SIEMENS

8 x Digital Sensor Interface

Features

- Input protection against 2000 V burst/500 V surge pulse according to IEC 801 4/5
- Input characteristic according to IEC 65 A, type 2 (24 V DC)
- Digital filter
- Serial in/out for easy cascading
- Low power dissipation
- SMD package

Type	Ordering Code	Package
FZE 1658G	Q67000-A8361	P-DSO-24-1

The FZE 1658G is an integrated interface for digital sensors - i.e. proximity switches - in industrial automation equipment. The IC has eight integrated highly protected and failsafe inputs with status LED and a serial synchronous output for direct MC-interfacing.

Pin Configuration

(top view)

I6 민	1	\bigcirc	24	$\square \mathrm{L} 7$
16 -	2		23	$\square 17$
15 미	3		22	\square DGND
L5 [1	4		21	$\square \mathrm{CT}$
14 ■	5		20	$\square \mathrm{SO}-\mathrm{N}$
14 -	6		19	\square T
GND [1]	7		18	$\square \mathrm{LO}-\mathrm{N}$
V_{S} [1	8		17	$\square \mathrm{SE}-\mathrm{N}$
I3 $\square^{\text {H }}$	9		16	$\square \mathrm{LO}$
L3 [1	10		15	$\square 10$
12 -	11		14	$\square \mathrm{L} 1$
L2 [1	12		13	$\square 11$

Pin Definitions and Functions

Pin	Symbol	Function
$15,13,11,9$, $5,3,1,23$	IO-I7	Inputs for 24-V signals, in conjunction with R_{V} and $R_{\text {EXT }}$ current sink characteristic.
$16,14,12$, $10,6,4,2,24$	LO-L7	Outputs for the status LEDs; LED lights when H-signal is present at input.
21	CT	Pin for connecting the frequency-determining capacitor for the filter clock; also reset input if CT is connected to DGND.
7	GND	Ground for all 24-V signals, substrate.
22	DGND	Ground for all 5-V signals, no internal connection to GND. Any interruption of GND or DGND with the supply voltage present may result in destruction of the device.
8	SO-N	Supply voltage; undervoltage activates internal reset. 20
17	SE-N	Extent output, open drain. source. input for serial cascading with pull-up current
18	LO-N	Latch input, edge H-L results in transfer of data from the digital filters to the output register.
19	T	Clock for serial output, positive edge triggered.

Functional Description and Application

The Integrated circuit FZE 1658G is used to detect the signal states of eight independent input lines according to IEC 65A Type 2 (e.g. two-wire proximity switches) with a common ground (GND). For operation in accordance with IEC 65A, it is necessary for the device to be wired with resistors rated $R_{V}=820 \Omega$ and $R_{\text {EXT }}=4.4 \mathrm{k} \Omega$ with $\pm 2 \%$ tolerance and 200 ppm TK. The input device has the following characteristics:

- Minimization of power dissipation due to constant current characteristic
- Inputs protected against reverse polarity and transient overvoltages
- Status LED output for each input
- Digital averaging of the input signals to suppress interference pulses
- Serial output of the detected signals (cascadable)

Maximum voltage ratings at inputs D0 ... D7 within test circuit 2.

	Voltage Range	Notes
DC voltage	$\begin{aligned} & -3 V \ldots+32 V \\ & -32 V \ldots+32 V \end{aligned}$	full function non-destructive, no latch-up
Overvoltage 500 ms	$\begin{aligned} & -3 \vee \ldots+35 V \\ & -35 \vee \ldots+35 V \end{aligned}$	full function non-destructive, no latch-up
Overvoltage 1.3 ms to VDE 0160	$\begin{aligned} & -3 \vee \ldots+55 V \\ & \pm 55 \end{aligned}$	full function non-destructive, no latch-up
Surge pulse $50 \mu \mathrm{~s}$ to IEC 801-5, $Z_{i}=2 \Omega$	$\pm 0.5 \mathrm{kV}$	1)
Burst pulse 50 ns to IEC 801-4, $Z_{i}=50 \Omega$	$\pm 2 \mathrm{kV}$	2)

1) Non-destructive in temperature range $15^{\circ} \mathrm{C} \leq T_{\mathrm{A}} \leq 35^{\circ} \mathrm{C}$.
2) In temperature range $15^{\circ} \mathrm{C} \leq T_{\mathrm{A}} \leq 35^{\circ} \mathrm{C}$:

Data retained if the supply voltage remains within the operating range; without supply voltage non-destructive.

The rated voltage may be applied to all inputs simultaneously.
The values given in the table may be regarded as guaranteed, but are only checked as part of a qualification (no 100% series testing).
Within the application circuit given the same voltage ratings as above apply for the supply line.

Circuit Description

In IEC 65A, the following values are specified for 24-VDC input stages of type 2:

Level	Input Voltage	Input Current
1	$\min .11 \mathrm{~V}$	$\min .6 \mathrm{~mA}$
0	$\max .11 \mathrm{~V}$	$\max .2 \mathrm{~mA}$
	or max. 5 V	

The current in the input circuit is determined by the switching element in state " 0 " and by characteristics of the input stage in state " 1 ".
The octal input device FZE 1658G is intended for a configuration comprising two specified external resistors per channel, as shown in the block diagram. As a result the power dissipation within the P-DSO-24-1 package is at a minimum.

The voltage dependent current through the external resistor $R_{\text {EXT }}$ is compensated by a negative differential resistance of the current sink across pins E and L, therefore input D behaves like a constant current sink.
The comparator assigns level 1 or 0 to the voltage present at input E. To improve interference protection, the comparator is provided with hysteresis and a delay element.
A status LED is connected in series with the input circuit ($R_{\text {EXT }}$ and current sink). The LED drive short-circuits the status LED if the comparator detects " 0 ". A constant current sink in parallel with the LED reduces the operating current of the LED, and a voltage limiter ensures that the input circuit remains operational if the LED is interrupted. The specified switching thresholds may change if the LED is interrupted.
For each channel a digital filter is provided which samples the comparator signal at a rate provided by the clock oscillator. The digital filter is designed as a 5 -section shift register. If any four out of 5 sampling values are identical, the output S changes to the corresponding state.
On a falling edge at input LO-N, the parallel data S0-S7 are clocked into the output shift register. The data can be shifted out serially to the output SO-N by the clock signal T, with a "1" at the input being represented by a L-signal at the output SO-N. The serial interface of the shift register fits the synchronous interface of the 8051 microcontroller (see diagram Serial Data Output Function). By connecting output SO-N to input SEN of the next device, several FZE 1658G can be cascaded (see Application Circuit). SO-N is designed as an open-drain output. SE-N has an internal pull-up current source. Inputs SE-N, T and SO-N have Schmitt trigger characteristics. The device has separate ground pins for the input circuitry (GND) and for the logic (DGND). If the supply voltage falls below $V_{\text {USR }}$ or CT is connected to DGND, the output shift register will be cleared and the output SO-N disabled. If the supply voltage is too low, the LED drives will also be disabled, i.e. the LED lights as soon as current flows in the input circuit.

Block Diagram

Absolute Maximum Ratings

$T_{\mathrm{j}}=-40$ to $150^{\circ} \mathrm{C}$

Parameter	Symbol	Limit Values		Unit	Notes
		min.	max.		
Transient input current inputs $10-17$	I_{1}	$\begin{aligned} & -0.6 \\ & -1.2 \\ & -2.5 \end{aligned}$	$\begin{aligned} & 0.6 \\ & 1.2 \\ & 2.5 \end{aligned}$	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & t_{50 \%} \leq 50 \mu \mathrm{~s} \\ & t_{50 \%} \leq 1.2 \mu \mathrm{~s} \\ & t_{50 \%} \leq 50 \mathrm{~ns} \end{aligned}$
Ground current	$I_{\text {GND }}$	$\begin{aligned} & -5 \\ & -10 \end{aligned}$	$\begin{aligned} & 5 \\ & 10 \end{aligned}$	$\begin{aligned} & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & t_{50 \%} \leq 50 \mu \mathrm{~s} \\ & t_{50} \leq 50 \mathrm{nc} \end{aligned}$
Junction temperature	T_{j}	-40	150	${ }^{\circ} \mathrm{C}$	
Storage temperature	$T_{\text {S }}$	- 50	125	${ }^{\circ} \mathrm{C}$	
Thermal resistance System/air	$R_{\text {tria }}$		95	K/W	soldered-in
Transient thermal resistance; Same current through all inputs 10-17	$\begin{aligned} & Z_{\mathrm{th}} \\ & Z_{\mathrm{th}} \end{aligned}$		$\begin{aligned} & 0.15 \\ & 0.4 \end{aligned}$	$\begin{aligned} & \text { K/W } \\ & \text { K/W } \end{aligned}$	50μ s pulse 120 us pulse
Supply voltage	$V_{\text {S }}$	-0.3	65	V	
Ground offset DGND to GND	$V_{\text {dGAD }}$	-4	4	V	$V_{\text {DGND }}<V_{\mathrm{S}}$
Current at the LED outputs	$I_{\llcorner }$	$\begin{aligned} & -15 \\ & -500 \\ & -250 \\ & -125 \end{aligned}$	$\begin{aligned} & 15 \\ & 500 \\ & 250 \\ & 125 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \\ & \mathrm{~mA} \\ & \mathrm{~mA} \end{aligned}$	$\begin{aligned} & t_{50 \%} \leq 50 \mu \mathrm{~s} \\ & t_{50} \mathrm{~s} \leq 1.2 \mu \mathrm{~s} \\ & t_{50 \%} \leq 50 \mu \mathrm{~s} \end{aligned}$
Voltage at T, LO-N, SO-N, SE-N	$V_{\text {LOG }}$	$\begin{aligned} & -4 \\ & -0.3 \end{aligned}$	$\begin{aligned} & 9 \\ & 9 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$	referred to DGND
Capacitance at CT	$C_{\text {CT }}$		2	$\mu \mathrm{F}$	when V_{S} falls below $V_{\text {CT }}$
ESD voltage $100 \mathrm{pF} / 1.5 \mathrm{k} \Omega$	$V_{\text {ESD }}$	1000	1000	V	MIL Std. 883 Meth. 3015

All voltages are, unless otherwise specified, referred to GND. This also applies to the operating range and the characteristics.

Operating Range

Parameter	Symbol	Limit Values		Unit	Notes
		min.	max.		
Supply voltage	$V_{\text {S }}$	10	48	V	Note power dissipation ${ }^{1)}$
Supply voltage rise	$S R_{\text {vs }}$	-0.1	1	V/ $\mu \mathrm{s}$	
Supply voltage	$V_{\mathrm{S}}-V_{\text {DGND }}$	9		V	2)
GND potential difference	$V_{\text {DGND }}$	- 1.5	1.5	V	
Input terminal current	$I_{\text {IT }}$	- 10	10	mA	
Input voltage SE-N, T, LO-N	$\begin{aligned} & V_{\mathrm{IH}} \\ & V_{\mathrm{IL}} \end{aligned}$	$\begin{aligned} & 2.8 \\ & -0.5 \end{aligned}$	$\begin{aligned} & 6 \\ & 1.7 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$	
Input current SE-N, T, LO-N	I_{1}	-1	1	mA	Clamp current
Junction temperature	T_{j}	-25	150	${ }^{\circ} \mathrm{C}$	
Ambient temperature	$T_{\text {A }}$	-25	105	${ }^{\circ} \mathrm{C}$	Dependent on $R_{\text {th }}$
Clock frequency	$f_{\text {T }}$		1	MHz	
Clock pulse width H or L	$t_{\text {TH, }}, t_{\text {TL }}$	300		ns	
SE-N set up time to $\mathrm{T} \uparrow$	$t_{\text {VSE }}$	300		ns	
LO-N set up time to $\mathrm{T} \uparrow$	$t_{\text {VLO }}$	1.2		$\mu \mathrm{s}$	
SE-N, LO-N, T rise and fall time within thresholds	$t_{\mathrm{r}}, t_{\mathrm{f}}$		3	$\mu \mathrm{s}$	3)

1) Input voltages may rise before the supply voltage.

Full function at $V_{\mathrm{S}}>V_{\text {vsRo }}$ (see Characteristics).
2) Limits GND potential difference at minimum supply voltage.
${ }^{3)}$ Also applies to several cascaded FZE 1658G (note dependence with clock frequency).
For definition of timing items, see timing diagram.

Characteristics

$V_{\mathrm{S}}=15 \mathrm{~V}$ to 30 V ; $V_{\mathrm{DGND}}=0, T_{\mathrm{j}}=-25^{\circ} \mathrm{C}<T_{\mathrm{j}}<125^{\circ} \mathrm{C}$

Parameter	Symbol	Limit Values			Unit	Test Condition	Test Circuit
		min.	typ.	max.			

Inputs IO-I7 or D0 - D7 Respectively

Switching threshold H	$V_{\text {DH }}$		10.85	V		2
Switching threshold L	$V_{\text {DL }}$	8		V	$V_{\mathrm{L}} \leq 2.2 \mathrm{~V}$	2
Hysteresis	$V_{\text {DHY }}$	1		V	$V_{\mathrm{L}} \leq 2.2 \mathrm{~V}$	2
Switching threshold L	$I_{\text {DLL }}$	2.5		mA	$I_{\text {LED }}=0$	2
Input current	$I_{\text {DH }}$	$6.2^{1)}$	8	mA	$\begin{aligned} & V_{\mathrm{L}} \leq 3.5 \mathrm{~V}, \\ & V_{\mathrm{D}}=11 \ldots 30 \mathrm{~V} \end{aligned}$	2
Input current	$I_{\text {DL }}$	5	7	mA	$\begin{aligned} & V_{\mathrm{L}}=V_{\mathrm{LL}}, \\ & V_{\mathrm{D}}=5 \mathrm{~V} \end{aligned}$	2
Input current	$I_{\text {IC }+}$		1	mA	$V_{1}=30 \mathrm{~V}^{2)}$	1
Input clamp voltage	$V_{\text {IT }+}$	35	75	V	$\begin{aligned} & I_{1}=10 \mathrm{~mA}, \\ & T_{\mathrm{j}}=25^{\circ} \mathrm{C}^{2)} \end{aligned}$	1
Input current	$I_{\text {IC }}$ -	-1		mA	$V_{1}=-30 \mathrm{~V}^{2}$	1
Input clamp voltage	$V_{\text {IT- }}$	-75	-35	V	$\begin{aligned} & I_{\mathrm{I}}=-10 \mathrm{~mA}, \\ & \left.T_{\mathrm{j}}=25^{\circ} \mathrm{C}^{2}\right) \end{aligned}$	1

1) Headroom to IEC 65 A for tolerance of ext. resistor.
${ }^{2)}$ Also valid at $V_{\mathrm{S}}=0$.

Characteristics (cont'd)
$V_{\mathrm{S}}=15 \mathrm{~V}$ to 30 V ; $V_{\mathrm{DGND}}=0, T_{\mathrm{j}}=-25^{\circ} \mathrm{C}<T_{\mathrm{j}}<125^{\circ} \mathrm{C}$

Parameter	Symbol	Limit Values			Unit	Test Condition	Test Circuit
		min.	typ.	max.			

LED Drive LO-L7

Open-load voltage	V_{LO}	3.5		5	V	$V_{\mathrm{D}}=24 \mathrm{~V}$, $I_{\mathrm{LED}}=0$	2
"Low"- voltage	V_{LL}	0		0.75	V	$V_{\mathrm{D}}=5 \mathrm{~V}$, $I_{\mathrm{LED}}=0$	2
Output current	I_{LED}	3		5	mA	$V_{\mathrm{D}}=11 \ldots 30 \mathrm{~V}$, $V_{\mathrm{L}}=1.5 \ldots 3 \mathrm{~V}$	2
Output current	I_{LED}	1.5		6	mA	$V_{\mathrm{D}}=11 \ldots 30 \mathrm{~V}$, $V_{\mathrm{L}}=1.2 \ldots 3.5 \mathrm{~V}$	2
Power down output current	I_{L}	-0.12			mA	$V_{\mathrm{S}}<V_{\mathrm{VSRU}}$	1
Propagation delay rising and falling edge	t_{DL}	7.5		75	$\mu \mathrm{~s}$	$V_{\mathrm{D}}=12 \mathrm{~V} \leftrightarrows 7 \mathrm{~V}$	2

Oscillator

CT source/sink current	$I_{\text {CT }}$	150		250	$\mu \mathrm{~A}$		1
Frequency	$f_{\text {CT }}$	1		1.5	kHz	$C_{\mathrm{T}}=39 \mathrm{nF}$	2
Upper switching threshold	$V_{\text {CTP }}$	3.3		4.3	V		2
Lower switching threshold	$V_{\text {CTN }}$	1.4		2.2	V		2
Reset threshold	$V_{\text {CTR }}$	0.8		1.4	V		1
Reset input current	$I_{\text {CTR }}$	-300		-150	$\mu \mathrm{~A}$	$V_{\text {CT }}=0.8 \mathrm{~V}$	1
Signal delay	$t_{\text {DFI }}$	2		4	ms	$C_{\mathrm{T}}=39 \mathrm{nF}$	2

Characteristics (cont'd)
$V_{\mathrm{S}}=15 \mathrm{~V}$ to 30 V ; $V_{\text {DGND }}=0, T_{\mathrm{j}}=-25^{\circ} \mathrm{C}<T_{\mathrm{j}}<125^{\circ} \mathrm{C}$

Parameter	Symbol	Limit Values		Unit	Test Condition	Test Circuit	
		min.	typ.	max.			

5-V Logic

Input current T, LO-N	I_{1}	- 10		10	$\mu \mathrm{A}$	$V_{\mathrm{i}}=0 \ldots 5 \mathrm{~V}$	1
Input current SE-N	$I_{\text {ISE }}$	-600		-400	$\mu \mathrm{A}$	$V_{\mathrm{i}}=0 \ldots 3 \mathrm{~V}$	1
Input current T, LO-N, SE-N	I_{10}	0		20	$\mu \mathrm{A}$	$\begin{aligned} & V_{i}=0 \ldots 5 \mathrm{~V} \\ & V_{\mathrm{s}}=0 \mathrm{~V} \end{aligned}$	1
Input capacitance	C_{1}			10	pF		1
L-output current SO-N	$I_{\text {sol }}$	5.5		8	mA	$V_{Q}=3 \ldots 5 \mathrm{~V}$	1
L-output level SO-N	$V_{\text {sol }}$	0		0.5	V	$I_{\text {So }}=2 \mathrm{~mA}$	1
H-leakage current SO-N	$I_{\text {SOH }}$	0		50	$\mu \mathrm{A}$	$V_{\text {So }}=5 \mathrm{~V}$	1
Output capacitance SO-N	$C_{\text {SOH }}$			20	pF	$V_{\text {SO }}=1.5 \mathrm{~V}$	1
Rise/fall time of output current SO-N	$t_{\text {rSO }}, t_{\text {fSo }}$			50	ns	$V_{\text {SO }}=2.5 \mathrm{~V}$	1
Delay time T to SO-N (see timing diagram)	$t_{\text {SOT }}$			150	ns	$V_{\text {SO }}=2.5 \mathrm{~V}$	1
Delay time LO-N to SO-N (see timing diagram)	$t_{\text {solo }}$			300	ns	$V_{\text {SO }}=2.5 \mathrm{~V}$	1
Hysteresis SE-N, LO-N			60		mV	no 100\% testing	

Characteristics (cont'd)
$V_{\mathrm{S}}=15 \mathrm{~V}$ to $30 \mathrm{~V} ; V_{\text {DGND }}=0, T_{\mathrm{j}}=-25^{\circ} \mathrm{C}<T_{\mathrm{j}}<125^{\circ} \mathrm{C}$

Parameter	Symbol	Limit Values			Unit	Test Condition	Test Circuit
		min.	typ.	max.			
Hysteresis Clock input			200		mV	no 100\% testing	

Voltage Supply
$\left.\begin{array}{l|l|l|l|l|l|l|l}\hline \text { Current drain static } & I_{\mathrm{S}} & 2 & & 5 & \mathrm{~mA} & \begin{array}{l}V_{\mathrm{S}}=10 \ldots 30 \mathrm{~V} \\ V_{\text {LO-N }}=5 \mathrm{~V} \\ V_{\mathrm{T}}=5 \mathrm{~V}\end{array} & 2 \\ I_{\text {SE-N }}=0\end{array}\right]$.

Test Circuit 1

Test Circuit 2

Application Circuit

Supply Voltage Decoupling Circuit

Cascading Multiple FZE 1658G

Serial Data Output Function

Timing Diagram

Input Characteristic with Worst-Case
Values per IEC 65A Input D Rest Circuit D

Package Outlines

Plastic-Package, P-DSO-24-1 (SMD)
(Plastic Dual Small Outline Package)

1) Does not Include plastic or metal protrusion of 0.15 max. per side
2) Does not include dambar protrusion

Sorts of Packing

Package outlines for tubes, trays etc. are contained in our Data Book "Package Information".
SMD = Surface Mounted Device

