

SIPMOS® Small-Signal-Transistor

Features

Product Summary

- N channel
- Enhancement mode
- Avalanche rated
- d*v*/dt rated
- Pb-free lead plating; RoHS compliant
- Qualified according to AEC Q101

Drain source voltage	V _{DS}	60	V
Drain-Source on-state resistance	R _{DS(on)}	0.12	Ω
Continuous drain current	I _D	2.9	A
pliant 11			2 VPS05163

Туре	Package	Tape and Reel	Packaging		
BSP320S	PG-SOT223	L6327: 1000pcs/r	Non dry		
BSP320S	PG-SOT223	L6433: 4000pcs/r	Non dry		
Maximum Ratings, at Tj = 25 °C, unless otherwise specified					

Parameter	Symbol	Value	Unit
Continuous drain current	/ _D	2.9	Α
Pulsed drain current	<i>I</i> Dpulse	11.6	
<i>T</i> _A = 25 °C			
Avalanche energy, single pulse	E _{AS}	60	mJ
$I_{\rm D}$ = 2.9 A, $V_{\rm DD}$ = 25 V, $R_{\rm GS}$ = 25 Ω			
Avalanche current, periodic limited by T_{imax}	/ _{AR}	2.9	Α
Avalanche energy, periodic limited by T_{jmax}	E _{AR}	0.18	mJ
Reverse diode d <i>v</i> /d <i>t</i>	dv/dt	6	kV/μs
$I_{\rm S}$ = 2.9 A, $V_{\rm DS}$ = 20 V, d <i>i</i> /d <i>t</i> = 200 A/µs,			
T _{jmax} = 150 °C			
Gate source voltage	V _{GS}	±20	V
Power dissipation	P _{tot}	1.8	W
<i>T</i> _A = 25 °C			
Operating temperature	Ti	-55 +150	°C
Storage temperature	T _{stg}	-55 +150	
IEC climatic category; DIN IEC 68-1		55/150/56	

Electrical Characteristics

Parameter	Symbol	Values			Unit
at T_{i} = 25 °C, unless otherwise specified		min.	typ.	max.	
Thermal Characteristics		•	•	•	
Thermal resistance, junction - soldering point (Pin 4)	R _{thJS}	-	17	-	K/W
SMD version, device on PCB:	R _{thJA}				K/W
@ min. footprint		-	110	-	
@ 6 cm ² cooling area ¹⁾		-	-	70	

Static Characteristics

Drain- source breakdown voltage	V _{(BR)DSS}	60	-	-	V
$V_{\rm GS}$ = 0 V, $I_{\rm D}$ = 0.25 mA					
Gate threshold voltage, $V_{GS} = V_{DS}$	V _{GS(th)}	2.1	3	4	
<i>I</i> _D = 20 μA					
Zero gate voltage drain current	I _{DSS}				μA
$V_{\rm DS}$ = 60 V, $V_{\rm GS}$ = 0 V, $T_{\rm j}$ = 25 °C		-	0.1	1	
$V_{\rm DS} = 60 \text{ V}, \ V_{\rm GS} = 0 \text{ V}, \ T_{\rm j} = 150 \ ^{\circ}\text{C}$		-	-	100	
Gate-source leakage current	I _{GSS}	-	10	100	nA
$V_{\rm GS}$ = 20 V, $V_{\rm DS}$ = 0 V					
Drain-Source on-state resistance	R _{DS(on)}	-	0.09	0.12	Ω
$V_{\rm GS}$ = 10 V, $I_{\rm D}$ = 2.9 A					

¹ Device on 50mm*50mm*1.5mm epoxy PCB FR4 with 6 cm2 (one layer, 70µm thick) copper area for drain connection. PCB is vertical without blown air.

Electrical Characteristics

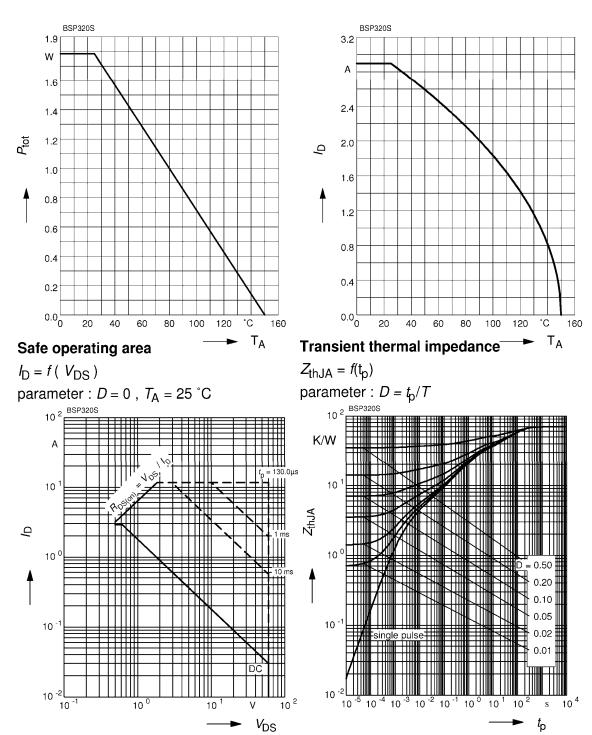
Parameter	Symbol	Values			Unit
at T_{i} = 25 °C, unless otherwise specified		min.	typ.	max.	
Dynamic Characteristics					
Transconductance	g _{fs}	2.5	5.8	-	S
$V_{\rm DS} \ge 2^* I_{\rm D}^* R_{\rm DS(on)max}$, $I_{\rm D} = 2.9$ A					
Input capacitance	C _{iss}	-	275	340	pF
$V_{\rm GS} = 0 \text{ V}, V_{\rm DS} = 25 \text{ V}, f = 1 \text{ MHz}$					
Output capacitance	Coss	-	90	120	
$V_{\rm GS} = 0$ V, $V_{\rm DS} = 25$ V, $f = 1$ MHz					
Reverse transfer capacitance	C _{rss}	-	50	65	
$V_{\rm GS} = 0$ V, $V_{\rm DS} = 25$ V, $f = 1$ MHz					
Turn-on delay time	t _{d(on)}	-	11	17	ns
$V_{\rm DD}$ = 30 V, $V_{\rm GS}$ = 10 V, $I_{\rm D}$ = 2.9 A,					
$R_{\rm G} = 33 \ \Omega$					
Rise time	t _r	-	25	40	
$V_{\rm DD}$ = 30 V, $V_{\rm GS}$ = 10 V, $I_{\rm D}$ = 2.9 A,					
$R_{\rm G} = 33 \ \Omega$					
Turn-off delay time	t _{d(off)}	-	25	40	
$V_{\rm DD}$ = 30 V, $V_{\rm GS}$ = 10 V, $I_{\rm D}$ = 2.9 A,					
$R_{\rm G} = 33 \ \Omega$					
Fall time	t _f	-	35	55	
$V_{\rm DD}$ = 30 V, $V_{\rm GS}$ = 10 V, $I_{\rm D}$ = 2.9 A,					
$R_{\rm G} = 33 \ \Omega$					

Electrical Characteristics

Parameter	Symbol	Values		Unit	
at T_{i} = 25 °C, unless otherwise specified		min.	typ.	max.	
Dynamic Characteristics					
Gate charge at threshold	Q _{G(th)}	-	0.25	0.3	nC
$V_{\rm DD} = 40$ V, $I_{\rm D} = 0.1$ A, $V_{\rm GS} = 1$ V					
Gate charge at V_{gs} =7V	Q _{g(7)}	-	7.4	9.3	nC
$V_{\rm DD}$ = 40 V, $I_{\rm D}$ = 2.9 A, $V_{\rm GS}$ = 0 to 7 V					
Gate charge total	Q_q	-	9.7	12]
$V_{\rm DD}$ = 40 V, $I_{\rm D}$ = 2.9 A, $V_{\rm GS}$ = 0 to 10 V					
Gate plateau voltage	V _(plateau)	-	4.7	-	V
V _{DD} = 40 V, <i>I</i> _D = 2.9 A	,				

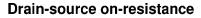
Reverse Diode

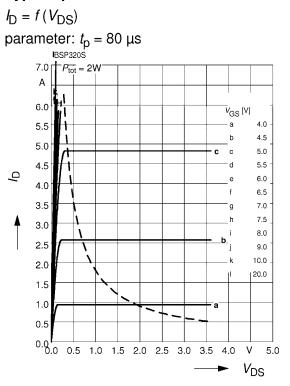
Inverse diode continuous forward current $T_A = 25 \degree C$	I _S	-	-	2.9	A
Inverse diode direct current,pulsed $T_A = 25 \degree C$	/ _{SM}	-	-	11.6	
Inverse diode forward voltage $V_{\rm GS}$ = 0 V, $I_{\rm F}$ = 5.8 A	V _{SD}	-	0.95	1.2	V
Reverse recovery time $V_{\rm R} = 30 \text{ V}, I_{\rm F}=I_{\rm S}, di_{\rm F}/dt = 100 \text{ A}/\mu\text{s}$	t _{rr}	-	45	56	ns
Reverse recovery charge $V_{\rm R}$ = 30 V, $I_{\rm F}$ = $I_{\rm S}$, d $i_{\rm F}$ /d t = 100 A/µs	Q _{rr}	-	0.08	0.12	μC

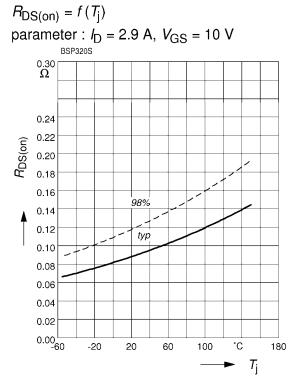


$$P_{\text{tot}} = f(\mathbf{T}_{\mathsf{A}})$$

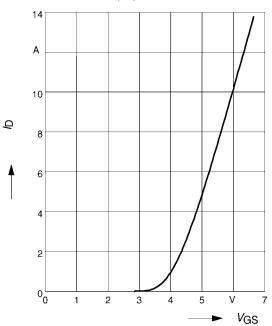
Drain current


 $I_{\rm D}=f\left(T_{\rm A}\right)$

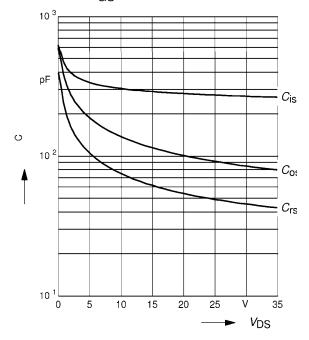




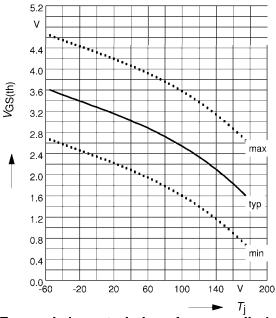
Typ. output characteristics



Typ. transfer characteristics I_{D} = f (V_{GS})


parameter: *t*p = 80 µs

 $V_{\text{DS}} \ge 2 \times I_{\text{D}} \times R_{\text{DS(on)max}}$


Typ. capacitances $C = f(V_{DS})$

Parameter: $V_{GS}=0$ V, f=1 MHz

Gate threshold voltage

 $V_{\text{GS(th)}} = f(T_j)$ parameter : $V_{\text{GS}} = V_{\text{DS}}$, $I_{\text{D}} = 20 \ \mu\text{A}$

Forward characteristics of reverse diode

 $I_{\rm F} = f(V_{\rm SD})$ parameter: $T_{\rm j}$, tp = 80 µs 10² A 10¹ $T_{\rm j} = 25 \,{}^{\circ}{\rm C}$ typ $T_{\rm j} = 150 \,{}^{\circ}{\rm C}$ (98%) $T_{\rm j} = 150 \,{}^{\circ}{\rm C}$ (98%)

Rev 2.3

 V_{SD}

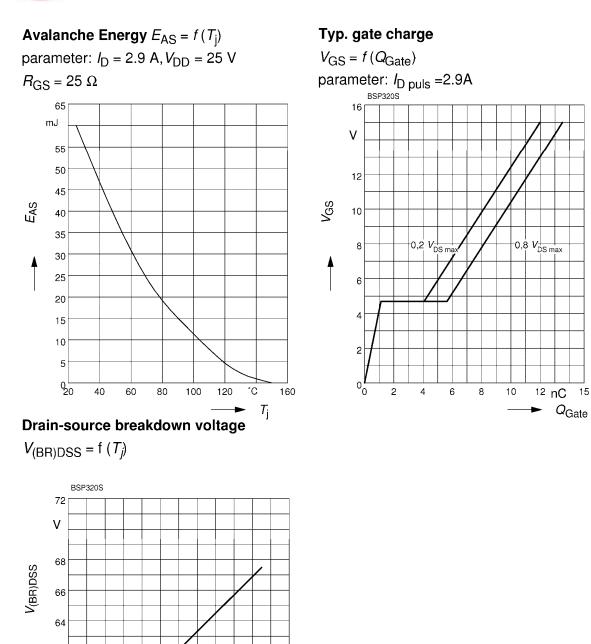
2.4 V 3.0

10

0.0

0.4

0.8


1.2

1.6

2.0

Rev 2.3

4

62

60

58

56

54└─ -60

-20

20

60

180

100

°C

► T_j

Published by Infineon Technologies AG 81726 Munich, Germany © 2008 Infineon Technologies AG All Rights Reserved.

Legal Disclaimer

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party.

Information

For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (<u>www.infineon.com</u>).

Warnings

Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office. Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.