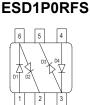


RF ESD Protection Diodes

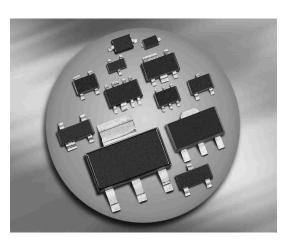
- ESD / transient protection of RF antenna / interfaces or ultra high speed data lines acc. to: IEC61000-4-2 (ESD): ± 20 kV (contact) IEC61000-4-4 (EFT): 40 A (5/50 ns) IEC61000-4-5 (surge): 10 A (8/20 μs)
- Ultra low capacitance of 1 pF typ. (0.5 pF per diode)
- Low clamping voltage
- Pb-free (ROHS compliant) package

Applications in anti-parallel configuration

• For low RF signal levels without superimposed DC voltage: e.g. GPS, WLAN, Bluetooth


Applications in rail-to-rail configuration

 For high RF signal levels or low RF signal levels with superimposed DC voltage: e.g. HDMI, S-ATA, Gbit Ethernet



ESD1P0RFW

Туре	Package	Configuration	Marking	
ESD1P0RFS	SOT363	2 channels	E6s	
ESD1P0RFW	SOT323	1 channel	E6s	

1

Maximum Ratings at $T_A = 25^{\circ}$ C, unless otherwise specified

Parameter	Symbol	Value	Unit		
ESD contact discharge ¹⁾	V _{ESD}	20	kV		
Peak pulse current ($t_p = 8 / 20 \ \mu s$) ²⁾	I _{pp}	10	A		
Operating temperature range	T _{op}	-55150	°C		
Storage temperature	T _{stg}	-65150			

Electrical Characteristics at $T_A = 25^{\circ}$ C, unless otherwise specified

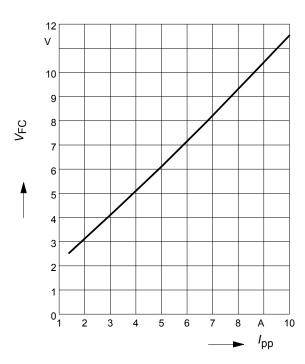
Parameter	Symbol	Values			Unit
		min.	typ.	max.	
Characteristics -					
Reverse working voltage ³⁾	V _{RWM}	-	-	70	V
Reverse current	I _R	-	-	100	nA
V _R = 70 V					
Forward clamping voltage ²⁾	V _{FC}				V
/ _{PP} = 3 A, <i>t</i> _p = 8/20 μs		-	4	7	
<i>I</i> _{PP} = 10 A, <i>t</i> _p = 8/20 μs		-	12	15	
Line capacitance ⁴⁾	CT				pF
$V_{R} = 0 \text{ V}, f = 1 \text{ MHz}$		-	1	1.5	
$V_{\rm R}$ = 0 V, <i>f</i> = 1 MHz, for Application example 4		-	0.5	0.75	
Series inductance (per diode)	LS				nH
SOT323		-	1.4	-	
SOT363		-	1.6	-	

 $^{1}V_{\mbox{ESD}}$ according to IEC61000-4-2, only valid in anti-parallel or rail-to-rail connection.

Please refer to the application examples.

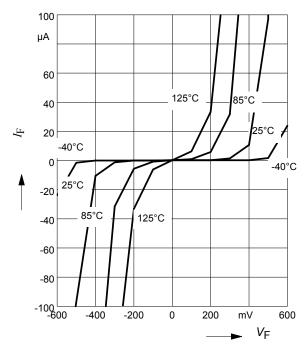
 $^{2}I_{pp}$ according to IEC61000-4-5, only valid in anti-parallel or rail-to-rail connection.

Please refer to the application examples.


³Only valid in rail-to-rail configuration $V_{CC} \ge V_{RWM}$

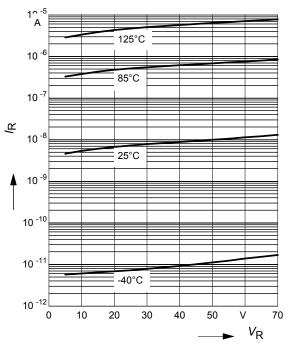
⁴Total capacitance line to ground (2 diodes in parallel)

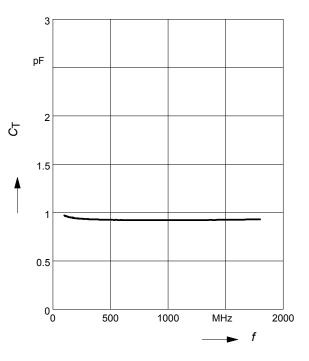
Forward clamping voltage $V_{\text{FC}} = f(I_{\text{PP}})$


t_p = 8 / 20 μs

Forward current $I_F = f(V_F)$

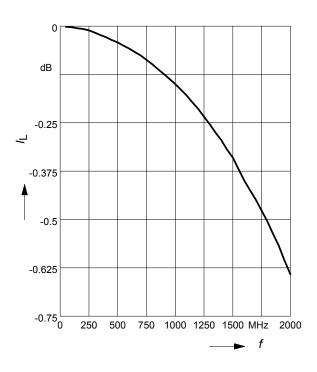
T_A = Parameter


in anti-parallel configuration

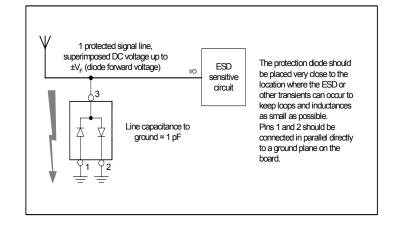

Reverse current $I_{R} = f(V_{R})$

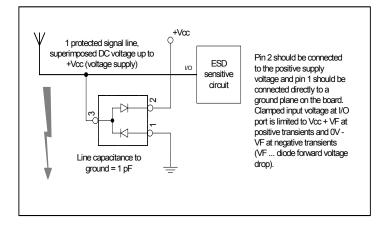
 T_A = Parameter

in rail-to-rail configuration

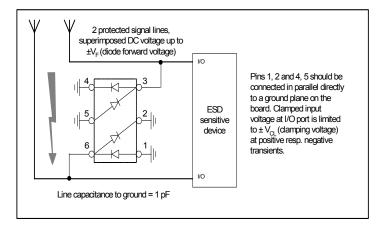

Line capacitance $C_T = f(f)$ $V_R = 0 V$

Insertion loss $|S_{21}|^2 = f(f)$ $V_R = 0 \text{ V}$, line to ground, Z = 50 Ω



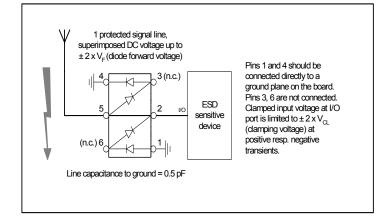

1. Application example ESD1P0RFW

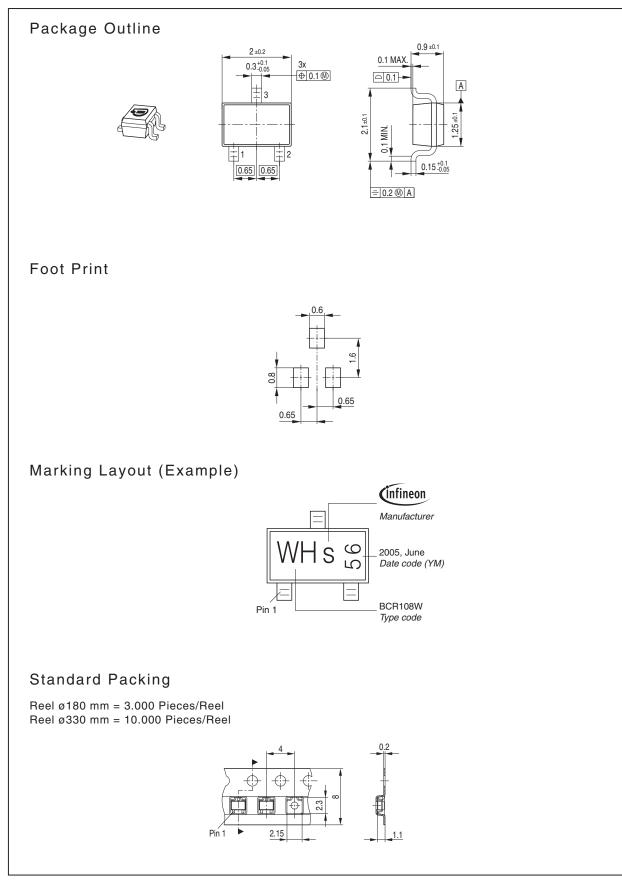
1 channel, anti-parallel configuration


2. Application example ESD1P0RFW

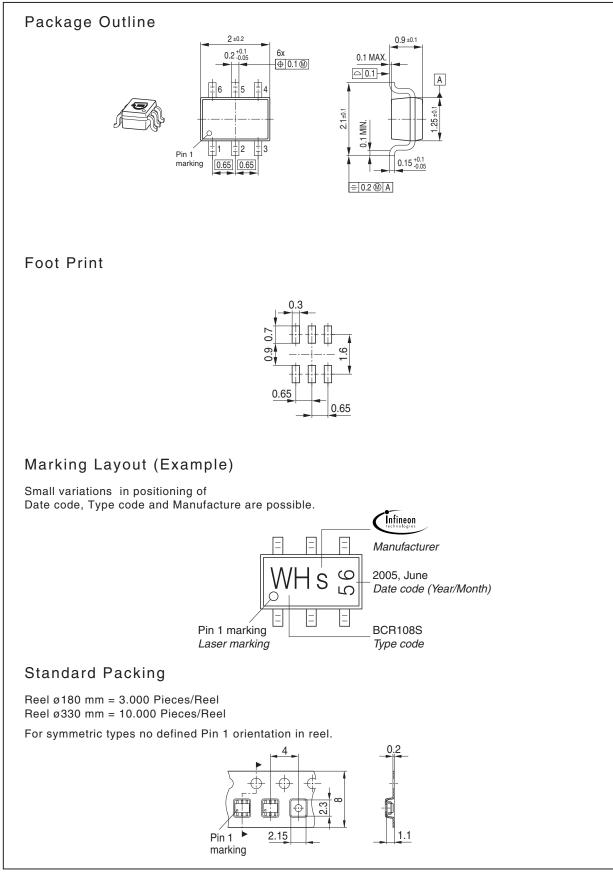
1 channel, rail-to-rail configuration

3. Application example ESD1P0RFS


2 channels, anti-parallel configuration



4. Application example ESD1P0RFS


1 channel, low capacitance anti-parallel configuration

Edition 2009-11-16

Published by Infineon Technologies AG 81726 Munich, Germany

© 2009 Infineon Technologies AG All Rights Reserved.

Legal Disclaimer

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party.

Information

For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (<<u>www.infineon.com</u>>).

Warnings

Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office.

Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.