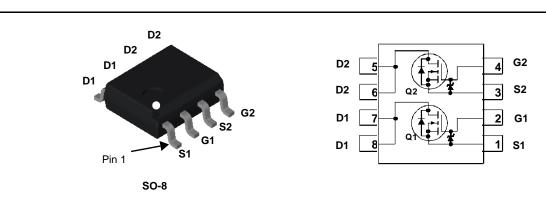


FDS89161LZ Dual N-Channel PowerTrench[®] MOSFET 100 V, 2.7 A, 105 mΩ

Features

- Max $r_{DS(on)}$ = 105 m Ω at V_{GS} = 10 V, I_D = 2.7 A
- Max $r_{DS(on)}$ = 160 m Ω at V_{GS} = 4.5 V, I_D = 2.1 A
- High performance trench technology for extremely low r_{DS(on)}
- High power and current handling capability in a widely used surface mount package
- CDM ESD protection level > 2KV typical (Note 4)
- 100% UIL Tested
- RoHS Compliant



General Description

This N-Channel logic Level MOSFETs are produced using Fairchild Semiconductor's advanced Power Trench[®] process that has been special tailored to minimize the on-state resisitance and yet maintain superior switching performance. G-S zener has been added to enhance ESD voltage level.

Application

DC-DC conversion

MOSFET Maximum Ratings T_A = 25 °C unless otherwise noted

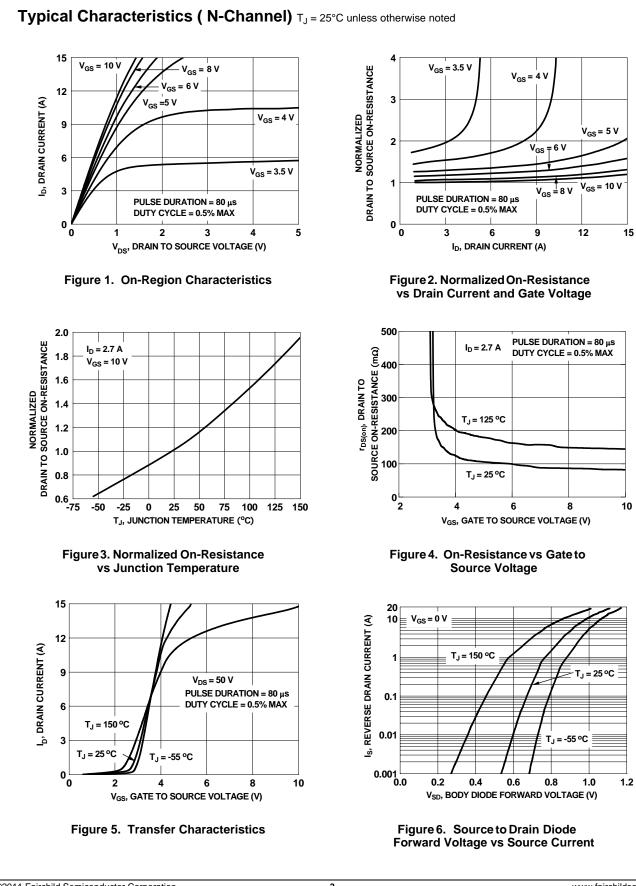
		Ratings	Units				
Drain to S	Source Voltage	100	V				
Gate to S	Gate to Source Voltage			±20	V		
Drain Cu	rrent -Continuous	2.7	•				
	-Pulsed	15	— A				
Single Pu	Ilse Avalanche Energy	(Note 3)		13	mJ		
Power Di	ssipation	T _C = 25 °C		31	W		
Power Di	ssipation	T _A = 25 °C	(Note1a)	1.6	VV		
Operating	perating and Storage Junction Temperature Range				°C		
		Case	(Note 1)	4.0	°C/W		
Thermal I	Resistance, Junction to A	78					
arkina an	d Ordering Inform	ation					
arking	Device	Package	Reel Size	Tape Width	Quantity		
	Gate to S Drain Cui Single Pu Power Di Operating Daracteris Thermal	Drain to Source Voltage Gate to Source Voltage Drain Current -Continuous -Pulsed Single Pulse Avalanche Energy Power Dissipation Power Dissipation Operating and Storage Junction Temaracteristics Thermal Resistance, Junction to C Thermal Resistance, Junction to A	Gate to Source Voltage Drain Current -Continuous -Pulsed Single Pulse Avalanche Energy Power Dissipation T _C = 25 °C Power Dissipation T _A = 25 °C Operating and Storage Junction Temperature Range Paracteristics Thermal Resistance, Junction to Case Thermal Resistance, Junction to Ambient	Drain to Source Voltage Gate to Source Voltage Drain Current -Continuous -Pulsed Single Pulse Avalanche Energy Power Dissipation T _C = 25 °C Power Dissipation T _A = 25 °C Porting and Storage Junction Temperature Range Paracteristics Thermal Resistance, Junction to Case (Note 1a)	Drain to Source Voltage100Gate to Source Voltage ± 20 Drain Current -Continuous 2.7 -Pulsed15Single Pulse Avalanche Energy(Note 3)Power Dissipation $T_C = 25 \ ^{\circ}C$ Power Dissipation $T_A = 25 \ ^{\circ}C$ Operating and Storage Junction Temperature Range-55 to +150HaracteristicsThermal Resistance, Junction to Case(Note 1)4.0Thermal Resistance, Junction to Ambient(Note 1a)78		

©2011 Fairchild Semiconductor Corporation

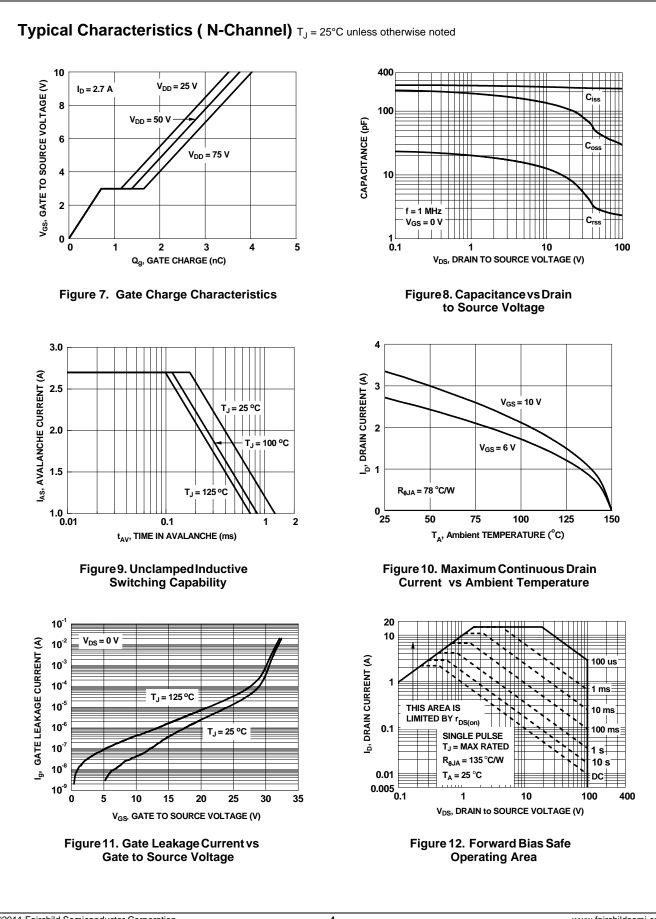
FDS89161LZ Rev. C4

1

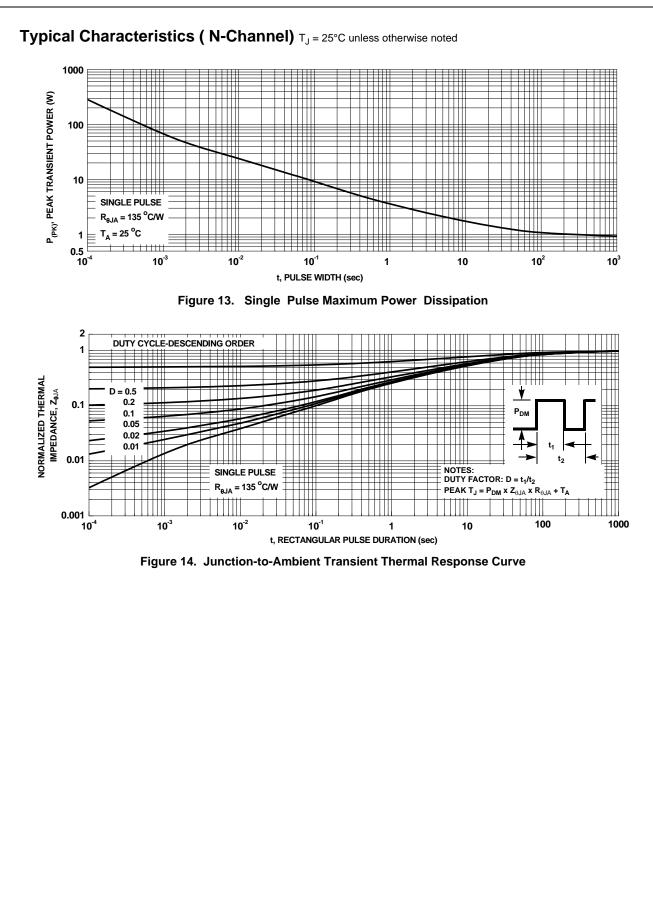
June 2011

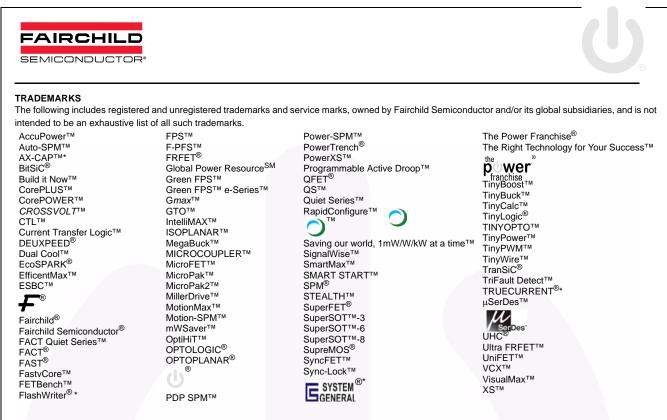

Off Charac ^{BV_{DSS}}	Parameter	Test Conditions	Min	Тур	Max	Units
	cteristics					
	Drain to Source Breakdown Voltage	$I_{D} = 250 \ \mu A, \ V_{GS} = 0 \ V$	100			V
∆BV _{DSS}	Breakdown Voltage Temperature	$I_D = 250 \ \mu\text{A}$, referenced to 25 °C		68		mV/°C
ΔT_{J}	Coefficient			00		IIIV/ C
I _{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = 80 \text{ V}, V_{GS} = 0 \text{ V}$			1	μΑ
I _{GSS}	Gate to Source Leakage Current	$V_{GS} = \pm 20 \text{ V}, V_{DS} = 0 \text{ V}$			±10	μA
On Charac	teristics					
V _{GS(th)}	Gate to Source Threshold Voltage	$V_{GS} = V_{DS}, I_D = 250 \ \mu A$ 1		1.7	2.2	V
ΔV _{GS(th)}	Gate to Source Threshold Voltage					1400
ΔT_J	Temperature Coefficient	I_D = 250 µA, referenced to 25 °C		-6		mV/°C
		V _{GS} = 10 V, I _D = 2.7 A		81	105	1
r _{DS(on)}	Static Drain to Source On Resistance	V_{GS} = 4.5 V, I _D = 2.1 A		110	160	mΩ
		V_{GS} = 10 V, I_D = 2.7 A, T_J = 125 °C		140	182	
9 _{FS}	Forward Transconductance	$V_{DS} = 10 \text{ V}, \ I_D = 2.7 \text{ A}$		7.8		S
Dvnamic C	Characteristics					
C _{iss}	Input Capacitance			227	302	pF
C _{iss} C _{oss}	Output Capacitance	$V_{DS} = 50 V, V_{GS} = 0 V,$		44	58	pF
C _{rss}	Reverse Transfer Capacitance	f = 1MHz		3	4	pF
R _g	Gate Resistance			0.9		Ω
Switching	Characteristics					
t _{d(on)}	Turn-On Delay Time			3.8	10	ns
t _r	Rise Time	V_{DD} = 50 V, I _D = 2.7 A, V _{GS} = 10 V, R _{GEN} = 6 Ω		1.2	10	ns
t _{d(off)}	Turn-Off Delay Time			9.5	17	ns
t _f	Fall Time			1.6	10	ns
Q _{g(TOT)}	Total Gate Charge	$V_{GS} = 0 V$ to 10 V		3.8	5.3	nC
Q _{g(TOT)}	Total Gate Charge	$V_{GS} = 0 V \text{ to } 5 V V_{DD} = 50 V,$		2.1	2.9	nC
Q _{gs}	Gate to Source Charge	I _D = 2.7 A		0.7		nC
Q _{gd}	Gate to Drain "Miller" Charge			0.7		nC
Drain-Sou	rce Diode Characteristics					
		$V_{GS} = 0 V, I_S = 2.7 A$ (Note 2)		0.8	1.3	
V _{SD}	Source to Drain Diode Forward Voltage	$V_{GS} = 0 V, I_S = 2 A$ (Note 2) V _{GS} = 0 V, I _S = 2 A (Note 2)		0.8	1.2	V
t	Reverse Recovery Time	VGS = 0 V, IS = 2 A (IVOIC 2)		31	56	ns
t _{rr} Q _{rr}	Reverse Recovery Charge	– I _F = 2.7 A, di/dt = 100 A/μs		20	36	nC
NOTES:	Revelse Receivery enarge			20	00	no

Starting TJ = 25 °C, L = 0.3 mH, IAS =25 Å, VDD = 27 V, VGS = 10V.
The diode connected between gate and source serves only as protection against ESD. No gate overvoltage rating is implied.


Electrical Characteristics $T_J = 25^{\circ}C$ unless otherwise noted

©2011 Fairchild Semiconductor Corporation FDS89161LZ Rev. C4


2


©2011 Fairchild Semiconductor Corporation FDS89161LZ Rev. C4

©2011 Fairchild Semiconductor Corporation FDS89161LZ Rev. C4 FDS89161LZ Dual N-Channel PowerTrench[®] MOSFET

FDS89161LZ Dual N-Channel PowerTrench[®] MOSFET

*Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used here in:

- Life support devices or systems are devices or systems which (a) are 1 intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness

ANTI-COUNTERFEITING POLICY

With Counterfeiting Policy is also stated on our external website, www.Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.Fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufactures of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handing and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS **Definition of Terms**

Datasheet Identification Product Status		Definition		
Advance Information Formative / In Design		Datasheet contains the design specifications for product development. Specification may change in any manner without notice.		
Preliminary	eliminary First Production First Production Datasheet contains preliminary data; supplementary data will be published at a la date. Fairchild Semiconductor reserves the right to make changes at any time winnotice to improve design.			
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.		
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.		

©2011 Fairchild Semiconductor Corporation FDS89161LZ Rev. C4

6

FDS89161LZ Dual N-Channel PowerTrench[®] MOSFET