

1-A Quad-HBD (Quad-Half-Bridge Driver)

TLE4208G

Overview

Features

- Driver for up to 3 motors
- Delivers up to 0.8 A continuous
- Optimized for DC motor management applications
- Very low current consumption in stand-by (Inhibit)
 mode
- Low saturation voltage; typ.1.2 V total @ 25 °C; 0.4 A
- · Output protected against short circuit
- Error flag diagnosis
- Overvoltage lockout and diagnosis
- Undervoltage lockout
- CMOS/TTL compatible inputs with hysteresis
- No crossover current
- Internal clamp diodes
- Overtemperature protection with hysteresis and diagnosis
- Enhanced power DSO-Package
- Green Product (RoHS compliant)
- AEC Qualified

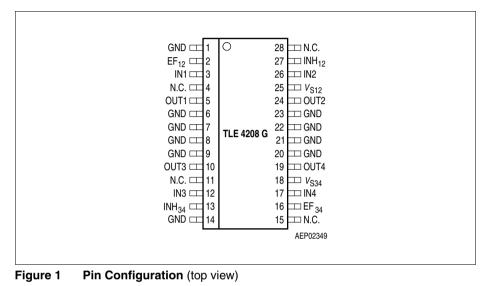
Туре	Ordering Code	Package		
TLE4208G	on request	PG-DSO-28-24		

Description

The TLE4208G is a protected **Quad-H**alf-**B**ridge-**D**river designed specially for automotive and industrial motion control applications.

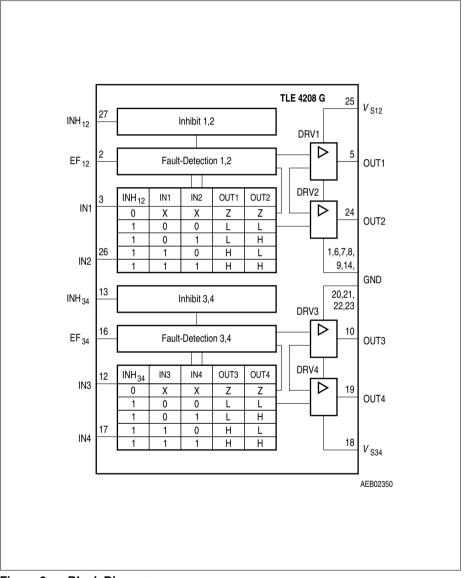
The part is built using Infineons bipolar high voltage power technology DOPL.

In a cascade configuration up to three actuators (DC motors) can be connected between the four half-bridges. These four half-bridges are configured as 2 dual-half-bridges, which are supplied and controlled separately. Operation modes forward (cw), reverse (ccw), brake and high impedance are invoked from a standard interface.


The standard enhanced power PG-DSO-28-24 package meets the application requirements and saves PCB-board space and costs. Moreover the package is RoHS compliant.

PG-DSO-28-24

Furthermore the built-in features like diagnosis, over- and undervoltage-lockout, shortcircuit protection, over-temperature protection and the very low quiescent current in stand-by mode will open a wide range of automotive and industrial applications.



Pin Definitions and Functions

Pin No.	Symbol	Function
1, 6, 7, 8, 9, 14, 20, 21, 22, 23	GND	Ground; negative reference potential for blocking capacitor
2	EF ₁₂	Error Flag output of half-bridges 1and 2; open collector; low = error
3	IN1	Input channel of half-bridge 1; controls OUT1
4, 11, 15, 28	N.C.	Not connected
5	OUT1	Power output of half-bridge 1; short circuit protected; with integrated clamp diodes
10	OUT3	Power output of half-bridge 3; short-circuit protected; with integrated clamp diodes
12	IN3	Input channel of half-bridge 3; controls OUT3
13	INH ₃₄	Inhibit input of half-bridges 3 and 4; low = half-bridges 3 and 4 in stand-by
16	EF ₃₄	Error Flag output of half-bridges 3 and 4; open collector; low = error
17	IN4	Input channel of half-bridge 4; controls OUT4
18	V _{S34}	Power supply voltage of half-bridges 3 and 4; positive reference potential for blocking capacitor
19	OUT4	Power output of half-bridge 4; short circuit protected; with integrated clamp diodes
24	OUT2	Power-output of half-bridge 2; short circuit protected; with integrated clamp diodes
25	V _{S12}	Power supply voltage of half-bridges 1 and 2; positive reference potential for blocking capacitor
26	IN2	Input channel of half-bridge 2; controls OUT2
27	INH ₁₂	Inhibit input of half-bridges 1and 2; low = half-bridges 1 and 2 in stand-by

Input Logic

Functional Truth Table of Halfbridge 1 and 2

INH ₁₂	IN1	IN2	OUT1	OUT2	Mode
0	Х	Х	Z	Z	Stand-By
1	0	0	L	L	Brake LL
1	0	1	L	Н	CW
1	1	0	Н	L	CCW
1	1	1	Н	Н	Brake HH

Note: Half-Bridge 1 and 2 connected to a full-bridge

Functional Truth Table of Half-Bridge 3 and 4

INH ₃₄	IN3	IN4	OUT3	OUT4	Mode
0	Х	Х	Z	Z	Stand-By
1	0	0	L	L	Brake LL
1	0	1	L	Н	CW
1	1	0	Н	L	CCW
1	1	1	Н	Н	Brake HH

- IN: 0 = Logic LOW
 - 1 = Logic HIGH
- OUT: Z = Output in tristate condition
- X = don't care

- L = Output in sink condition
- H = Output in source condition

Note: Half-Bridge 3 and 4 connected to a full-bridge

Diagnosis

EF ₁₂	EF ₃₄	Error
1	1	no error
0	1	over temperature of half-bridge 1 and 2 or
0	1	over voltage of half-bridge 1 and 2
1	0	over temperature of half-bridge 3 and 4 or
1	0	over voltage of half-bridge 3 and 4
0	0	over temperature of all half-bridges or
0	0	over voltage of all half-bridges

Electrical Characteristics

Absolute Maximum Ratings

Parameter	Symbol	Limit Values		Unit	Remarks
		min. max.			

Voltages

Supply voltage	$V_{\rm S12},\\V_{\rm S34}$	- 0.3	45	V	-
Supply voltage	$V_{ m S12}$, $V_{ m S34}$	- 1	-	V	t < 0.5 s; $I_{S12}, I_{S34} > - 2 \text{ A}$
Logic input voltages (IN1; IN2; INH ₁₂ ; IN3; IN4; INH ₃₄)	VI	- 5	20	V	0V < $V_{\rm S12}$, $V_{\rm S34}$ < 45 V
Logic output voltage (EF ₁₂ ; EF ₃₄)	$\begin{array}{c} V_{\rm EF12},\\ V_{\rm EF34} \end{array}$	- 0.3	20	V	0 V < $V_{\rm S12}$, $V_{\rm S34}$ < 45 V

Currents

Output current (cont.)	I _{OUT1-4}	-	-	А	internally limited
Output current (peak)	I _{OUT1-4}	-	—	А	internally limited
Output current (diode)	I _{OUT1-4}	-1	1	А	-
Output current (EF)	I _{EF12-34}	-2	5	mA	-

Temperatures

Junction temperature	Tj	- 40	150	°C	-
Storage temperature	$T_{\rm stg}$	- 50	150	°C	-

Thermal Resistances

Junction pin	$R_{ m thj-pin}$	-	25	K/W	measured to pin 7
Junction ambient	$R_{ m thjA}$	-	65	K/W	_

Note: Maximum ratings are absolute ratings; exceeding any one of these values may cause irreversible damage to the integrated circuit.

Operating Range

Parameter	Symbol	Limit Values		Unit	Remarks	
		min.	max.			
Supply voltage	$V_{ m S12}, \ V_{ m S34}$	$V_{\rm UV \; OFF}$	18	V	After $V_{\rm S12}, V_{\rm S34}$ rising above $V_{\rm UVON}$	
Supply voltage increasing	$V_{ m S12}$, $V_{ m S34}$	- 0.3	$V_{\rm UV ON}$	V	Outputs in tristate	
Supply voltage decreasing	$V_{ m S12}$, $V_{ m S34}$	- 0.3	$V_{\rm UVOFF}$	V	Outputs in tristate	
Logic input voltages (IN1; IN2; INH ₁₂ ; IN3; IN4; INH ₃₄)	VI	-2	18	V	-	
Junction temperature	Tj	- 40	150	°C	-	

Note: In the operating range the functions given in the circuit description are fulfilled.

Electrical Characteristics

8 V < V_{S12} = V_{S34} < 18 V; INH₁₂ = INH₃₄ = HIGH; I_{OUT1-4} = 0 A; - 40 °C < T_j < 150 °C; unless otherwise specified

Parameter	Symbol	Limit Values		Unit	Test Condition	
		min.	typ.	max.		

Current Consumption

 $INH_{12} = INH_{34} = LOW$

Quiescent current	Is	-	-	100	μA	$I_{\rm S} = I_{{\rm S}12} + I_{{\rm S}34}$
Quiescent current	I _S	-	20	40	μA	$I_{\rm S} = I_{\rm S12} + I_{\rm S34}; \\ V_{\rm S12} = V_{\rm S34} = 13.2 \text{ V}; \\ T_{\rm j} = 25 \text{ °C}$

$INH_{12} = HIGH and INH_{34} = LOW or INH_{12} = LOW and INH_{34} = HIGH$

12	04		12		0	-	
Supply current		$I_{\rm S12},I_{\rm S34}$	-	10	20	mA	-
Supply current		I _{S12} , I _{S34}	_	-	30	mA	$I_{\rm OUT1/3} = 0.4 \text{ A}$ $I_{\rm OUT2/4} = -0.4 \text{ A}$
Supply current		I _{S12} , I _{S34}	_	-	50	mA	$I_{\rm OUT1/3} = 0.8 \text{ A}$ $I_{\rm OUT2/4} = -0.8 \text{ A}$

Over- and Under Voltage Lockout

UV Switch ON voltage	$V_{\rm UV ON}$	-	6.5	7.5	V	$V_{\rm S12}, V_{\rm S34}$ increasing
UV Switch OFF voltage	$V_{\rm UVOFF}$	5	6	_	V	$V_{\rm S12}, V_{\rm S34}$ decreasing
UV ON/OFF hysteresis	$V_{\rm UVHY}$	-	0.5	-	V	$V_{\rm UV ON} - V_{\rm UV OFF}$
OV Switch OFF voltage	$V_{\rm OVOFF}$	-	20	24	V	V _{S12} , V _{S34} increasing
OV Switch ON voltage	$V_{\rm OV ON}$	18	19.5	-	V	$V_{\rm S12}, V_{\rm S34}$ decreasing
OV ON/OFF hysteresis	V _{OV HY}	-	0.5	-	V	$V_{\rm OV \; OFF} - V_{\rm OV \; ON}$

Electrical Characteristics (cont'd)

8 V < V_{S12} = V_{S34} < 18 V; INH₁₂ = INH₃₄ = HIGH; I_{OUT1-4} = 0 A; - 40 °C < T_j < 150 °C; unless otherwise specified

Parameter	Symbol	Limit Values			Unit	Test Condition
		min.	typ.	max.		

Outputs OUT1; OUT2; OUT 3; OUT 4

Saturation Voltages

Source (upper)	V _{SAT U}	-	0.85	1.15	V	<i>T</i> _i = 25 °C
$I_{\rm OUT12}, I_{\rm OUT34} = -0.2 \text{ A}$,
Source (upper)	$V_{\rm SAT U}$	-	0.90	1.20	V	T _i = 25 °C
$I_{\rm OUT12}, I_{\rm OUT34} = -0.4 \text{ A}$						
Sink (upper)	$V_{\rm SATU}$	-	1.10	1.50	V	T _i = 25 °C
$I_{\rm OUT12}, I_{\rm OUT34} = -0.8 \text{ A}$						
Sink (lower)	$V_{\rm SATL}$	-	0.15	0.23	V	T _i = 25 °C
$I_{\rm OUT12}, I_{\rm OUT34} = 0.2 \text{ A}$						
Sink (lower)	$V_{\rm SATL}$	-	0.25	0.40	V	T _i = 25 °C
$I_{\rm OUT12}, I_{\rm OUT34} = 0.4 \text{ A}$						
Sink (lower)	$V_{\rm SATL}$	-	0.45	0.75	V	T _i = 25 °C
$I_{\rm OUT12}, I_{\rm OUT34} = 0.8 \text{ A}$						•

Total Drop	V_{SAT}	-	1	1.4	V	$V_{\text{SAT}} = V_{\text{SAT U}} + V_{\text{SAT L}}$
$I_{\rm OUT12}, I_{\rm OUT34} = 0.2 \text{ A}$	_					
Total Drop	V_{SAT}	—	1.2	1.7	V	$V_{\rm SAT} = V_{\rm SAT U} + V_{\rm SAT L}$
$I_{\rm OUT12}, I_{\rm OUT34} = 0.4 \text{ A}$	_					
Total Drop	V_{SAT}	_	1.6	2.5	V	$V_{\text{SAT}} = V_{\text{SAT U}} + V_{\text{SAT L}}$
$I_{\rm OUT12}, I_{\rm OUT34} = 0.8 \text{ A}$						

Clamp Diodes

Forward voltage; upper	$V_{\rm FU}$	-	1	1.5	V	<i>I</i> _F = 0.4 A
Upper leakage current	$I_{\rm LKU}$	-	-	5	mA	$I_{\rm F} = 0.4 \ {\rm A}^{1)}$
Forward voltage; lower	V_{FL}	-	0.9	1.4	V	<i>I</i> _F = 0.4 A

Notes see page 11.

Electrical Characteristics (cont'd)

8 V < V_{S12} = V_{S34} < 18 V; INH₁₂ = INH₃₄ = HIGH; I_{OUT1-4} = 0 A; - 40 °C < T_j < 150 °C; unless otherwise specified

Parameter	Symbol	Limit Values			Unit	Test Condition
		min.	typ.	max.		

Input Interface

Logic Inputs IN1; IN2; IN3; IN4

H-input voltage	V_{IH}	-	2.0	3.0	V	-
L-input voltage	V_{IL}	1.0	1.5	-	V	-
Hysteresis of input voltage	V_{IHY}	-	0.5	-	V	-
H-input current	I _{IH}	- 2	_	10	μA	$V_{\rm I} = 5 \rm V$
L-input current	$I_{\rm IL}$	- 100	- 20	- 5	μA	$V_{\rm I} = 0 \ {\rm V}$

Logic Inputs INH₁₂; INH₃₄

H-input voltage	V_{IH}	-	2.7	3.5	V	-
L-input voltage	V_{IL}	1.0	2.0	-	V	-
Hysteresis of input voltage	V_{IHY}	-	0.7	-	V	-
H-input current	I _{IH}	-	100	250	μA	$V_{\rm INH} = 5 \ {\rm V}$
L-input current	$I_{\rm IL}$	- 10	-	10	μA	$V_{\rm INH} = 0 \ {\rm V}$

Error-Flags EF₁₂; EF₃₄

L-output voltage level	V_{EFL}	-	0.2	0.4	V	$I_{\rm EF} = 2 {\rm mA}$
Leakage current	$I_{\rm EFLK}$	-	-	10	μA	$0 V < V_{EF} < 7 V$

Electrical Characteristics (cont'd)

8 V < V_{S12} = V_{S34} < 18 V; INH₁₂ = INH₃₄ = HIGH; I_{OUT1-4} = 0 A; - 40 °C < T_j < 150 °C; unless otherwise specified

Parameter	Symbol	Limit Values			Unit	Test Condition
		min.	typ.	max.		

Thermal Shutdown

Thermal shutdown junction temperature	$T_{\rm jSD}$	150	175	200	°C	-
Thermal switch-on junction temperature	$T_{\rm jSO}$	120	-	170	°C	-
Temperature hysteresis	ΔT	_	30	_	К	-

¹⁾ Guaranteed by design.

Note: The listed characteristics are ensured over the operating range of the integrated circuit. Typical characteristics specify mean values expected over the production spread. If not otherwise specified, typical characteristics apply at $T_A = 25^{\circ}C$ and the given supply voltage.

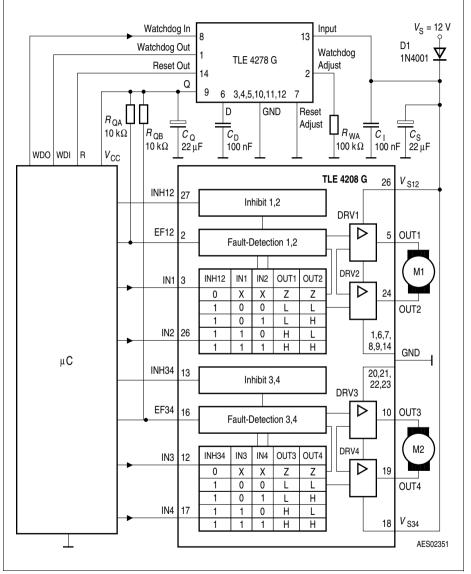
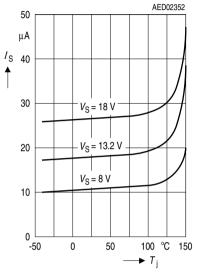
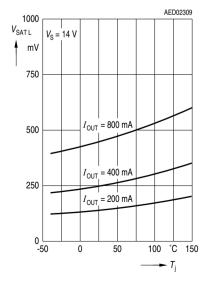
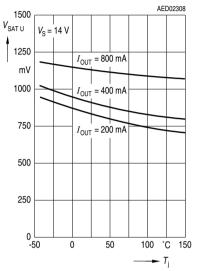
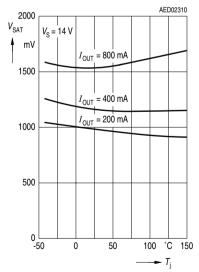



Figure 3 Application Circuit 1 (Device is Used as Dual-Full-Bridge-Driver)

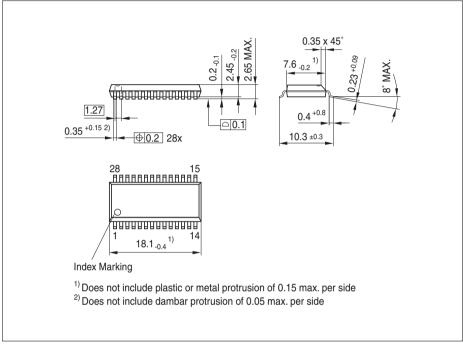


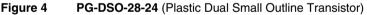
Diagrams


Quiescent current *I*_S over Temperature


Saturation Voltage of Sink $V_{\rm SAT\,L}$ over Temperature

Saturation Voltage of Source $V_{\rm SAT\,U}$ over Temperature




Total Drop at outputs $V_{\rm SAT}$ over Temperature

Package Outlines

Green Product (RoHS compliant)

To meet the world-wide customer requirements for environmentally friendly products and to be compliant with government regulations the device is available as a green product. Green products are RoHS-Compliant (i.e Pb-free finish on leads and suitable for Pb-free soldering according to IPC/JEDEC J-STD-020).

You can find all of our packages, sorts of packing and others in our Infineon Internet Page "Products": http://www.infineon.com/products.

SMD = Surface Mounted Device

Dimensions in mm

Version	Date	Changes
Rev. 1.1	2008-02-04	Initial version of RoHS-compliant derivate of TLE4208G Page 1: added AEC certified statement Page 1 and 13: added RoHS compliance statement and Green product feature Page 1 and 3: Editorial change: deleted "fully" (The term "fully protected" often leads to misunderstandings as it is unclear with respect to which parameters). Page 1 and 14: Package changed to RoHS compliant version Page 15: added Revision History, updated Legal Disclaimer

Edition 2008-02-04 Published by Infineon Technologies AG 81726 Munich, Germany © 2/4/08 Infineon Technologies AG All Rights Reserved.

Legal Disclaimer

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party.

Information

For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office.

Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.