BTN7975B

High Current PN Half Bridge
NovalithIC ${ }^{\text {TM }}$

Automotive Power

Table of Contents

1 Overview 3
2 Block Diagram 4
2.1 Block Diagram 4
2.2 Terms 4
3 Pin Configuration 5
3.1 Pin Assignment 5
3.2 Pin Definitions and Functions 5
4 General Product Characteristics 6
4.1 Absolute Maximum Ratings 6
4.2 Functional Range 8
4.3 Thermal Resistance 8
5 Block Description and Characteristics 9
5.1 Supply Characteristics 9
5.2 Power Stages 10
5.2.1 Power Stages - Static Characteristics 11
5.2.2 Switching Times 12
5.2.3 Power Stages - Dynamic Characteristics 13
5.3 Protection Functions 15
5.3.1 Overvoltage Lock Out 15
5.3.2 Undervoltage Shut Down 15
5.3.3 Overtemperature Protection 15
5.3.4 Current Limitation 15
5.3.5 Short Circuit Protection 17
5.3.6 Electrical Characteristics - Protection Functions 18
5.4 Control and Diagnostics 19
5.4.1 Input Circuit 19
5.4.2 Dead Time Generation 19
5.4.3 Adjustable Slew Rate 19
5.4.4 Status Flag Diagnosis 19
5.4.5 Truth Table 20
5.4.6 Electrical Characteristics - Control and Diagnostics 21
6 Application Information 22
6.1 Application Example 22
6.2 Layout Considerations 22
6.3 Half-bridge Configuration Considerations 23
7 Package Outlines 24
8 Revision History 25

High Current PN Half Bridge NovalithIC ${ }^{\text {TM }}$

BTN7975B
$\sqrt{\text { RoHS }}$

1 Overview

Features

- Path resistance of max. $30.5 \mathrm{~m} \Omega @ 150^{\circ} \mathrm{C}$ (typ. $16 \mathrm{~m} \Omega @ 25^{\circ} \mathrm{C}$) High Side: max. $12.8 \mathrm{~m} \Omega$ @ $150^{\circ} \mathrm{C}\left(\right.$ typ. $7 \mathrm{~m} \Omega @ 25^{\circ} \mathrm{C}$) Low Side: max. $17.7 \mathrm{~m} \Omega @ 150^{\circ} \mathrm{C}\left(\right.$ typ. $9 \mathrm{~m} \Omega @ 25^{\circ} \mathrm{C}$)
- Low quiescent current of typ. $7 \mu \mathrm{~A} @ 25^{\circ} \mathrm{C}$
- PWM capability of up to 25 kHz combined with active freewheeling
- Switched mode current limitation for reduced power dissipation in overcurrent
- Current limitation level of 50 A min. / 70 A typ. (low side)

- Status flag diagnosis
- Overtemperature shut down with latch behaviour
- Overvoltage lock out
- Undervoltage shut down
- Driver circuit with logic level inputs
- Adjustable slew rates for optimized EMI
- Operation up to 28 V
- Green Product (RoHS compliant)
- AEC Qualified

Description

The BTN7975B is an integrated high current half bridge for motor drive applications. It is part of the NovalithIC ${ }^{\text {TM }}$ family containing one p-channel highside MOSFET and one n-channel lowside MOSFET with an integrated driver IC in one package. Due to the p-channel highside switch the need for a charge pump is eliminated thus minimizing EMI. Interfacing to a microcontroller is made easy by the integrated driver IC which features logic level inputs, diagnosis with status flag, slew rate adjustment, dead time generation and protection against overtemperature, overvoltage, undervoltage, overcurrent and short circuit.
The BTN7975B provides a cost optimized solution for protected high current PWM motor drives with very low board space consumption.

Type	Package	Marking
BTN7975B	PG-TO263-7-1	BTN7975B

2 Block Diagram

The BTN7975B is part of the NovalithIC ${ }^{\text {TM }}$ family containing three separate chips in one package: One p-channel highside MOSFET and one n-channel lowside MOSFET together with a driver IC, forming an integrated high current half-bridge. All three chips are mounted on one common lead frame, using the chip on chip and chip by chip technology. The power switches utilize vertical MOS technologies to ensure optimum on state resistance. Due to the p-channel highside switch the need for a charge pump is eliminated thus minimizing EMI. Interfacing to a microcontroller is made easy by the integrated driver IC which features logic level inputs, diagnosis with status flag, slew rate adjustment, dead time generation and protection against overtemperature, overvoltage, undervoltage, overcurrent and short circuit. The BTN7975B can be combined with other BTN7975B to form Hbridge and 3-phase drive configurations.

2.1 Block Diagram

Figure 1 Block Diagram

2.2 Terms

Following figure shows the terms used in this data sheet.

Figure 2 Terms

3 Pin Configuration

3.1 Pin Assignment

Figure 3 Pin Assignment BTN7975B (top view)

3.2 Pin Definitions and Functions

Pin	Symbol	I/O	Function
$\mathbf{1}$	GND	-	Ground
2	IN	I	Input Defines whether high- or lowside switch is activated
3	INH	I	Inhibit When set to low device goes in sleep mode
$\mathbf{4 , 8}$	OUT	\mathbf{O}	Power output of the bridge
5	SR	I	Slew Rate The slew rate of the power switches can be adjusted by connecting a resistor between SR and GND
6	ST	VS	O
$\mathbf{7}$		-	Status Flag

Bold type: pin needs power wiring

General Product Characteristics

4 General Product Characteristics

4.1 Absolute Maximum Ratings

Absolute Maximum Ratings ${ }^{1)}$

$T_{\mathrm{j}}=-40^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$; all voltages with respect to ground, positive current flowing into pin (unless otherwise specified)

Pos.	Parameter	Symbol	Limit Values		Unit	Conditions
			Min.	Max.		
Voltages		V_{S}	-0.3	45	V	-
4.1 .1	Supply Voltage	$V_{\text {IN }}$ $V_{\text {INH }}$	-0.3	5.3	V	-
4.1 .2	Logic Input Voltage	$V_{\text {SR }}$	-0.3	1.0	V	-
4.1 .3	Voltage at SR Pin	$V_{\mathrm{S}}-V_{\text {ST }}$	-0.3	45	V	-
4.1 .4	Voltage between VS and ST Pin	$V_{\text {ST }}$	-20	45	V	-
4.1 .5	Voltage at ST Pin					

Currents

4.1.6	HS/LS Continuous Drain Current ${ }^{2)}$	$I_{\mathrm{D} \text { (HS) }}$ $I_{\mathrm{D}(\mathrm{LS})}$	-44	44	A	$T_{\mathrm{C}}<85^{\circ} \mathrm{C}$ switch active
			-40	40	A	$T_{\mathrm{C}}<125^{\circ} \mathrm{C}$ switch active
4.1.7	HS/LS Pulsed Drain Current ${ }^{2}$	$I_{\mathrm{D}(\mathrm{HS})}$ $I_{\mathrm{D}(\mathrm{LS})}$	-90	90	A	$\begin{aligned} & T_{\mathrm{C}}<85^{\circ} \mathrm{C} \\ & t_{\text {pulse }}=10 \mathrm{~ms} \\ & \text { single pulse } \end{aligned}$
			-85	85	A	$\begin{aligned} & T_{\mathrm{C}}<125^{\circ} \mathrm{C} \\ & t_{\text {pulse }}=10 \mathrm{~ms} \\ & \text { single pulse } \end{aligned}$
4.1 .8	HS/LS PWM Current ${ }^{2}$	$I_{\mathrm{D} \text { (HS) }}$ $I_{\mathrm{D}(\mathrm{LS})}$	-55	55	A	$\begin{aligned} & T_{\mathrm{C}}<85^{\circ} \mathrm{C} \\ & \mathrm{f}=1 \mathrm{kHz}, \mathrm{DC}=50 \% \end{aligned}$
			-50	50	A	$\begin{aligned} & T_{\mathrm{C}}<125^{\circ} \mathrm{C} \\ & \mathrm{f}=1 \mathrm{kHz}, \mathrm{DC}=50 \% \end{aligned}$
			-60	60	A	$\begin{aligned} & T_{\mathrm{C}}<85^{\circ} \mathrm{C} \\ & \mathrm{f}=20 \mathrm{kHz}, \mathrm{DC}=50 \% \end{aligned}$
			-54	54	A	$\begin{aligned} & T_{\mathrm{C}}<125^{\circ} \mathrm{C} \\ & \mathrm{f}=20 \mathrm{kHz}, \mathrm{DC}=50 \% \end{aligned}$

Temperatures

4.1 .9	Junction Temperature	T_{j}	-40	150	${ }^{\circ} \mathrm{C}$	-
4.1 .10	Storage Temperature	$T_{\text {stg }}$	-55	150	${ }^{\circ} \mathrm{C}$	-

ESD Susceptibility

4.1.11	ESD Susceptibility HBM	$V_{\text {ESD }}$			kV	$\mathrm{HBM}^{3)}$
	IN, INH, SR, ST		-2	2		
	OUT, GND, VS		-6	6		

1) Not subject to production test, specified by design
2) Maximum reachable current may be smaller depending on current limitation level
3) ESD susceptibility, HBM according to EIA/JESD22-A114-B (1.5 k $\Omega, 100 \mathrm{pF}$)

General Product Characteristics

Note: Stresses above the ones listed here may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Note: Integrated protection functions are designed to prevent IC destruction under fault conditions described in the data sheet. Fault conditions are considered as "outside" normal operating range. Protection functions are not designed for continuous repetitive operation.

Maximum Single Pulse Current

Figure 4 BTN7975B Maximum Single Pulse Current ($T_{\mathrm{C}}<85^{\circ} \mathrm{C}$)

This diagram shows the maximum single pulse current that can be driven for a given pulse time $t_{\text {pulse }}$. The maximum reachable current may be smaller depending on the current limitation level. Pulse time may be limited due to thermal protection of the device.

4.2 Functional Range

Pos.	Parameter	Symbol	Limit Values		Unit	Conditions
			Min.	Max.		
4.2 .1	Supply Voltage Range for Nominal Operation	$V_{\mathrm{S}(\mathrm{nom})}$	8	18	V	-
4.2 .2	Extended Supply Voltage Range for Operation	$V_{\mathrm{S}(\mathrm{ext)}}$	5.5	28	V	Parameter Deviations possible
4.2 .3	Junction Temperature	T_{j}	-40	150	${ }^{\circ} \mathrm{C}$	-

Note: Within the functional or operating range, the IC operates as described in the circuit description. The electrical characteristics are specified within the conditions given in the Electrical Characteristics table.

4.3 Thermal Resistance

Pos.	Parameter	Symbol	Limit Values			Unit	Conditions
			Min.	Typ.	Max.		
4.3.1	Thermal Resistance Junction-Case, Low Side Switch ${ }^{1)}$ $R_{\mathrm{thj} \mathrm{c}(\mathrm{LS})}=\Delta T_{\mathrm{j}(\mathrm{LS})} / P_{\mathrm{v}(\mathrm{LS})}$	$R_{\text {thJC(LS) }}$	-	1.3	1.8	K/W	-
4.3.2	Thermal Resistance Junction-Case, High Side Switch ${ }^{1)}$ $R_{\mathrm{thj}(\mathrm{HS})}=\Delta T_{\mathrm{j}(\mathrm{HS})} / P_{\mathrm{v}(\mathrm{HS})}$	$R_{\text {thJC(HS) }}$	-	0.6	0.9	K/W	-
4.3.3	Thermal Resistance Junction-Case, both Switches ${ }^{1)}$ $\begin{aligned} & R_{\mathrm{thjc}}=\max \left[\Delta T_{\mathrm{j}(\mathrm{HS})}, \Delta T_{\mathrm{j}(\mathrm{LS})}\right] / \\ & \left(P_{\mathrm{v}(\mathrm{HS})}+P_{\mathrm{v}(\mathrm{LS})}\right) \end{aligned}$	$R_{\text {thJc }}$	-	0.7	1.0	K/W	-
4.3.4	Thermal Resistance Junction-Ambient ${ }^{1)}$	$R_{\text {thJA }}$	-	20	-	K/W	2)

1) Not subject to production test, specified by design
2) Specified $R_{\text {thJA }}$ value is according to Jedec JESD51-2,-5,-7 at natural convection on FR4 2 s 2 p board; The Product (chip+package) was simulated on a $76.2 \times 114.3 \times 1.5 \mathrm{~mm}$ board with 2 inner copper layers ($2 \times 70 \mu \mathrm{~m} \mathrm{Cu}, 2 \times 35 \mu \mathrm{~m} \mathrm{Cu}$).

5 Block Description and Characteristics

5.1 Supply Characteristics

$V_{\mathrm{S}}=8 \mathrm{~V}$ to $18 \mathrm{~V}, T_{\mathrm{j}}=-40^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}, I_{\mathrm{L}}=0 \mathrm{~A}$, all voltages with respect to ground, positive current flowing into pin (unless otherwise specified)

Pos.	Parameter	Symbol	Limit Values			Unit	Conditions
			Min.	Typ.	Max.		
General							
5.1.1	Supply Current	$I_{\text {VS(on) }}$	-	2	3	mA	$\begin{aligned} & V_{\text {INH }}=5 \mathrm{~V} \\ & V_{\text {IN }}=0 \mathrm{~V} \text { or } 5 \mathrm{~V} \\ & R_{\mathrm{SR}}=0 \Omega \end{aligned}$ DC-mode normal operation (no fault condition)
5.1 .2	Quiescent Current	$I_{\text {VS(off) }}$	-	7	12	$\mu \mathrm{A}$	$\begin{array}{\|l} \hline V_{\mathrm{INH}}=0 \mathrm{~V} \\ V_{\mathrm{IN}}=0 \mathrm{~V} \text { or } 5 \mathrm{~V} \\ T_{\mathrm{j}}<85^{\circ} \mathrm{C} \\ \hline \end{array}$
			-	-	65	$\mu \mathrm{A}$	$\begin{aligned} & V_{\text {INH }}=0 \mathrm{~V} \\ & V_{\mathrm{IN}}=0 \mathrm{~V} \text { or } 5 \mathrm{~V} \end{aligned}$

Figure 5 Typical Quiescent Current vs. Junction Temperature

5.2 Power Stages

The power stages of the BTN7975B consist of a p-channel vertical DMOS transistor for the high side switch and a n-channel vertical DMOS transistor for the low side switch. All protection and diagnostic functions are located in a separate top chip. Both switches can be operated up to 25 kHz , allowing active freewheeling and thus minimizing power dissipation in the forward operation of the integrated diodes.
The on state resistance R_{ON} is dependent on the supply voltage V_{S} as well as on the junction temperature T_{j}. The typical on state resistance characteristics are shown in Figure 6.

High Side Switch

Low Side Switch

Figure 6 Typical ON State Resistance vs. Supply Voltage

5.2.1 Power Stages - Static Characteristics

$V_{\mathrm{S}}=8 \mathrm{~V}$ to $18 \mathrm{~V}, T_{\mathrm{j}}=-40^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$, all voltages with respect to ground, positive current flowing into pin (unless otherwise specified)

Pos.	Parameter	Symbol	Limit Values			Unit	Conditions
			Min.	Typ.	Max.		

High Side Switch - Static Characteristics

| 5.2 .1 | ON State High Side Resistance | $R_{\mathrm{ON}(\mathrm{HS})}$ | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Low Side Switch - Static Characteristics

| 5.2 .4 | ON State Low Side Resistance | $R_{\mathrm{ON}(\mathrm{LS})}$ | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

1) Not subject to production test, specified by design
2) Due to active freewheeling, diode is conducting only for a few $\mu \mathrm{s}$, depending on R_{SR}

5.2.2 Switching Times

Figure 7 Definition of switching times high side ($\mathrm{R}_{\text {load }}$ to GND)

Figure 8 Definition of switching times low side ($\mathrm{R}_{\text {load }}$ to VS)

Due to the timing differences for the rising and the falling edge there will be a slight difference between the length of the input pulse and the length of the output pulse. It can be calculated using the following formulas:

- $\Delta t_{\mathrm{HS}}=\left(t_{\mathrm{dr}(\mathrm{HS})}+0.5 t_{\mathrm{r}(\mathrm{HS})}\right)-\left(t_{\mathrm{df}(\mathrm{HS})}+0.5 t_{\mathrm{f}(\mathrm{HS})}\right)$
- $\Delta t_{\mathrm{LS}}=\left(t_{\mathrm{df}(\mathrm{LS})}+0.5 t_{\mathrm{f}(\mathrm{LS})}\right)-\left(t_{\mathrm{dr}(\mathrm{LS})}+0.5 t_{\mathrm{r}(\mathrm{LS})}\right)$.

5.2.3 Power Stages - Dynamic Characteristics

$V_{\mathrm{S}}=13.5 \mathrm{~V}, T_{\mathrm{j}}=150^{\circ} \mathrm{C}, R_{\text {load }}=2 \Omega$, all voltages with respect to ground, positive current flowing into pin (unless otherwise specified)

| Pos. | Parameter | Symbol | Limit Values | | Unit | Conditions | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | | Min. | Typ. | Max. | | |

High Side Switch Dynamic Characteristics

5.2.7	Rise-Time of HS	$t_{\text {r(HS }}$	$\begin{aligned} & 0.5 \\ & - \\ & 2 \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \\ & 5 \end{aligned}$	$\left\lvert\, \begin{aligned} & 1.6 \\ & - \\ & 11 \end{aligned}\right.$	$\mu \mathrm{s}$	$\begin{aligned} & R_{\mathrm{SR}}=0 \Omega \\ & R_{\mathrm{SR}}=5.1 \mathrm{k} \Omega \\ & R_{\mathrm{SR}}=51 \mathrm{k} \Omega \end{aligned}$
5.2.8	Slew Rate HS on ${ }^{1)}$	$\Delta V_{\text {OUT }} /$ $t_{\mathrm{r}(\mathrm{HS})}$	$\left\lvert\, \begin{aligned} & 6.8 \\ & - \\ & 1 \end{aligned}\right.$	$\begin{array}{\|l\|} 10.8 \\ 5.4 \\ 2.2 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 21.6 \\ - \\ 5.4 \\ \hline \end{array}$	$\mathrm{V} / \mu \mathrm{s}$	$\begin{aligned} & R_{\mathrm{SR}}=0 \Omega \\ & R_{\mathrm{SR}}=5.1 \mathrm{k} \Omega \\ & R_{\mathrm{SR}}=51 \mathrm{k} \Omega \end{aligned}$
5.2 .9	Switch on Delay Time HS	$t_{\text {dr(HS }}$	$\begin{aligned} & 1.5 \\ & - \\ & 5 \end{aligned}$	$\begin{aligned} & 3.1 \\ & 4.4 \\ & 14 \end{aligned}$	$\begin{aligned} & 4.5 \\ & - \\ & 25 \end{aligned}$	$\mu \mathrm{s}$	$\begin{aligned} & R_{\mathrm{SR}}=0 \Omega \\ & R_{\mathrm{SR}}=5.1 \mathrm{k} \Omega \\ & R_{\mathrm{SR}}=51 \mathrm{k} \Omega \end{aligned}$
5.2.10	Fall-Time of HS	$t_{\text {f(HS }}$	$\begin{aligned} & 0.5 \\ & - \\ & 2 \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \\ & 5 \end{aligned}$	$\begin{aligned} & 1.6 \\ & -11 \\ & \hline \end{aligned}$	$\mu \mathrm{S}$	$\begin{aligned} & R_{\mathrm{SR}}=0 \Omega \\ & R_{\mathrm{SR}}=5.1 \mathrm{k} \Omega \\ & R_{\mathrm{SR}}=51 \mathrm{k} \Omega \end{aligned}$
5.2.11	Slew Rate HS off ${ }^{1)}$	$-\Delta V_{\text {OUT }}$ $t_{\mathrm{f}(\mathrm{HS})}$	$\begin{aligned} & 6.8 \\ & - \\ & 1 \end{aligned}$	$\begin{aligned} & 10.8 \\ & 5.4 \\ & 2.2 \end{aligned}$	$\left\lvert\, \begin{aligned} & 21.6 \\ & - \\ & 5.4 \end{aligned}\right.$	$\mathrm{V} / \mu \mathrm{s}$	$\begin{aligned} & R_{\mathrm{SR}}=0 \Omega \\ & R_{\mathrm{SR}}=5.1 \mathrm{k} \Omega \\ & R_{\mathrm{SR}}=51 \mathrm{k} \Omega \end{aligned}$
5.2 .12	Switch off Delay Time HS	$t_{\text {df(HS) }}$	$\left\lvert\, \begin{gathered} 1 \\ - \\ 3 \end{gathered}\right.$	$\begin{aligned} & 2.4 \\ & 3.4 \\ & 10 \end{aligned}$	$\begin{aligned} & 3 \\ & - \\ & 17 \end{aligned}$	$\mu \mathrm{s}$	$\begin{aligned} & R_{\mathrm{SR}}=0 \Omega \\ & R_{\mathrm{SR}}=5.1 \mathrm{k} \Omega \\ & R_{\mathrm{SR}}=51 \mathrm{k} \Omega \end{aligned}$

1) Not subject to production test, calculated value; $\left|\Delta V_{\mathrm{OUT}}\right| / t_{\mathrm{r}(\mathrm{HS})}$ or $\left|-\Delta V_{\mathrm{OUT}}\right| / t_{\mathrm{f}(\mathrm{HS})}$
$V_{\mathrm{S}}=13.5 \mathrm{~V}, T_{\mathrm{j}}=150^{\circ} \mathrm{C}, R_{\text {load }}=2 \Omega$, all voltages with respect to ground, positive current flowing into pin (unless otherwise specified)

Pos.	Parameter	Symbol	Limit Values		Unit	Conditions	
			Min.	Typ.	Max.		

Low Side Switch Dynamic Characteristics

5.2.13	Rise-Time of LS	$t_{\text {r(LS) }}$	$\begin{aligned} & 0.4 \\ & - \\ & 2 \end{aligned}$	$\begin{aligned} & 0.9 \\ & 2 \\ & 5 \end{aligned}$	$\begin{aligned} & 1.4 \\ & - \\ & 11 \end{aligned}$	$\mu \mathrm{s}$	$\begin{aligned} & R_{\mathrm{SR}}=0 \Omega \\ & R_{\mathrm{SR}}=5.1 \mathrm{k} \Omega \\ & R_{\mathrm{SR}}=51 \mathrm{k} \Omega \end{aligned}$
5.2.14	Slew Rate LS switch off ${ }^{1)}$	$\begin{aligned} & \Delta V_{\text {OUT }} / \\ & t_{\mathrm{r}(\mathrm{LS})} \end{aligned}$	$\left\lvert\, \begin{aligned} & 7.7 \\ & - \\ & 1 \end{aligned}\right.$	$\begin{array}{\|l\|} 12 \\ 5.4 \\ 2.2 \end{array}$	$\left\lvert\, \begin{aligned} & 27 \\ & - \\ & 5.4 \end{aligned}\right.$	V/us	$\begin{aligned} & R_{\mathrm{SR}}=0 \Omega \\ & R_{\mathrm{SR}}=5.1 \mathrm{k} \Omega \\ & R_{\mathrm{SR}}=51 \mathrm{k} \Omega \end{aligned}$
5.2.15	Switch off Delay Time LS	$t_{\text {dr(LS) }}$	$\begin{aligned} & 0.6 \\ & - \\ & 2 \end{aligned}$	$\begin{array}{\|l\|} \hline 1.3 \\ 2.2 \\ 5 \\ \hline \end{array}$	$\begin{aligned} & 2 \\ & - \\ & 11 \end{aligned}$	$\mu \mathrm{s}$	$\begin{aligned} & R_{\mathrm{SR}}=0 \Omega \\ & R_{\mathrm{SR}}=5.1 \mathrm{k} \Omega \\ & R_{\mathrm{SR}}=51 \mathrm{k} \Omega \end{aligned}$
5.2.16	Fall-Time of LS	$t_{\text {f(LS) }}$	$\begin{aligned} & 0.5 \\ & - \\ & 2 \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \\ & 5 \end{aligned}$	$\begin{aligned} & 1.5 \\ & - \\ & 11 \end{aligned}$	$\mu \mathrm{s}$	$\begin{aligned} & R_{\mathrm{SR}}=0 \Omega \\ & R_{\mathrm{SR}}=5.1 \mathrm{k} \Omega \\ & R_{\mathrm{SR}}=51 \mathrm{k} \Omega \end{aligned}$
5.2.17	Slew Rate LS switch on ${ }^{1)}$	$-\Delta V_{\text {OUT }} /$ $t_{\mathrm{f}(\mathrm{LS})}$	$\left\lvert\, \begin{aligned} & 7.2 \\ & - \\ & 1 \end{aligned}\right.$	$\begin{aligned} & 10.8 \\ & 5.4 \\ & 2.2 \end{aligned}$	$\begin{aligned} & 21.6 \\ & - \\ & 5.4 \end{aligned}$	$\mathrm{V} / \mathrm{\mu s}$	$\begin{aligned} & R_{\mathrm{SR}}=0 \Omega \\ & R_{\mathrm{SR}}=5.1 \mathrm{k} \Omega \\ & R_{\mathrm{SR}}=51 \mathrm{k} \Omega \end{aligned}$
5.2.18	Switch on Delay Time LS	$t_{\text {df(LS) }}$	$\begin{aligned} & 2 \\ & - \\ & 5 \end{aligned}$	$\begin{aligned} & 4 \\ & 5.6 \\ & 15 \end{aligned}$	$\begin{aligned} & 5 \\ & - \\ & 25 \end{aligned}$	$\mu \mathrm{s}$	$\begin{aligned} & R_{\mathrm{SR}}=0 \Omega \\ & R_{\mathrm{SR}}=5.1 \mathrm{k} \Omega \\ & R_{\mathrm{SR}}=51 \mathrm{k} \Omega \end{aligned}$

1) Not subject to production test, calculated value; $\left|\Delta V_{\text {OUT }}\right| / t_{\mathrm{r}(\mathrm{LS})}$ or $\left|-\Delta V_{\mathrm{OUT}}\right| / t_{\mathrm{f}(\mathrm{LS})}$

5.3 Protection Functions

The device provides integrated protection functions. These are designed to prevent IC destruction under fault conditions described in the data sheet. Fault conditions are considered as "outside" normal operating range. Protection functions are not to be used for continuous or repetitive operation, with the exception of the current limitation (Chapter 5.3.4). In a fault condition the BTN7975B will apply the highest slew rate possible independent of the connected slew rate resistor. Overvoltage, overtemperature and overcurrent are indicated by a fault current $I_{\text {ST_error }}$ at the ST pin as described in the paragraph "Status Flag Diagnosis" on Page 19 and Figure 12.
In the following the protection functions are listed in order of their priority. Overvoltage lock out overrides all other error modes.

5.3.1 Overvoltage Lock Out

To assure a high immunity against overvoltages (e.g. load dump conditions) the device shuts the lowside MOSFET off and turns the highside MOSFET on, if the supply voltage is exceeding the over voltage protection level $V_{\text {Ov(OFF) }}$. The IC operates in normal mode again with a hysteresis $V_{\mathrm{OV}(\mathrm{HY})}$ if the supply voltage decreases below the switchon voltage $V_{\mathrm{OV}(\mathrm{ON})}$. In H-bridge configuration, this behavior of the BTN7975B will lead to freewheeling in highside during over voltage.

5.3.2 Undervoltage Shut Down

To avoid uncontrolled motion of the driven motor at low voltages the device shuts off (output is tri-state), if the supply voltage drops below the switch-off voltage $V_{\mathrm{UV}(\mathrm{OFF})}$. The IC becomes active again with a hysteresis $V_{\mathrm{UV}(\mathrm{HY})}$ if the supply voltage rises above the switch-on voltage $V_{\mathrm{UV}(\mathrm{ON})}$.

5.3.3 Overtemperature Protection

The BTN7975B is protected against overtemperature by an integrated temperature sensor. Overtemperature leads to a shut down of both output stages. This state is latched until the device is reset by a low signal with a minimum length of $t_{\text {reset }}$ at the INH pin, provided that its temperature has decreased at least the thermal hysteresis ΔT in the meantime.
Repetitive use of the overtemperature protection impacts lifetime.

5.3.4 Current Limitation

The current in the bridge is measured in both switches. As soon as the current in forward direction in one switch (high side or low side) is reaching the limit $I_{\text {CLx }}$, this switch is deactivated and the other switch is activated for t_{CLS}. During that time all changes at the IN pin are ignored. However, the INH pin can still be used to switch both MOSFETs off. After $t_{\text {CLs }}$ the switches return to their initial setting. The error signal at the ST pin is reset after $2{ }^{*} t_{\mathrm{CLs}}$. Unintentional triggering of the current limitation by short current spikes (e.g. inflicted by EMI coming from the motor) is suppressed by internal filter circuitry. Due to thresholds and reaction delay times of the filter circuitry the effective current limitation level $I_{\text {CLx }}$ depends on the slew rate of the load current $d I / d t$ as shown in Figure 10.

Figure 9 Timing Diagram Current Limitation (Inductive Load)

Figure 10 Typical Current Limitation Level vs. Current Slew Rate dI/dt

High Side Switch

Low Side Switch

Figure 11 Typical Current Limitation Detection Levels vs. Supply Voltage

In combination with a typical inductive load, such as a motor, this results in a switched mode current limitation. This method of limiting the current has the advantage of greatly reduced power dissipation in the BTN7975B compared to driving the MOSFET in linear mode. Therefore it is possible to use the current limitation for a short time without exceeding the maximum allowed junction temperature (e.g. for limiting the inrush current during motor start up). However, the regular use of the current limitation is allowed as long as the specified maximum junction temperature is not exceeded. Exceeding this temperature can reduce the lifetime of the device.

5.3.5 Short Circuit Protection

The device is short circuit protected against

- output short circuit to ground
- output short circuit to supply voltage
- short circuit of load

The short circuit protection is realized by the previously described current limitation in combination with the overtemperature shut down of the device.

5.3.6 Electrical Characteristics - Protection Functions

$V_{\mathrm{S}}=8 \mathrm{~V}$ to $18 \mathrm{~V}, T_{\mathrm{j}}=-40^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$, all voltages with respect to ground, positive current flowing into pin (unless otherwise specified)

Pos.
Parameter
$n n n n n n n$

Over Voltage Lock Out

5.3 .4	Switch-ON Voltage	$V_{\text {OV(ON) }}$	27.8	-	-	V	$V_{\text {S }}$ decreasing
5.3 .5	Switch-OFF Voltage	$V_{\text {OV(OFF) }}$	28	-	30	V	$V_{\text {S }}$ increasing
5.3 .6	ON/OFF hysteresis	$V_{\text {OV(HY) }}$	-	0.2	-	V	${ }^{1)}$

Current Limitation

5.3 .7	Current Limitation Detection level High Side	$I_{\text {CLHO }}$	55	77	98	A	$V_{\mathrm{S}}=13.5 \mathrm{~V}$
5.3 .8	Current Limitation Detection level Low Side	$I_{\text {CLLO }}$	50	70	90	A	$V_{\mathrm{S}}=13.5 \mathrm{~V}$

Current Limitation Timing

5.3 .9	Shut OFF Time for HS and LS	t_{CLS}	70	115	210	$\mu \mathrm{~s}$	$V_{\mathrm{S}}=13.5 \mathrm{~V} ;{ }^{1)}$

Thermal Shut Down

5.3 .10	Thermal Shut Down Junction Temperature	T_{jSD}	155	175	200	${ }^{\circ} \mathrm{C}$	-
5.3 .11	Thermal Switch ON Junction Temperature	T_{jSO}	150	-	190	${ }^{\circ} \mathrm{C}$	-
5.3 .12	Thermal Hysteresis	ΔT	-	7	-	K	${ }^{1)}$
5.3 .13	Reset Pulse at INH Pin (INH low)	$t_{\text {reset }}$	4	-	-	$\mu \mathrm{s}$	${ }^{1)}$

1) Not subject to production test, specified by design

5.4 Control and Diagnostics

5.4.1 Input Circuit

The control inputs IN and INH consist of TTL/CMOS compatible schmitt triggers with hysteresis which control the integrated gate drivers for the MOSFETs. Setting the INH pin to high enables the device. In this condition one of the two power switches is switched on depending on the status of the IN pin. To deactivate both switches, the INH pin has to be set to low. No external driver is needed. The BTN7975B can be interfaced directly to a microcontroller, as long as the maximum ratings in Chapter 4.1 are not exceeded.

5.4.2 Dead Time Generation

In bridge applications it has to be assured that the highside and lowside MOSFET are not conducting at the same time, connecting directly the battery voltage to GND. This is assured by a circuit in the driver IC, generating a so called dead time between switching off one MOSFET and switching on the other. The dead time generated in the driver IC is automatically adjusted to the selected slew rate.

5.4.3 Adjustable Slew Rate

In order to optimize electromagnetic emission, the switching speed of the MOSFETs is adjustable by an external resistor. The slew rate pin SR allows the user to optimize the balance between emission and power dissipation within his own application by connecting an external resistor R_{SR} to GND.

5.4.4 Status Flag Diagnosis

The status pin ST is used as a error flag output. In normal operation and load currents $I_{\mathrm{L}} \leq 40 \mathrm{~A}$ a variable leakage current $I_{\text {STX }}$ can be observed on the ST output pin. In case of a fault condition the status output is connected to a constant current source and provides $I_{\text {ST_error }}$. The maximum voltage at the ST pin is determined by the choice of the external resistor R_{ST} and the supply voltage. In case of current limitation the I_{ST} _error is activated for 2 * t_{CLS}.

Figure 12 Status Flag Current

High Current PN Half Bridge
BTN7975B

Block Description and Characteristics

Figure 13 Status Flag Current; Normal vs. Error Flag mode

5.4.5 Truth Table

Device State	Inputs		Outputs			Mode
	INH	IN	HSS	LSS	ST	
Normal Operation	0	X	OFF	OFF	0	Stand-by mode
	1	0	OFF	ON	0	LSS active
	1	1	ON	OFF	0	HSS active
Over-Voltage (OV)	X	X	ON	OFF	1	Shut-down of LSS, HSS activated, error detected
Under-Voltage (UV)	X	X	OFF	OFF	0	UV lockout
Overtemperature or Short Circuit of HSS or LSS	0	X	OFF	OFF	0	Stand-by mode, reset of latch
	1	X	OFF	OFF	1	Shut-down with latch, error detected
Current Limitation Mode	1	1	OFF	ON	1	Switched mode, error detected ${ }^{1)}$
	1	0	ON	OFF	1	Switched mode, error detected ${ }^{1)}$

1) Will return to normal operation after t_{CLS}; Error signal is reset after $2^{*} t_{\mathrm{CLS}}$ (see Chapter 5.3.4)

Inputs	Switches	Status Flag ST
$0=$ Logic LOW	OFF $=$ switched off	$0=$ Normal Operation; $I_{\text {STx }}$
$1=$ Logic HIGH	ON = switched on	$1=$ Logic HIGH (error); $I_{\text {ST_error }}$
$X=0$ or 1		

5.4.6 Electrical Characteristics - Control and Diagnostics

$V_{\mathrm{S}}=8 \mathrm{~V}$ to $18 \mathrm{~V}, T_{\mathrm{j}}=-40^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$, all voltages with respect to ground, positive current flowing into pin (unless otherwise specified)

Pos.	Parameter	Symbol	Limit Values			Unit	Conditions
			Min.	Typ.	Max.		
Control Inputs (IN and INH)							
5.4.1	High level Voltage INH, IN	$\begin{aligned} & V_{\operatorname{INH}(H)} \\ & V_{\operatorname{IN}(H)} \end{aligned}$	-	$\begin{aligned} & 1.75 \\ & 1.6 \end{aligned}$	$\begin{aligned} & 2.15 \\ & 2 \end{aligned}$	V	-
5.4 .2	Low level Voltage INH, IN	$\begin{aligned} & V_{\operatorname{INH}(\mathrm{L})} \\ & V_{\operatorname{IN}(\mathrm{L})} \end{aligned}$	1.1	1.4	-	V	-
5.4.3	Input Voltage hysteresis	$\begin{aligned} & V_{\text {INHHY }} \\ & V_{\text {INHY }} \end{aligned}$	-	$\begin{aligned} & 350 \\ & 200 \end{aligned}$	-	mV	1)
5.4 .4	Input Current high level	$\begin{aligned} & I_{\operatorname{INH}(H)} \\ & I_{\mathrm{IN}(H)} \end{aligned}$	-	30	150	$\mu \mathrm{A}$	$V_{\mathrm{IN}}=V_{\mathrm{INH}}=5.3 \mathrm{~V}$
5.4 .5	Input Current low level	$I_{\mathrm{INH}(\mathrm{L})}$ $I_{\mathbb{N N}_{(L)}}$	-	25	125	$\mu \mathrm{A}$	$V_{\mathrm{IN}}=V_{\text {INH }}=0.4 \mathrm{~V}$

Status Flag

5.4 .6	Status Flag Current Fault Condition	$I_{\text {ST_error }}$	4	5	6.5	mA	$V_{\mathrm{S}}=13.5 \mathrm{~V}$ $R_{\mathrm{ST}}=1 \mathrm{k} \Omega$
5.4 .7	Status Flag Leakage Current	$I_{\text {STL }}$	-	-	1	$\mu \mathrm{~A}$	$V_{\text {IN }}=0 \mathrm{~V}$ or $V_{\text {INH }}=0 \mathrm{~V} ;{ }^{1)}$
5.4 .8	Status Flag Leakage Current, active high side switch	$I_{\text {STH }}$	-	-	3.3	mA	$I_{\mathrm{L}} \leq 40 \mathrm{~A} ;{ }^{1)} ;$ $V_{\text {IN }}=V_{\text {INH }}=5 \mathrm{~V}$ $R_{\mathrm{ST}}=1 \mathrm{k} \Omega$

1) Not subject to production test, specified by design

Application Information

6 Application Information

Note: The following information is given as a hint for the implementation of the device only and shall not be regarded as a description or warranty of a certain functionality, condition or quality of the device.

6.1 Application Example

Figure 14 Application Example: H-Bridge with two BTN7975B
Note: This is a simplified example of an application circuit. The function must be verified in the real application.

6.2 Layout Considerations

Due to the fast switching times for high currents, special care has to be taken to the PCB layout. Stray inductances have to be minimized in the power bridge design as it is necessary in all switched high power bridges. The BTN7975B has no separate pin for power ground and logic ground. Therefore it is recommended to assure that the offset between the ground connection of the slew rate resistor, the status flag resistor and ground pin of the device (GND / pin 1) is minimized. If the BTN7975B is used in a H-bridge or B6 bridge design, the voltage offset between the GND pins of the different devices should be small as well.

A ceramic capacitor from VS to GND close to each device is recommended to provide current for the switching phase via a low inductance path and therefore reducing noise and ground bounce. A reasonable value for this capacitor would be about 470 nF .
The digital inputs need to be protected from excess currents (e.g. caused by induced voltage spikes) by series resistors in the range of $10 \mathrm{k} \Omega$.

Application Information

6.3 Half-bridge Configuration Considerations

Please note that, if the BTN7975B is used in a half-bridge configuration with the load connected between OUT and GND and the supply voltage is exceeding the Overvoltage Switch-OFF level $V_{\mathrm{OV} \text { (OFF) }}$, the implemented "Overvoltage Lock Out" feature leads to automatically turning on the high side switch, while turning off the low side switch, and therefore connecting the load to V_{S}; independently of the current IN - and INH-pin signals (see also "Truth Table" on Page 20). This will lead to current flowing through the load, if not otherwise configured.
It shall be insured that the power dissipated in the NovalithIC ${ }^{\text {TM }}$ does not exceed the maximum ratings. For further explanations see the application note "BTN79x0 Over Voltage (OV) Operation".

Figure 15 Application Example: Half-Bridge with a BTN7975B (Load to GND)
Note: This is a simplified example of an application circuit. The function must be verified in the real application.

$7 \quad$ Package Outlines

1) Typical

Metal surface min. $X=7.25, Y=6.9$
All metal surfaces tin plated, except area of cut. GPT09114

Footprint

Figure 16 PG-TO263-7-1 (Plastic Green Transistor Single Outline Package)

Green Product (RoHS compliant)

To meet the world-wide customer requirements for environmentally friendly products and to be compliant with government regulations the device is available as a green product. Green products are RoHS-Compliant (i.e Pb-free finish on leads and suitable for Pb-free soldering according to IPC/JEDEC J-STD-020).

For further information on alternative packages, please visit our website:

High Current PN Half Bridge BTN7975B

8 Revision History

Revision	Date	Changes
1.0	$2009-03-31$	Initial version data sheet

Edition 2009-03-31

Published by
Infineon Technologies AG
81726 Munich, Germany

© 3/31/09 Infineon Technologies AG

All Rights Reserved.

Legal Disclaimer

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party.

Information

For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office.
Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

