit for 24 ± 2 hrs. at *room condition.		

* "Room condition" Temperature : 15 to 35°C, Relative humidity : 45 to 75%, Atmospheric pressure : 86 to 106kPa

Continued on the following page.

16

Continued from the preceding page.

No.	lte	m	Specifications	Test Method				
		Appearance	No marking defects					
	Life	Capacitance Change	Within ±20%	Apply 110% of the rated voltage for 1,000 ⁻⁺⁴ 8 hrs. at maximum operating temperature ±3°C. Remove and let sit for 24 ±2 hrs. at room condition, then measure.				
17		D.F.	0.05 max.	The charge/discharge current is less than 50mA.				
		I.R.	More than 2,000M Ω	Pretreatment Apply test voltage for 60+5 min_at test temperature				
		Dielectric Strength	In accordance with item No.4	Remove and let sit for 24 ± 2 hrs. at *room condition.				
		Appearance	No marking defects					
	Humidity Loading	Capacitance Change	Within ±15%	Apply the rated voltage at $40\pm2^{\circ}$ C and relative humidity of 90 to 95% for $500\pm^{20}$ hrs. Remove and let sit for 24 ± 2 hrs. at *room condition, then				
18	(Applicat	D.F.	0.05 max.	measure.				
	DC250V	I.R.	More than $10M\Omega \bullet \mu F$	Pretreatment Apply test voltage for 60+5 min, at test temperature				
	item)	Dielectric Strength	In accordance with item No.4	Remove and let sit for 24 ± 2 hrs. at *room condition.				

* "Room condition" Temperature : 15 to 35°C, Relative humidity : 45 to 75%, Atmospheric pressure : 86 to 106kPa

muRata

AC250V Type (Which Meet Japanese Law)

Features

- 1. Chip monolithic ceramic capacitor for AC lines.
- A new monolithic structure for small, high capacitance capable of operating at high voltage levels.
- 3. Sn-plated external electrodes realizes good solderability.
- 4. Only for reflow soldering.
- 5. Capacitance 0.01 to 0.1 uF for connecting lines and 470 to 4700 pF for connecting lines to earth.

Applications

Noise suppression filters for switching power supplies, telephones, facsimiles, modems.

■ Reference Standard

GA2 series obtains no safety approval. This series is based on JIS C 5102, JIS C 5150, and the standards of the electrical appliance and material safety law of Japan (separated table 4).

~	

-	- ^g	e +++	

			L	W	
Dort Number		Dim	ensions (mm)	1	
Part Number	L	W	Т	e min.	g min.
GA242Q	4.5 ±0.3	2.0 ±0.2	1.5 +0, -0.3		
GA243D		22402	2.0 +0, -0.3	0.2	25
GA243Q	4.5 ±0.4	3.2 ±0.3	1.5 +0, -0.3	0.5	2.5
GA255D	5.7 ±0.4	5.0 ±0.4	2.0 +0, -0.3		

Part Number	Rated Voltage (V)	TC Code (Standard)	Capacitance	Length L (mm)	Width W (mm)	Thickness T (mm)	Electrode g min. (mm)	Electrode e (mm)
GA242QR7E2471MW01L	AC250 (r.m.s.)	X7R (EIA)	470pF ±20%	4.5	2.0	1.5	2.5	0.3 min.
GA242QR7E2102MW01L	AC250 (r.m.s.)	X7R (EIA)	1000pF ±20%	4.5	2.0	1.5	2.5	0.3 min.
GA243QR7E2222MW01L	AC250 (r.m.s.)	X7R (EIA)	2200pF ±20%	4.5	3.2	1.5	2.5	0.3 min.
GA243QR7E2332MW01L	AC250 (r.m.s.)	X7R (EIA)	3300pF ±20%	4.5	3.2	1.5	2.5	0.3 min.
GA243DR7E2472MW01L	AC250 (r.m.s.)	X7R (EIA)	4700pF ±20%	4.5	3.2	2.0	2.5	0.3 min.
GA243QR7E2103MW01L	AC250 (r.m.s.)	X7R (EIA)	10000pF ±20%	4.5	3.2	1.5	2.5	0.3 min.
GA243QR7E2223MW01L	AC250 (r.m.s.)	X7R (EIA)	22000pF ±20%	4.5	3.2	1.5	2.5	0.3 min.
GA243DR7E2473MW01L	AC250 (r.m.s.)	X7R (EIA)	47000pF ±20%	4.5	3.2	2.0	2.5	0.3 min.
GA255DR7E2104MW01L	AC250 (r.m.s.)	X7R (EIA)	0.10μF ±20%	5.7	5.0	2.0	2.5	0.3 min.

No.	Ite	m	Specifications	Test Method				
1	Operating Temperatu	ire Range	−55 to +125℃	_				
2	Appearar	ice	No defects or abnormalities	Visual inspection				
3	Dimensio	ns	Within the specified dimensions	Using calipers				
4	4 Dielectric Strength		No defects or abnormalities	No failure should be observed when voltage in table is applied between the terminations for 60±1 sec., provided the charge/discharge current is less than 50mA. Nominal Capacitance Test voltage C≥10,000pF AC575V (r.m.s.) C<10,000pF AC1500V (r.m.s.)				
5	Insulation F (I.R.)	Resistance	More than 2,000MΩ	The insulation resistance should be measured with DC500 \pm 50V and within 60 \pm 5 sec. of charging.				
6	Capacita	nce	Within the specified tolerance	The capacitance/D.F. should be measured at 25°C at a frequency				
7	Dissipatio Factor (D	on .F.)	0.025 max.	of 1±0.2kHz and a voltage of AC1±0.2V (r.m.s.) •Pretreatment Perform a heat treatment at 150 [±] ₁ 8°C for 60±5 min. and then let sit for 24±2 hrs. at *room condition.				
8	Capacitance 8 Temperature Characteristics		Cap. Change Within ±15% (Temp. Range : −55 to +125℃)	 The range of capacitance change compared with the 25°C va within -55 to +125°C should be within the specified range. Pretreatment Perform a heat treatment at 150[±]₁8°C for 60±5 min. and the let sit for 24±2 hrs. at *room condition. 				
9	Discharge Test (Application: Nominal Capacitance C<10,000pF)	Appearance	No defects or abnormalities	As in Fig., discharge is made 50 times at 5 sec. intervals from the capacitor (Cd) charged at DC voltage of specified. $\begin{array}{c} R_{3} \\ \hline \\ $				
10	Adhesive Strength of Termination		No removal of the terminations or other defects should occur.	Solder the capacitor to the testing jig (glass epoxy board) shown in Fig. 1 using a eutectic solder. Then apply 10N force in the direction of the arrow. The soldering should be done either with an iron or using the reflow method and should be conducted with care so that the soldering is uniform and free of defects such as heat shock.				
		Appearance	No defects or abnormalities	Solder the capacitor to the test jig (glass epoxy board).				
		Capacitance	Within the specified tolerance	The capacitor should be subjected to a simple harmonic motion				
11	Vibration Resistance	D.F.	0.025 max.	uniformly between the approximate limits of 10 and 55Hz. The frequency range, from 10 to 55Hz and return to 10Hz, should be traversed in approximately 1 min. This motion should be applied for a period of 2 hrs. in each 3 mutually perpendicular directions (total of 6 hrs.).				

* "Room condition" Temperature : 15 to 35°C, Relative humidity : 45 to 75%, Atmospheric pressure : 86 to 106kPa

Continued from the preceding page.

	lto	m	Specifications				Test Method						
NO.	ne	:11		5	becincations	3			Solder the capacitor to the testing iig (class enoxy board) shown				
			No cracking or	marking de	fects should	occur.		Solder the c in Fig. 2 usin direction sho	apaci ng a e own ir	tor to the testing jig (gla eutectic solder. Then ap n Fig. 3. The soldering s	ss epo ply a fo hould l	oxy board) shown orce in the be done either	
12	Deflection	flection		a 3.5 3.5	b t a 100 Dimensi b 7.0 7.0 7.0 8.0	 	d 1.0	with an iton of using the ferrow method and should be conducted with care so that the soldering is uniform and free of defects such as heat shock. $20^{50} \text{ Pressurizing}_{\text{speed} : 1.0mm/s}_{\text{Pressurize}}_{\text{Flexure=1}}_{\text{Flexure=1}}_{\text{(in mm)}}_{\text{(in mm)}}$ Fig. 3			mm)		
			5.7~5.0	4.5	5.0 Eig 2	5.0				g. c			
13	Solderabi Terminati	llity of on	ty of n 75% of the terminations are to be soldered evenly and continuously. To in 175% of the terminations are to be soldered evenly and continuously. To in 175% of the terminations are to be soldered evenly and continuously. The termination of ethanol (JIS-K-5902) (25% rosin in weight proportion). The termination of termination				JIS-K-8101) and ion). ac. at 235±5℃.						
		Appearance	No marking de	fects									
	Lumiditu	Capacitance Change	Within ±15%					The capacit	or sho	ould be subjected to 40	±2℃, re	elative humidity of	
14	Insulation	D.F.	0.05 max.					90 to 98% fo	90 to 98% for 8 hrs., and then removed in *room condition for 16				
		I.R.	More than 1,000MΩ				hrs. until 5 c	ycles					
		Dielectric Strength	In accordance with item No.4										
		Appearance	No marking defects				Preheat the	capa	citor as table.		+ 000 5°0 for		
		Capacitance Change	Within ±10%	Within ±10%				10±1 sec. 1 measure.	10 \pm 1 sec. Let sit at *room condition for 24 \pm 2 hrs., then measure.				
	Docistanco	D.F.	0.025 max.					•Immersing	•Immersing speed : 25±2.5mm/s				
15	to Soldering	I.R.	More than 2,00			•Pretreatment Perform a heat treatment at $150\pm18^{\circ}$ for 60±5 min and then							
	Heat	Dielectric	In accordance	In accordance with item No.4			let sit for 24±2 hrs. at *room condition. *Preheating Step Temperature Time						
		Strength	in accordance with item No.4			1		100℃ to 120℃	-	1 min.			
							2		170℃ to 200℃		1 min.		
		Appearance	No marking de	fects				Fix the capa in Fig. 4 usi	acitor f ng a e	to the supporting jig (gla eutectic solder.	iss epo	oxy board) shown	
		Change	Within ±15%					Perform the the following	Perform the 5 cycles according to the 4 heat treatments listed in the following table.				
		D.F.	0.05 max.	2140				Let sit for 24	+±2 n	Temperature (°C)	nen me	Time (min)	
		I.R.	More than 2,00	ΟΜΩ				<u> </u>	N	lin. Operating Temp.±	3	30±3	
								2		Room Temp.		2 to 3	
								34	M	ax. Operating Temp.±	2	$\frac{30\pm3}{2 \text{ to } 3}$	
16	Temperature Cycle	mperature cle Dielectric Strength In acco		n accordance with item No.4		•Pretreatme Perform a let sit for 24	• Pretreatment Perform a heat treatment at 150 ⁺ ₋₁₀ °C for 60±5 min. and then let sit for 24±2 hrs. at *room condition.						
										Fig. 4			

* "Room condition" Temperature : 15 to 35°C, Relative humidity : 45 to 75%, Atmospheric pressure : 86 to 106kPa

Continued on the following page.

17

 \square Continued from the preceding page.

No.	o. Item		Specifications	Test Method				
		Appearance	No marking defects	Let the capacitor sit at 40±2°C and relative humidity of 90 to 95% for 500 ^{±2} ° ₀ hrs. Remove and let sit for 24±2 hrs. at *room condition, then				
	Humidity	Capacitance Change	Within ±15%					
17	(Steady	D.F.	0.05 max.	 Pretreatment Prefrom a heat treatment at 150⁺₁^o^o^c for 60±5 min. and then let sit for 24±2 hrs. at *room condition. 				
	State)	I.R.	More than 1,000M Ω					
		Dielectric Strength	In accordance with item No.4					
		Appearance	No marking defects	Apply voltage and time as Table at 85±2℃. Remove and let sit				
		Capacitance Change	Within ±20%	for 24 ±2 hrs. at *room condition, then measure. The charge / discharge current is less than 50mA.				
	Life	D.F.	0.05 max.	Nominal Capacitance Test Time Test voltage $C \ge 10.000 \text{ F}$ $1.000^{\pm 48} \text{ brs}$ AC300V (r m s.)				
18		I.R.	More than 1,000M Ω	$\frac{C_{\text{C}}(10,000\text{ pr})}{C_{\text{C}}(10,000\text{ pr})} = \frac{1,000-0}{0} \text{ hrs. } \frac{1,000-0}{0} \text{ hrs. } \frac{1}{0} \text{ AC500V (r.m.s.)}^{*}$				
10		Dielectric Strength In accordance with item No.4		 * Except that once each hour the voltage is increased to AC1,000V (r.m.s.) for 0.1 sec. • Pretreatment Apply test voltage for 60±5 min. at test temperature. Remove and let sit for 24±2 hrs. at *room condition. 				
		Appearance	No marking defects					
		Capacitance Change	Within ±15%	Apply the rated voltage at $40\pm2^{\circ}$ c and relative humidity of 90 to 95% for $500\pm2^{\circ}$ hrs. Remove and let sit for 24 ± 2 hrs. at *room condition, then				
19	Humidity	D.F.	0.05 max.	measure.				
	Louding	I.R.	More than 1,000MΩ	Pretreatment Apply test voltage for 60±5 min_at test temperature				
		Dielectric Strength	In accordance with item No.4	Remove and let sit for 24 ± 2 hrs. at *room condition.				

* "Room condition" Temperature : 15 to 35°C, Relative humidity : 45 to 75%, Atmospheric pressure : 86 to 106kPa

muRata

Safety Standard Recognized Type GC (UL, IEC60384-14 Class X1/Y2)

Features

- 1. Chip monolithic ceramic capacitor (certified as conforming to safety standards) for AC lines.
- 2. A new monolithic structure for small, high capacitance capable of operating at high voltage levels.
- Compared to lead type capacitors, this new capacitor is greatly downsized and low-profiled to 1/10 or less in volume, and 1/4 or less in height.
- 4. The type GC can be used as an X1-class and Y2-class capacitor, line-by-pass capacitor of UL1414.
- 5. +125 degree C guaranteed.
- 6. Only for reflow soldering.

Applications

- 1. Ideal for use as Y capacitor or X capacitor for various switching power supplies
- 2. Ideal for modem applications

Dort Number		Dimensions (mm)						
Part Number	L	W	Т	e min.	g min.			
GA355D	5.7 ±0.4	5.0 ±0.4	2.0 ±0.3	0.3	4.0			

■ Standard Recognition

	Standard No.	Status of R	Rated		
	Stanuaru NO.	Type GB	Type GC	Voltage	
UL	UL1414	-	0*		
BSI		-	0		
VDE	EN122400	0	0	AC250V	
SEV	EIN132400	0	0	(r.m.s.)	
SEMKO		0	0		
EN13240	0 Class	X2	X1, Y2		

*: Line-By-Pass only

Part Number	Rated Voltage (V)	TC Code (Standard)	Capacitance (pF)	Length L (mm)	Width W (mm)	Thickness T (mm)	Electrode g min. (mm)	Electrode e (mm)
GA355DR7GC101KY02L	AC250 (r.m.s.)	X7R (EIA)	100 ±10%	5.7	5.0	2.0	4.0	0.3 min.
GA355DR7GC151KY02L	AC250 (r.m.s.)	X7R (EIA)	150 ±10%	5.7	5.0	2.0	4.0	0.3 min.
GA355DR7GC221KY02L	AC250 (r.m.s.)	X7R (EIA)	220 ±10%	5.7	5.0	2.0	4.0	0.3 min.
GA355DR7GC331KY02L	AC250 (r.m.s.)	X7R (EIA)	330 ±10%	5.7	5.0	2.0	4.0	0.3 min.
GA355DR7GC471KY02L	AC250 (r.m.s.)	X7R (EIA)	470 ±10%	5.7	5.0	2.0	4.0	0.3 min.
GA355DR7GC681KY02L	AC250 (r.m.s.)	X7R (EIA)	680 ±10%	5.7	5.0	2.0	4.0	0.3 min.
GA355DR7GC102KY02L	AC250 (r.m.s.)	X7R (EIA)	1000 ±10%	5.7	5.0	2.0	4.0	0.3 min.
GA355DR7GC152KY02L	AC250 (r.m.s.)	X7R (EIA)	1500 ±10%	5.7	5.0	2.0	4.0	0.3 min.
GA355DR7GC222KY02L	AC250 (r.m.s.)	X7R (EIA)	2200 ±10%	5.7	5.0	2.0	4.0	0.3 min.
GA355DR7GC332KY02L	AC250 (r.m.s.)	X7R (EIA)	3300 ±10%	5.7	5.0	2.0	4.0	0.3 min.
GA355DR7GC472KY02L	AC250 (r.m.s.)	X7R (EIA)	4700 ±10%	5.7	5.0	2.0	4.0	0.3 min.

Safety Standard Recognized Type GD (IEC60384-14 Class Y3)

Features

- 1. A new monolithic structure for small, high capacitance capable of operating at high voltage levels.
- 2. The type GD can be used as a Y3-class capacitor.
- 3. Available for equipment based on IEC/EN60950 and UL1950.
- 4. +125 degree C guaranteed.
- 5. Only for reflow soldering.
- 6. The low-profile type (thickness: 1.5mm max.) is available. Fit for use on thinner type equipment.

Applications

- 1. Ideal for use on line filters and couplings for DAA modems without transformers.
- 2. Ideal for use on line filters for information equipment.

Dart Number		Dir	mensions (mm)		
Part Number	L	W	Т	e min.	g min.
GA342D	1 5 +0 2	20+02	2.0 ±0.2*		2.5
GA342Q	4.5 ±0.5	2.0 ±0.2	1.5 +0, -0.3	0.2	
GA343D	15+01	2 2 +0 3	2.0 +0, -0.3	0.5	2.5
GA343Q	4.5 ±0.4	5.2 <u>1</u> 0.5	1.5 +0, -0.3		

GA342D1X : 2.0±0.3

Standard Recognition

$\overline{}$	Standard	Class	Status of Recognition Type GD		Rated Voltage	
	No.	Class				
SEMKO	EN132400	Y3	0		AC250V (r.m.s.)	
Applicatio	ons					
:	Size	Swit	Switching power supplies		Communication etwork devices uch as a modem	
4.5×3.2m	m and under		_		0	

Part Number	Rated Voltage (V)	TC Code (Standard)	Capacitance (pF)	Length L (mm)	Width W (mm)	Thickness T (mm)	Electrode g min. (mm)	Electrode e (mm)
GA342D1XGD100JY02L	AC250 (r.m.s.)	SL (JIS)	10 ±5%	4.5	2.0	2.0	2.5	0.3 min.
GA342D1XGD120JY02L	AC250 (r.m.s.)	SL (JIS)	12 ±5%	4.5	2.0	2.0	2.5	0.3 min.
GA342D1XGD150JY02L	AC250 (r.m.s.)	SL (JIS)	15 ±5%	4.5	2.0	2.0	2.5	0.3 min.
GA342D1XGD180JY02L	AC250 (r.m.s.)	SL (JIS)	18 ±5%	4.5	2.0	2.0	2.5	0.3 min.
GA342D1XGD220JY02L	AC250 (r.m.s.)	SL (JIS)	22 ±5%	4.5	2.0	2.0	2.5	0.3 min.
GA342D1XGD270JY02L	AC250 (r.m.s.)	SL (JIS)	27 ±5%	4.5	2.0	2.0	2.5	0.3 min.
GA342D1XGD330JY02L	AC250 (r.m.s.)	SL (JIS)	33 ±5%	4.5	2.0	2.0	2.5	0.3 min.
GA342D1XGD390JY02L	AC250 (r.m.s.)	SL (JIS)	39 ±5%	4.5	2.0	2.0	2.5	0.3 min.
GA342D1XGD470JY02L	AC250 (r.m.s.)	SL (JIS)	47 ±5%	4.5	2.0	2.0	2.5	0.3 min.
GA342D1XGD560JY02L	AC250 (r.m.s.)	SL (JIS)	56 ±5%	4.5	2.0	2.0	2.5	0.3 min.
GA342D1XGD680JY02L	AC250 (r.m.s.)	SL (JIS)	68 ±5%	4.5	2.0	2.0	2.5	0.3 min.
GA342D1XGD820JY02L	AC250 (r.m.s.)	SL (JIS)	82 ±5%	4.5	2.0	2.0	2.5	0.3 min.
GA342QR7GD101KW01L	AC250 (r.m.s.)	X7R (EIA)	100 ±10%	4.5	2.0	1.5	2.5	0.3 min.
GA342QR7GD151KW01L	AC250 (r.m.s.)	X7R (EIA)	150 ±10%	4.5	2.0	1.5	2.5	0.3 min.
GA342QR7GD221KW01L	AC250 (r.m.s.)	X7R (EIA)	220 ±10%	4.5	2.0	1.5	2.5	0.3 min.
GA342QR7GD331KW01L	AC250 (r.m.s.)	X7R (EIA)	330 ±10%	4.5	2.0	1.5	2.5	0.3 min.
GA342QR7GD471KW01L	AC250 (r.m.s.)	X7R (EIA)	470 ±10%	4.5	2.0	1.5	2.5	0.3 min.
GA342QR7GD681KW01L	AC250 (r.m.s.)	X7R (EIA)	680 ±10%	4.5	2.0	1.5	2.5	0.3 min.
GA342QR7GD102KW01L	AC250 (r.m.s.)	X7R (EIA)	1000 ±10%	4.5	2.0	1.5	2.5	0.3 min.
GA342QR7GD152KW01L	AC250 (r.m.s.)	X7R (EIA)	1500 ±10%	4.5	2.0	1.5	2.5	0.3 min.
GA343QR7GD182KW01L	AC250 (r.m.s.)	X7R (EIA)	1800 ±10%	4.5	3.2	1.5	2.5	0.3 min.
GA343QR7GD222KW01L	AC250 (r.m.s.)	X7R (EIA)	2200 ±10%	4.5	3.2	1.5	2.5	0.3 min.
GA343DR7GD472KW01L	AC250 (r.m.s.)	X7R (EIA)	4700 ±10%	4.5	3.2	2.0	2.5	0.3 min.

Safety Standard Recognized Type GF (IEC60384-14 Class Y2)

Features

- 1. A new monolithic structure for small, high capacitance capable of operating at high voltage levels.
- 2. The type GF can be used as a Y2-class capacitor.
- 3. Available for equipment based on IEC/EN60950 and UL1950. Besides, the GA352/355 types are available for equipment based on IEC/EN60065, UL1492, and UL6500.
- 4. +125 degree C guaranteed.
- 5. Only for reflow soldering.
- 6. The low-profile type (thickness: 1.5mm max.) is available. Fit for use on thinner type equipment.

Applications

- 1. Ideal for use on line filters and couplings for DAA modems without transformers.
- 2. Ideal for use on line filters for information equipment.
- Ideal for use as Y capacitor or X capacitor for various switching power supplies. (GA352/355 types only)

Dart Number	Dimensions (mm)							
Part Number	L	W	Т	e min.	g min.			
GA342D	15 10 2	20+02	2.0 ±0.2*		2.5			
GA342Q	4.5 ±0.5	2.0 ±0.2	1.5 +0, -0.3	0.2				
GA352Q	57404	2.8 ±0.3	1.5 +0, -0.3	0.5	10			
GA355Q	J 5.7 ±0.4	5.0 ±0.4	1.5 +0, -0.3		4.0			

GA342D1X : 2.0±0.3

Standard Recognition

			Status of R		
	Standard	Class	Туре	e GF	Rated
	No.	Class	Size : 4.5×2.0mm	Size : 5.7×2.8mm and over	Voltage
UL	UL1414	X1, Y2	-	0	AC250V
SEMKO	EN132400	Y2	0	0	(r.m.s.)

Applications

Size	Switching power supplies	Communication network devices such as a modem		
4.5×2.0mm	_	O		
5.7×2.8mm and over	O	0		

Part Number	Rated Voltage (V)	TC Code (Standard)	Capacitance (pF)	Length L (mm)	Width W (mm)	Thickness T (mm)	Electrode g min. (mm)	Electrode e (mm)
GA342D1XGF100JY02L	AC250 (r.m.s.)	SL (JIS)	10 ±5%	4.5	2.0	2.0	2.5	0.3 min.
GA342D1XGF120JY02L	AC250 (r.m.s.)	SL (JIS)	12 ±5%	4.5	2.0	2.0	2.5	0.3 min.
GA342D1XGF150JY02L	AC250 (r.m.s.)	SL (JIS)	15 ±5%	4.5	2.0	2.0	2.5	0.3 min.
GA342D1XGF180JY02L	AC250 (r.m.s.)	SL (JIS)	18 ±5%	4.5	2.0	2.0	2.5	0.3 min.
GA342D1XGF220JY02L	AC250 (r.m.s.)	SL (JIS)	22 ±5%	4.5	2.0	2.0	2.5	0.3 min.
GA342D1XGF270JY02L	AC250 (r.m.s.)	SL (JIS)	27 ±5%	4.5	2.0	2.0	2.5	0.3 min.
GA342D1XGF330JY02L	AC250 (r.m.s.)	SL (JIS)	33 ±5%	4.5	2.0	2.0	2.5	0.3 min.
GA342D1XGF390JY02L	AC250 (r.m.s.)	SL (JIS)	39 ±5%	4.5	2.0	2.0	2.5	0.3 min.
GA342D1XGF470JY02L	AC250 (r.m.s.)	SL (JIS)	47 ±5%	4.5	2.0	2.0	2.5	0.3 min.
GA342D1XGF560JY02L	AC250 (r.m.s.)	SL (JIS)	56 ±5%	4.5	2.0	2.0	2.5	0.3 min.
GA342D1XGF680JY02L	AC250 (r.m.s.)	SL (JIS)	68 ±5%	4.5	2.0	2.0	2.5	0.3 min.
GA342D1XGF820JY02L	AC250 (r.m.s.)	SL (JIS)	82 ±5%	4.5	2.0	2.0	2.5	0.3 min.
GA342QR7GF101KW01L	AC250 (r.m.s.)	X7R (EIA)	100 ±10%	4.5	2.0	1.5	2.5	0.3 min.
GA342QR7GF151KW01L	AC250 (r.m.s.)	X7R (EIA)	150 ±10%	4.5	2.0	1.5	2.5	0.3 min.
GA342DR7GF221KW02L	AC250 (r.m.s.)	X7R (EIA)	220 ±10%	4.5	2.0	2.0	2.5	0.3 min.
GA342DR7GF331KW02L	AC250 (r.m.s.)	X7R (EIA)	330 ±10%	4.5	2.0	2.0	2.5	0.3 min.
GA352QR7GF471KW01L	AC250 (r.m.s.)	X7R (EIA)	470 ±10%	5.7	2.8	1.5	4.0	0.3 min.
GA352QR7GF681KW01L	AC250 (r.m.s.)	X7R (EIA)	680 ±10%	5.7	2.8	1.5	4.0	0.3 min.
GA352QR7GF102KW01L	AC250 (r.m.s.)	X7R (EIA)	1000 ±10%	5.7	2.8	1.5	4.0	0.3 min.
GA352QR7GF152KW01L	AC250 (r.m.s.)	X7R (EIA)	1500 ±10%	5.7	2.8	1.5	4.0	0.3 min.
GA355QR7GF182KW01L	AC250 (r.m.s.)	X7R (EIA)	1800 ±10%	5.7	5.0	1.5	4.0	0.3 min.
GA355QR7GF222KW01L	AC250 (r.m.s.)	X7R (EIA)	2200 ±10%	5.7	5.0	1.5	4.0	0.3 min.
GA355QR7GF332KW01L	AC250 (r.m.s.)	X7R (EIA)	3300 ±10%	5.7	5.0	1.5	4.0	0.3 min.

Safety Standard Recognized Type GB (IEC60384-14 Class X2)

Features

- 1. Chip monolithic ceramic capacitor (certified as conforming to safety standards) for AC lines.
- 2. A new monolithic structure for small, high capacitance capable of operating at high voltage levels.
- 3. Compared to lead type capacitors, this new capacitor is greatly downsized and low-profiled to 1/10 or less in volume, and 1/4 or less in height.
- 4. The type GB can be used as an X2-class capacitor.
- 5. +125 degree C guaranteed.
- 6. Only for reflow soldering.

Applications

Ideal for use as X capacitor for various switching power supplies.

Dart Number	Dimensions (mm)						
Part Number	L	W	Т	e min.	g min.		
GA355D	57±04		2.0 ±0.3	0.2	10		
GA355X	5.7 <u>⊥</u> 0.4	5.0 <u>1</u> 0.4	2.7 ±0.3	0.5	4.0		

Standard Recognition

	Ctondard No.	Status of R	Rated		
	Stanuaru NO.	Type GB	Type GC	Voltage	
UL	UL1414	-	0*		
BSI		-	0		
VDE	EN122400	0	0	AC250V	
SEV	EIN132400	0	0	(r.m.s.)	
SEMKO		0	0		
EN13240	0 Class	X2	X1, Y2		

*: Line-By-Pass only

Part Number	Rated Voltage (V)	TC Code (Standard)	Capacitance (pF)	Length L (mm)	Width W (mm)	Thickness T (mm)	Electrode g min. (mm)	Electrode e (mm)
GA355DR7GB103KY02L	AC250 (r.m.s.)	X7R (EIA)	10000 ±10%	5.7	5.0	2.0	4.0	0.3 min.
GA355DR7GB153KY02L	AC250 (r.m.s.)	X7R (EIA)	15000 ±10%	5.7	5.0	2.0	4.0	0.3 min.
GA355DR7GB223KY02L	AC250 (r.m.s.)	X7R (EIA)	22000 ±10%	5.7	5.0	2.0	4.0	0.3 min.
GA355XR7GB333KY06L	AC250 (r.m.s.)	X7R (EIA)	33000 ±10%	5.7	5.0	2.7	4.0	0.3 min.

No.	lte	em	Specifications	Test Method
1	Operating Temperatu	ire Range	−55 to +125℃	_
2	Appearar	nce	No defects or abnormalities	Visual inspection
3	Dimensio	ns	Within the specified dimensions	Using calipers
4	Dielectric	Strength	No defects or abnormalities	No failure should be observed when voltage in table is applied between the terminations for 60±1 sec., provided the charge/discharge current is less than 50mA. Image: the termination of the charge/discharge current is less than 50mA. Image: termination of the charge/discharge current is less than 50mA. Image: termination of termination
5	Pulse Vol (Applicati GD/GF)	tage on: Type	No self healing break downs or flash-overs have taken place in the capacitor.	10 impulse of alternating polarity is subjected. (5 impulse for each polarity) The interval between impulse is 60 sec. Applied Voltage : 2.5kV zero to peak
6	Insulation I (I.R.)	Resistance	More than $6,000M\Omega$	The insulation resistance should be measured with DC500±50V and within 60±5 sec. of charging.
7	Capacita	nce	Within the specified tolerance	The capacitance/Q/D.F. should be measured at 20°C at a
8	Dissipation 8 Factor (D.F.) Q		Char.SpecificationX7RD.F. ≤ 0.025 SLQ \geq 400+20C*2 (C<30pF)Q \geq 1000(C \geq 30pF)	frequency of 1±0.2kHz (SL char. : 1±0.2MHz) and a voltage of AC1±0.2V (r.m.s.). ●Pretreatment for X7R char. Perform a heat treatment at 150 [±] ₁ 8°C for 60±5 min. and then let sit for 24±2 hrs. at *iroom condition.
9	Capacitance 9 Temperature Characteristics		Char.Capacitance ChangeX7RWithin ±15%Temperature characteristic guarantee is-55 to +125°CChar.Temperature CoefficientSL+350 to -1000ppm/°CTemperature characteristic guarantee is +20 to +85°C	The range of capacitance change compared with the 25°C (SL char. : 20°C) value within -55 to $+125$ °C should be within the specified range. •Pretreatment for X7R char. Perform a heat treatment at $150 \pm 10^{\circ}$ °C for 60 ± 5 min. and then let sit for 24 ± 2 hrs. at *1room condition.
		Appearance	No defects or abnormalities	As in Fig., discharge is made 50 times at 5 sec. intervals from
		I.R.	More than 1,000MΩ	the capacitor (Cd) charged at DC voltage of specified.
10	Discharge Test (Application: Type GC)	I.R. More than 1,000MΩ scharge st pplication: Type GC) Dielectric Strength In accordance with item No.4	$\begin{array}{c} R3 \\ \hline \\ $	
				R1 : 1,000Ω R2 : 100MΩ R3 : Surge resistance
11	11 Adhesive Strength of Termination		No removal of the terminations or other defect should occur.	Solder the capacitor to the testing jig (glass epoxy board) shown in Fig. 1 using a eutectic solder. Then apply 10N force in the direction of the arrow. The soldering should be done either with an iron or using the reflow method and should be conducted with care so that the soldering is uniform and free of defects such as heat shock.

*1 "Room condition" Temperature : 15 to 35°C, Relative humidity : 45 to 75%, Atmospheric pressure : 86 to 106kPa

*2 "C" expresses nominal capacitance value (pF).

Continued from the preceding page.

No.	lte	em	Specifications	Test Method			
		Appearance	No defects or abnormalities	Solder the capacitor to the test jig (glass epoxy board).			
		Capacitance	Within the specified tolerance	The capacitor should be subjected to a simple harmonic motion			
12	Vibration Resistance	D.F. Q	$\begin{tabular}{ c c c c c c } \hline Char. & Specification \\ \hline X7R & D.F. \leq 0.025 \\ \hline SL & Q \geq 400+20C^{*2} (C < 30pF) \\ \hline Q \geq 1000 & (C \geq 30pF) \\ \hline \end{tabular}$	Inaining a total amplitude of 1.5mm, the frequency being varied uniformly between the approximate limits of 10 and 55Hz. The frequency range, from 10 to 55Hz and return to 10Hz, should be traversed in approximately 1 min. This motion should be applied for a period of 2 hrs. in each 3 mutually perpendicular directions (total of 6 hrs.).			
13	Deflection	n	No cracking or marking defects should occur.	Solder the capacitor to the testing jig (glass epoxy board) shown in Fig. 2 using a eutectic solder. Then apply a force in the direction shown in Fig. 3. The soldering should be done either with an iron or using the reflow method and should be conducted with care so that the soldering is uniform and free of defects such as heat shock. $\underbrace{\begin{array}{c} 20 & 50 \\ Pressurize \\ Pressurize \\ Flexure=1 \\ (in mm) \\ Fig. 3 \\ \end{array}}_{fig. 3}$			
14	Solderab Terminati	lity of on	75% of the terminations are to be soldered evenly and continuously.	Immerse the capacitor in a solution of ethanol (JIS-K-8101) and rosin (JIS-K-5902) (25% rosin in weight proportion). Immerse in eutectic solder solution for 2±0.5 sec. at 235±5°C. Immersing speed : 25±2.5mm/s			
		Appearance	No marking defects	Preheat the capacitor as table. Immerse the capacitor in			
15	Resistance to Soldering	Capacitance Change	Char. Capacitance Change X7R Within ±10% SL Within ±2.5% or ±0.25pF (Whichever is larger)	 eutectic solder solution at 260±5℃ for 10±1 sec. Let sit at *'room condition for 24±2 hrs., then measure. Immersing speed : 25±2.5mm/s Pretreatment for X7R char. Perform a heat treatment at 150[±]₁0 ℃ for 60±5 min. and then let sit for 24±2 hrs. at *'room condition. 			
	пеа	I.R.	More than 1,000MΩ	*Preheating			
		Dielectric Strength In accordance with item No.4		Step Temperature Time 1 100°C to 120°C 1 min. 2 170°C to 200°C 1 min.			

*1 "Room condition" Temperature : 15 to 35°C, Relative humidity : 45 to 75%, Atmospheric pressure : 86 to 106kPa

*2 "C" expresses nominal capacitance value (pF).

No.	Ite	em	Specifications	Test Method			
16	Temperature Cycle	Appearance Capacitance Change	No marking defects Char. Capacitance Change X7R Within ±15% SL Within ±2.5% or ±0.25pF (Whichever is larger)	Fix the capacitor to the supporting jig (glass epoxy board) shown in Fig. 4 using a eutectic solder. Perform the 5 cycles according to the 4 heat treatments listed in the following table. Let sit for 24±2 hrs. at *1room condition, then measure. Step Temperature (°C)			
		D.F. Q	Char.SpecificationX7RD.F.≤0.05SLQ≥400+20C*2 (C<30pF)	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$			
		Dielectric Strength	In accordance with item No.4	let sit for 24±2 hrs. at *1room condition.			
	Humidity (Steady State)	Appearance Capacitance Change	No marking defects Char. Capacitance Change X7R Within ±15% SL Within ±5.0% or ±0.5pF (Whichever is larger)	Let the capacitor sit at 40±2°c and relative humidity of 90 to 95% for 500±12 hrs.			
17		D.F. Q	$\begin{tabular}{ c c c c c } \hline Char. & Specification \\ \hline X7R & D.F. \le 0.05 \\ \hline SL & $Q \ge 275 + 5/2C^{*2}$ (C < 30pF)$ \\ \hline $Q \ge 350$ (C \ge 30pF)$ \\ \hline \end{tabular}$	 Remove and let sit for 24±2 hrs. at *1room condition, then measure. Pretreatment for X7R char. Perform a heat treatment at 150±18°C for 60±5 min. and then let sit for 24±2 hrs. at *1room condition. 			
		I.R. Dielectric Strength	More than 3,000MΩ In accordance with item No.4				
	Life	Appearance Capacitance Change	No marking defects Char. Capacitance Change X7R Within ±20% SL Within ±3.0% or ±0.3pF (Whichever is larger)	mpulse Voltage Each individual capacitor should is subjected to a 2.5kV (Type 3C/GF : 5kV) Impulses (the roltage value means zero to beak) for three times. Then the capacitors are applied to life test.			
18		D.F. Q	$\begin{tabular}{ c c c c c } \hline Char. & Specification \\ \hline X7R & D.F. \le 0.05 \\ \hline SL & Q \ge 275 + 5/2 C^{*2} (C < 30 pF) \\ \hline Q \ge 350 & (C \ge 30 pF) \\ \hline \end{tabular}$	Apply voltage as Table for 1,000 hrs. at 125 ±2 °C, relative humidity 50% max. Type Applied voltage GB AC312.5V (r.m.s.), except that once each hour the voltage is increased to AC1,000V (r.m.s.) for 0.1 sec.			
					I.R. Dielectric Strength	More than 3,000MΩ In accordance with item No.4	GC GD GF AC425V (r.m.s.), except that once each hour the voltage is increased to AC1,000V (r.m.s.) for 0.1 sec. Let sit for 24±2 hrs. at *'room condition, then measure. •Pretreatment for X7R char. Perform a heat treatment at 150 ⁺ ₋₁ % ^o C for 60±5 min. and then let sit for 24±2 hrs. at *'room condition.

*1 "Room condition" Temperature : 15 to 35°C, Relative humidity : 45 to 75%, Atmospheric pressure : 86 to 106kPa

*2 "C" expresses nominal capacitance value (pF).

Continued from the preceding page.

No.	o. Item Specifications		Specifications	Test Method	
		Appearance	No marking	g defects	
19	Humidity Loading	Capacitance Change D.F. Q	Char. X7R SL Char. X7R SL	Capacitance ChangeWithin $\pm 15\%$ Within $\pm 5.0\%$ or $\pm 0.5pF$ (Whichever is larger)SpecificationD.F. ≤ 0.05 Q $\geq 275+5/2C^{*2}$ (C $\leq 30pF$)Q ≥ 350 (C $\geq 30pF$)	Apply the rated voltage at 40±2°C and relative humidity of 90 to 95% for 500 ^{±2} ths. Remove and let sit for 24±2 hrs. at *1room condition, then measure. •Pretreatment for X7R char. Perform a heat treatment at 150 [±] 1°C for 60±5 min. and then let sit for 24±2 hrs. at *1room condition.
		I.R.	More than	3,000ΜΩ	
		Dielectric Strength	In accorda	nce with item No.4	

*1 "Room condition" Temperature : 15 to 35°c, Relative humidity : 45 to 75%, Atmospheric pressure : 86 to 106kPa

*2 "C" expresses nominal capacitance value (pF).

GRM/GR4/GA2/GA3 Series Data (Typical Example)

■ Capacitance-Temperature Characteristics

GA3 Series (type GB/GC) 3 2 X7R Char. Spec.(upper) 1 Cap. Change (%) Type G C (≦ 681) Type G B _____ Type G C (102≦) X7R Char. Spec.(lower) -2 -30 -60 · -40 20 Temp 40 60 rature (°C) 100 120 140 -20

■ Impedance-Frequency Characteristics

GRM Series (SL Characteristics)

GRM Series (R Characteristics)

Continued on the following page.

GRM/GR4/GA2/GA3 Series Data (Typical Example)

Continued from the preceding page.

■ Impedance-Frequency Characteristics

GRM Series (X7R Char. 250V)

GA3 Series (Type GD)

GRM Series (X7R Char. 630V)

GA3 Series (Type GC)

GA3 Series (Type GF)

Continued on the following page. \checkmark

GRM/GR4/GA2/GA3 Series Data (Typical Example)

Continued from the preceding page.

GA3 Series (Type GB)

Package

Taping is standard packaging method.

■ Minimum Quantity Guide

Part Number		Dimensions (mm)			Quantity (pcs.)		
					φ180mm reel		
		L	W	Т	Paper Tape	Plastic Tape	
	GRM18	1.6	0.8	0.8	4,000	-	
	0.0.104			1.0	4,000	-	
	GRIVIZI	2.0	1.25	1.25	-	3,000	
				1.0	4,000	-	
	GRM31/GR431	3.2	1.6	1.25	-	3,000	
				1.6	-	2,000	
	CDM22/CD422		25	1.5	-	2,000	
Medium-voltage	GRW32/GR432	3.2	2.5	2.0	-	1,000	
			2.0	1.0	-	3,000	
	CBM42/CB442	4.5		1.25	-	2,000	
	GRW42/GR442	4.5		1.5	-	2,000	
				2.0	-	2,000	
	GRM43/GR443	4.5	3.2	1.5	-	1,000	
				2.0	-	1,000	
				2.5	-	500	
	GRM55/GR455	5.7	5.0	2.0	-	1,000	
	GA242	4.5	2.0	1.5	-	2,000	
AC250V	GA243	4.5	3.2	1.5	-	1,000	
AC250V				2.0	-	1,000	
	GA255	5.7	5.0	2.0	-	1,000	
	C 4 2 4 2	4.5	2.0	1.5	-	2,000	
	GA34Z	4.5		2.0	-	2,000	
Sofoty Std	GA343	4.5	3.2	1.5	-	1,000	
Recognition	67343	4.5	5.2	2.0	-	1,000	
	GA352	57	2.8	1.5	-	1,000	
	GAJJZ	5.7	2.0	2.0	-	1,000	
				1.5	-	1,000	
	GA355	5.7	5.0	2.0	-	1,000	
				2.7	-	500	

■ Tape Carrier Packaging

- (1) Appearance of Taping
- 1 Plastic Tape

Package

Continued from the preceding page.

(2) Dimensions of Tape

1) Plastic Tape

Part Number	A*	B*	
GRM21 (T≧1.25mm)	1.45	2.25	
GRM31/GR431 (T≧1.25mm)	2.0	3.6	
GRM32/GR432	2.9	3.6	
		*Nominal Value	

12mm width 8mm/4mm pitch Tape	
8.0±0.1 ^{*1} 2.0±0.05 4.0±0.1 4.0±0.1 1.75±0	0.3±0.1
Direction of Feed	≻ 3.7 max.

Part Number	A*	B*
GRM42/GR442/GA242/GA342	2.5	5.1
GRM43/GR443/GA243/GA343	3.6	4.9
GA252/GA352	3.2	6.1
GRM55/GR455/ GA255/GA355	5.4	6.1

*1 4.0±0.1mm in case of GRM42/GR442/GA242/GA342 *Nominal Value

(0111101

2 Paper Tape

(3) Dimensions of Reel

⁽in mm)

Package

Continued from the preceding page.

- (4) Taping Method
 - Tapes for capacitors are wound clockwise. The sprocket holes are to the right as the tape is pulled toward the user.
 - ② Part of the leader and part of the empty tape shall be attached to the end of the tape as shown at right.
 - ③ The top tape or cover tape and base tape are not attached at the end of the tape for a minimum of 5 pitches.
 - ④ Missing capacitors number within 0.1% of the number per reel or 1 pc, whichever is greater, and are not continuous.
 - ⑤ The top tape or cover tape and bottom tape shall not protrude beyond the edges of the tape and shall not cover sprocket holes.
 - (6) Cumulative tolerance of sprocket holes, 10 pitches : ± 0.3 mm.
 - ⑦ Peeling off force : 0.1 to 0.7N in the direction shown at right.

Note Please read rating and ①CAUTION (for storage, operating, rating, soldering, mounting and handling) in this PDF catalog to prevent smoking and/or burning, etc.
 This catalog has only typical specifications. Therefore, you are requested to approve our product specifications or to transact the approval sheet for product specifications before ordering

∆C<u>aution</u>

Storage and Operating Conditions

Operating and storage environment Do not use or store capacitors in a corrosive atmosphere, especially where chloride gas, sulfide gas, acid, alkali, salt or the like are present. And avoid exposure to moisture. Before cleaning, bonding or molding this product, verify that these processes do not affect product quality by testing the performance of a cleaned, bonded or molded product in the intended equipment. Store the capacitors

■ Handling

- 1. Vibration and impact
 - Do not expose a capacitor to excessive shock or vibration during use.
- 2. Do not directly touch the chip capacitor, especially the ceramic body. Residue from hands/fingers may create a short circuit environment.

FAILURE TO FOLLOW THE ABOVE CAUTIONS MAY RESULT, WORST CASE, IN A SHORT CIRCUIT AND CAUSE FUMING OR PARTIAL DISPERSION WHEN THE PRODUCT IS USED. where the temperature and relative humidity do not exceed 5 to 40 degrees centigrade and 20 to 70%. Use capacitors within 6 months. Check the solderability after 6 months or more. FAILURE TO FOLLOW THE ABOVE CAUTIONS MAY RESULT, WORST CASE, IN A SHORT CIRCUIT AND CAUSE FUMING OR PARTIAL DISPERSION WHEN THE PRODUCT IS USED.

Caution (Rating)

1. Operating Voltage

When DC-rated capacitors are to be used in AC or ripple current circuits, be sure to maintain the Vp-p value of the applied voltage or the Vo-p which contains DC bias within the rated voltage range.

When the voltage is applied to the circuit, starting or stopping may generate irregular voltage for a transit period because of resonance or switching. Be sure to use a capacitor with a rated voltage range that includes these irregular voltages.

Voltage	DC Voltage	DC+AC Voltage	AC Voltage	Pulse Voltage (1)	Pulse Voltage (2)
Positional Measurement	Vo-p	Vo-p	Vp-p	Vp-p	Vp-p

2. Operating Temperature and Self-generated Heat

(1) In case of X7R char. and GA3 series SL char. Keep the surface temperature of a capacitor below the upper limit of its rated operating temperature range. Be sure to take into account the heat generated by the capacitor itself. When the capacitor is used in a highfrequency current, pulse current or the like, it may have the self-generated heat due to dielectric-loss. Applied voltage should be the load such as selfgenerated heat is within 20°C on the condition of atmosphere temperature 25°C. When measuring, use a thermocouple of small thermal capacity-K of ø0.1mm in conditions where the capacitor is not affected by radiant heat from other components or surrounding ambient fluctuations. Excessive heat may lead to deterioration of the capacitor's characteristics and reliability. (Never attempt to perform measurement with the cooling fan running. Otherwise, accurate measurement cannot be ensured.)

(2) In case of C0G/R char.

Keep the surface temperature of a capacitor below the upper limit of its rated operating temperature range. Be sure to take into account the heat generated by the capacitor itself. When the capacitor is used in a highfrequency current, pulse current or similar current, it may self-generate heat due to dielectric loss.

The frequency of the applied sine wave voltage should be less than 500kHz (less than 100kHz in case of rated voltage: DC3.15kV). The applied voltage should be less than the value shown in figure at right.

In case of non-sine wave which include a harmonic frequency, please contact our sales representatives or product engineers. Excessive heat may lead to deterioration of the capacitor's characteristics and reliability. (Never attempt to perform measurement with the cooling fan running.

Otherwise, accurate measurement cannot be ensured.)

Continued from the preceding page.

(3) In case of GRM series SL char.

Keep the surface temperature of a capacitor below the upper limit of its rated operating temperature range. Be sure to take into account the heat generated by the capacitor itself. When the capacitor is used in a highfrequency current, pulse current or similar current, it may self-generate heat due to dielectric loss.

The frequency of the applied sine wave voltage should be less than 500kHz. The applied voltage should be less than the value shown in figure at right.

In case of non-sine wave which include a harmonic frequency, please contact our sales representatives or product engineers. Excessive heat may lead to deterioration of the capacitor's characteristics and reliability. (Never attempt to perform measurement with the cooling fan running.

Otherwise, accurate measurement cannot be ensured.)

3. Test condition for AC withstanding Voltage

(1) Test Equipment

Tests for AC withstanding voltage should be made with equipment capable of creating a wave similar to a 50/60 Hz sine wave.

If the distorted sine wave or overload exceeding the specified voltage value is applied, a defect may be caused.

(2) Voltage applied method

The capacitor's leads or terminals should be firmly connected to the output of the withstanding voltage test equipment, and then the voltage should be raised from near zero to the test voltage. If the test voltage is applied directly to the capacitor without raising it from near zero, it should be applied with the *zero cross. At the end of the test time, the test voltage should be reduced to near zero, and then the capacitor's leads or terminals should be taken off the output of the withstanding voltage test equipment. If the test voltage is applied directly to the capacitor without raising it from near zero, surge voltage may occur and cause a defect.

*ZERO CROSS is the point where voltage sine wave pass 0V.

- See the figure at right -

Continued from the preceding page.

4. Fail-Safe

Failure of a capacitor may result in a short circuit. Be sure to provide an appropriate fail-safe function such as a fuse on your product to help eliminate possible electric shock, fire, or fumes.

Please consider using fuses on each AC line if the capacitors are used between the AC input lines and earth (line bypass capacitors), to prepare for the worst case, such as a short circuit.

FAILURE TO FOLLOW THE ABOVE CAUTIONS MAY RESULT, WORST CASE, IN A SHORT CIRCUIT AND CAUSE FUMING OR PARTIAL DISPERSION WHEN THE PRODUCT IS USED.

Caution (Soldering and Mounting)

Vibration and Impact
 Do not expose a capacitor to excessive shock or vibration
 during use.

2. Circuit Board Material

In case that chip size is 4.5×3.2 mm or more, a metalboard or metal-frame such as Aluminum board is not available because soldering heat causes expansion and shrinkage of a board or frame, which will cause a chip to crack. 3. Land Layout for Cropping PC Board <u>Choose a mounting position that minimizes the stress</u> <u>imposed on the chip during flexing or bending of the</u> board.

Continued from the preceding page.

4. Soldering (Prevention of the thermal shock) If a chip component is heated or cooled abruptly during soldering, it may crack due to the thermal shock. To prevent this, follow our recommendations below for adequate soldering conditions.

Carefully perform pre-heating so that temperature difference (ΔT) between the solder and component surface is in the following range. When components are immersed in solvent after mounting, pay special attention to keep the temperature difference within 100°C.

Chip Size Soldering Method	3.2×1.6mm and under	3.2×2.5mm and over
Reflow Method or Soldering Iron Method	∆T≦190°C	∆T≦130°C
Flow Method or Dip Soldering Method	∆T≦150°C	

preheating is required if the chip is listed in following table and the following conditions are met. Preheating should be performed on chips not listed in following table.

When correcting chips with a soldering iron, no

Item	Conditions		
Chip Size	≦2.0×1.25mm	3.2×1.6mm	
Temperature of Iron tip	300°C max.	270°C max.	
Soldering Iron Wattage	20W max.		
Diameter of Iron tip	φ 3.0mm max.		
Soldering Time	3 sec. max.		
Caution	Do not allow the iron tip to directly touch the ceramic element.		

5. Soldering Method

GR/GA products whose sizes are 3.2×1.6mm and under for flow and reflow soldering, and other sizes for reflow soldering.

Be sure to contact our sales representatives or engineers in case that GR/GA products (size 3.2×2.5mm and over) are to be mounted with flow soldering. It may crack due to the thermal shock.

FAILURE TO FOLLOW THE ABOVE CAUTIONS MAY RESULT, WORST CASE, IN A SHORT CIRCUIT AND FUMING WHEN THE PRODUCT IS USED.

Notice

Notice (Soldering and Mounting)

1. Mounting of Chips

 Mechanical shock of the chip placer When the positioning claws and pick-up nozzle are worn,

the load is applied to the chip while positioning is concentrated in one position, thus causing cracks, breakage, faulty positioning accuracy, etc.

Careful checking and maintenance are necessary to prevent unexpected trouble.

An excessively low bottom dead point of the suction nozzle imposes great force on the chip during mounting, causing cracked chips. Please set the suction nozzle's bottom dead point on the upper surface of the board.

2. Construction of Board Pattern

After installing chips, if solder is excessively applied to the circuit board, mechanical stress will cause destruction resistance characteristics to lower. To prevent this, be extremely careful in determining shape and dimension before designing the circuit board diagram.

Construction and Dimensions of Pattern (Example)

Flow Soldering L×W а b с 0.8-0.9 1.6×0.8 0.6-1.0 0.6-0.8 2.0×1.25 1.0-1.2 0.9-1.0 0.8-1.1 3.2×1.6 2.2-2.6 1.0-1.1 1.0-1.4

Reflow Soldering						
L×W	а	b	с	d	е	
1.6×0.8	0.6-0.8	0.6-0.7	0.6-0.8	-	-	
2.0×1.25	1.0-1.2	0.9-1.0	0.8-1.1	-	-	
3.2×1.6	2.2-2.4	0.8-0.9	1.0-1.4	1.0-2.0	3.2-3.7	
3.2×2.5	2.0-2.4	1.0-1.2	1.8-2.3	1.0-2.0	4.1-4.6	
4.5×2.0	2.8-3.4	1.2-1.4	1.4-1.8	1.0-2.8	3.6-4.1	
4.5×3.2	2.8-3.4	1.2-1.4	2.3-3.0	1.0-2.8	4.8-5.3	
5.7×2.8	4.0-4.6	1.4-1.6	2.1-2.6	1.0-4.0	4.4-4.9	
5.7×5.0	4.0-4.6	1.4-1.6	3.5-4.8	1.0-4.0	6.6-7.1	
					(in m	

Continued on the following page.

Termination Thickness of Chip Capacitor and Desirable **Thickness of Adhesives Applied**

Notice

Continued from the preceding page.

Land Layout to Prevent Excessive Solder

3. Soldering

- (1) Care for minimizing loss of the terminations.
 - The information below illustrates the soldering conditions needed to minimize the loss of the effective area on the terminations.

Depending on the conditions of the soldering temperature and/or immersion (melting time), effective areas may be lost in some part of the terminations.

To prevent this, be careful in soldering so that any possible loss of the effective area on the terminations will securely remain at a maximum of 25% on all edge length A-B-C-D-A of part with A, B, C, D, shown in the Figure below.

(2) Flux

• Use rosin-type flux and do not use a highly acidic flux (any containing a minimum of 0.2wt% chlorine).

(3) Solder Buildup

1 Flow soldering and iron soldering

When soldering, use less than the maximum and more than the minimum solder buildup as shown in the illustration to the right.

During the soldering process, insure that the solder is securely placed.

Notice

Continued from the preceding page.

2 Reflow soldering

When soldering, confirm that the solder is placed over 0.2mm of the surface of the terminations.

4. Cleaning

To perform ultrasonic cleaning, observe the following conditions.

Rinse bath capacity : Output of 20 watts per liter or less. Rinsing time : 5 min maximum.

Do not vibrate the PWBs.

5. Resin Coating

- When selecting resin materials, select those with low contraction and low moisture absorption coefficient (generally epoxy resin is used).
- Buffer coat can decrease the influence of the resin shrinking (generally silicone resin).

Notice

Rating

Capacitance change of capacitor

1. In case of X7R char.

Capacitors have an aging characteristic, whereby the capacitor continually decreases its capacitance slightly if the capacitor is left on for a long time. Moreover, capacitance might change greatly depending on the surrounding temperature or an applied voltage. So, it is not likely to be suitable for use in a time constant circuit. Please contact us if you need detailed information.

 In case of C0G/R/SL char.
Capacitance might change a little depending on the surrounding temperature or an applied voltage.
Please contact us if you intend to use this product in a strict time constant circuit.

ISO 9000 Certifications

Plant	Certified Date	Organization	Registration No.
Fukui Murata Manufacturing Co., Ltd.	Apr. 2, '97	UL *1 ISO9001	A5287
Izumo Murata Manufacturing Co., Ltd.	Jul. 25, '97		A5587
Murata Electronics Singapore (Pte.) Ltd.	Nov. 3, '99	PSB *2 ISO9001	99-2-1085
Murata Manufacturing (UK) Ltd.	Jun. 24, '98	BSI *3 ISO9001	FM 22169
Murata Amazonia Industria Comercio Ltda.	Jul. 28, '98	FUNDACAO VANZOLINI ISO9002	SQ-480-675/98
Murata Electronics North America State College Plant	Mar. 7, '96	UL *1 ISO9001	A1734
Beijing Murata Electronics Co., Ltd.	Dec. 10, '98	UL *1 ISO9002	A7123

*1 UL : Underwriters Laboratories Inc.

*2 PSB : Singapore Productivity and Standards Board

*3 BSI : British Standards Institution

∧Note:

1. Export Control

(For customers outside Japan)

Murata products should not be used or sold for use in the development, production, stockpiling or utilization of any conventional weapons or mass-destructive weapons (nuclear weapons, chemical or biological weapons, or missiles), or any other weapons. (For customers in Japan)

For products which are controlled items subject to the "Foreign Exchange and Foreign Trade Law" of Japan, the export license specified by the law is required for export

- 2. Please contact our sales representatives or product engineers before using the products in this catalog for the applications listed below, which require especially high reliability for the prevention of defects which might directly damage to a third party's life, body or property, or when one of our products is intended for use in applications other than those specified in this catalog.
 - 1 Aircraft equipment
 - (2) Aerospace equipment (4) Power plant equipment
 - 3 Undersea equipment

product engineers.

- 5 Medical equipment
- 6 Transportation equipment (vehicles, trains, ships, etc.) (7) Traffic signal equipment (8) Disaster prevention / crime prevention equipment
- 9 Data-processing equipment
- 1 Application of similar complexity and/or reliability requirements to the applications listed in the above 3. Product specifications in this catalog are as of August 2003. They are subject to change or our products in it may be discontinued without advance notice. Please check with our sales representatives or product engineers before ordering. If there are any questions, please contact our sales representatives or
- 4. Please read rating and ACAUTION (for storage, operating, rating, soldering, mounting and handling) in this catalog to prevent smoking and/or burning, etc.
- 5. This catalog has only typical specifications because there is no space for detailed specifications. Therefore, please approve our product specifications or transact the approval sheet for product specifications before ordering.
- 6. Please note that unless otherwise specified, we shall assume no responsibility whatsoever for any conflict or dispute that may occur in connection with the effect of our and/or a third party's intellectual property rights and other related rights in consideration of your use of our products and/or information described or contained in our catalogs. In this connection, no representation shall be made to the effect that any third parties are authorized to use the rights mentioned above under licenses without our consent.
- 7. No ozone depleting substances (ODS) under the Montreal Protocol are used in our manufacturing process.

muRata Murata Manufacturing Co., Ltd.

http://www.murata.com/

Head Office 2-26-10, Tenjin Nagaokakyo-shi, Kyoto 617-8555, Japan Phone: 81-75-951-9111