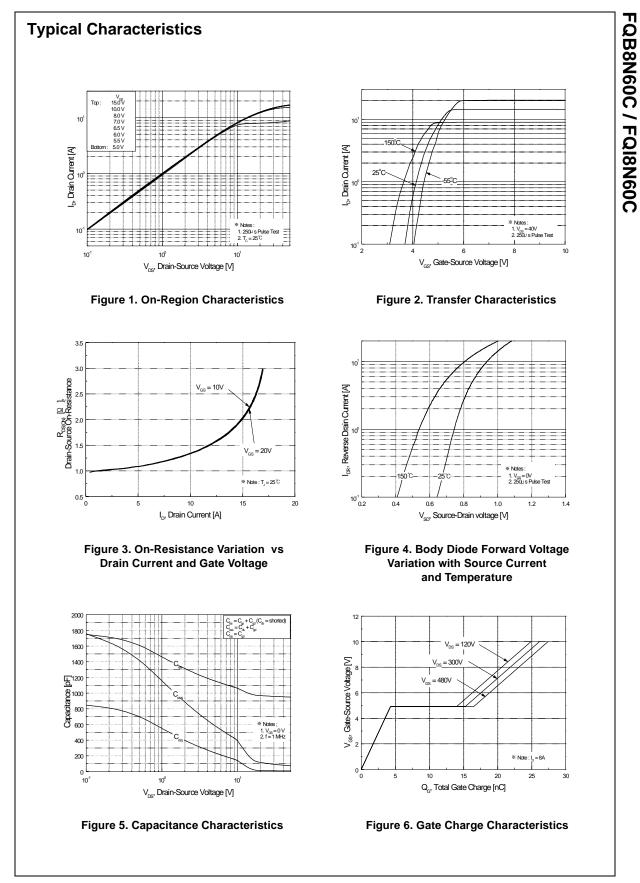


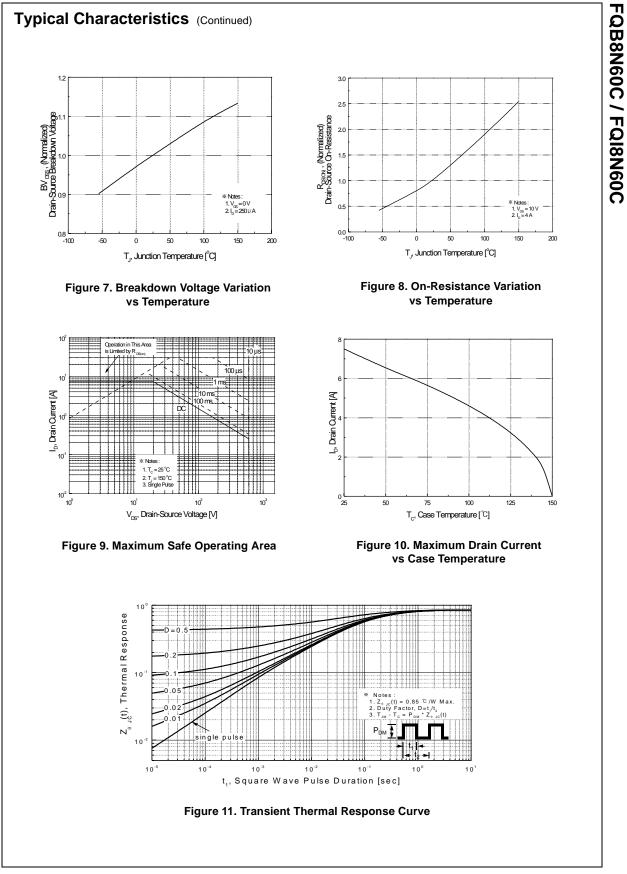
Absolute Maximum Ratings T_C = 25°C unless otherwise noted

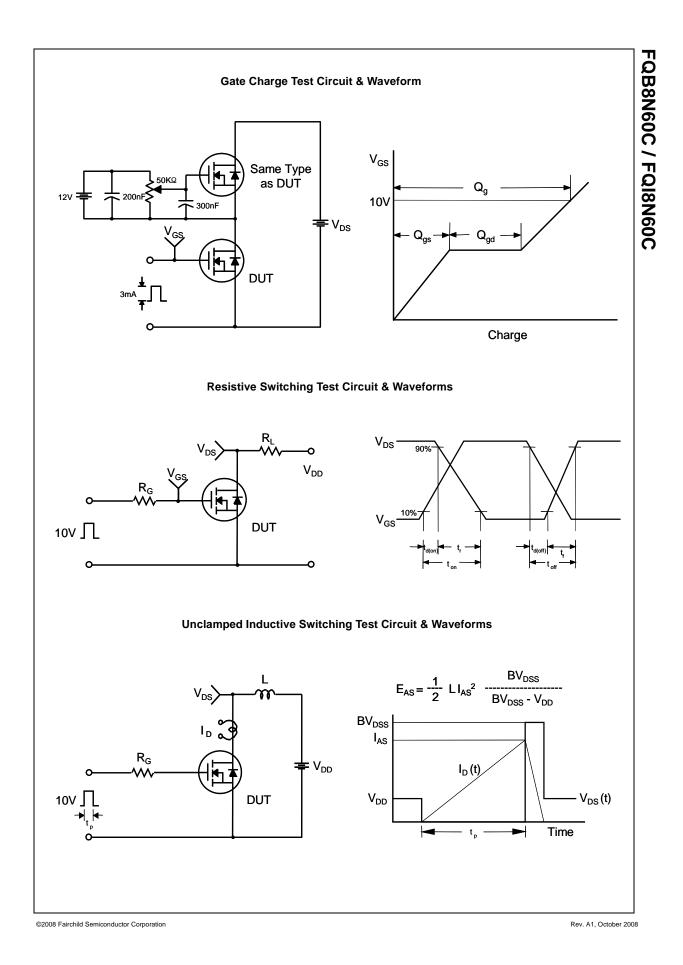
Symbol	Parameter		FQB8N60C / FQI8N60C	Units
V _{DSS}	Drain-Source Voltage		600	V
I _D	Drain Current - Continuous (T _C = 25°C)		7.5	А
	- Continuous (T _C = 100	- Continuous (T _C = 100°C)		А
I _{DM}	Drain Current - Pulsed	(Note 1)	30	А
V _{GSS}	Gate-Source Voltage		± 30	V
E _{AS}	Single Pulsed Avalanche Energy	(Note 2)	230	mJ
I _{AR}	Avalanche Current	(Note 1)	7.5	А
E _{AR}	Repetitive Avalanche Energy	(Note 1)	14.7	mJ
dv/dt	Peak Diode Recovery dv/dt	(Note 3)	4.5	V/ns
	Power Dissipation $(T_A = 25^{\circ}C)^*$		3.13	W
PD	Power Dissipation ($T_C = 25^{\circ}C$)		147	W
	- Derate above 25°C		1.18	W/°C
T _J , T _{STG}	Operating and Storage Temperature Range		-55 to +150	°C
TL	Maximum lead temperature for soldering purposes, 1/8" from case for 5 seconds		300	°C

Thermal Characteristics

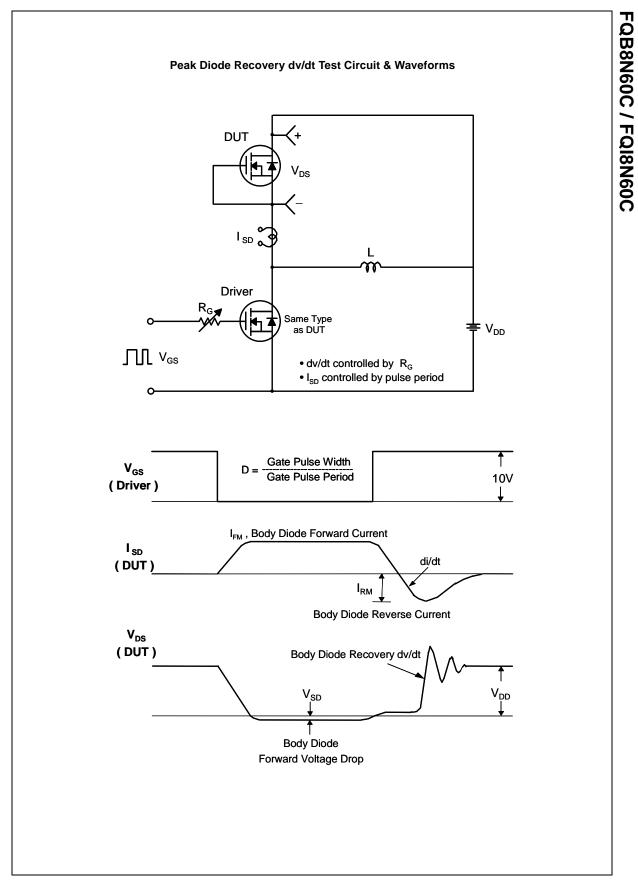

Symbol	Parameter	Тур	Max	Units
$R_{ extsf{ heta}JC}$	Thermal Resistance, Junction-to-Case		0.85	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient*		40	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient		62.5	°C/W

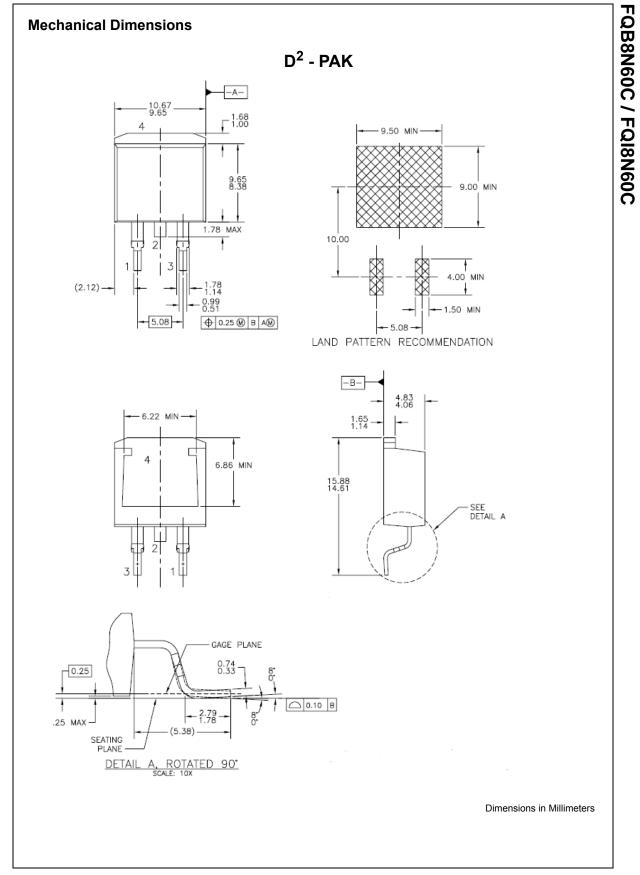
©2008 Fairchild Semiconductor Corporation

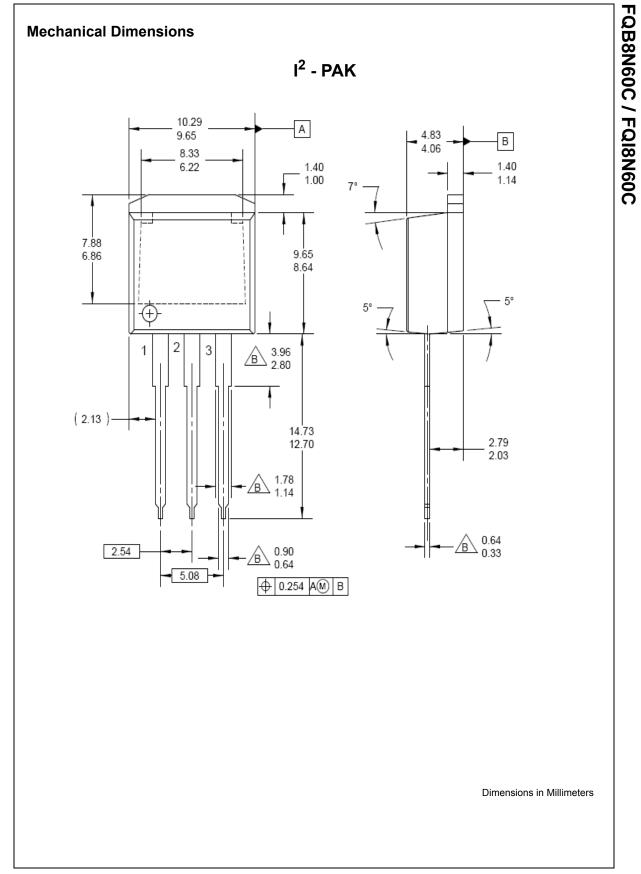

FQB8N60C / FQI8N60C


	Parameter	Test Conditions	Min	Тур	Max	Units
NH Cha	restariation					
Sh Cha BV _{DSS}	racteristics Drain-Source Breakdown Voltage	V _{GS} = 0 V, I _D = 250 μA	600			V
ΔT ₁	Breakdown Voltage Temperature Coefficient	$I_D = 250 \mu$ A, Referenced to 25°C		0.7		V/°C
DSS	Coencient	V _{DS} = 600 V, V _{GS} = 0 V			1	μA
033	Zero Gate Voltage Drain Current	$V_{DS} = 480 \text{ V}, \text{ T}_{C} = 125^{\circ}\text{C}$			10	μΑ
GSSF	Gate-Body Leakage Current, Forward	V _{GS} = 30 V, V _{DS} = 0 V			100	nA
GSSR	Gate-Body Leakage Current, Reverse	$V_{GS} = -30 \text{ V}, V_{DS} = 0 \text{ V}$			-100	nA
On Cha	racteristics					
/ _{GS(th)}	Gate Threshold Voltage	V _{DS} = V _{GS} , I _D = 250 μA	2.0		4.0	V
R _{DS(on)}	Static Drain-Source On-Resistance	V _{GS} = 10 V, I _D = 3.75 A		1.0	1.2	Ω
ĴFS	Forward Transconductance	V _{DS} = 40 V, I _D = 3.75 A (Note 4)		8.7		S
	c Characteristics			065	1055	~ [
C _{iss}	Input Capacitance	$V_{DS} = 25 V, V_{GS} = 0 V,$		965 105	1255	pF
	Output Consoltones					
Switchi	Output Capacitance Reverse Transfer Capacitance ng Characteristics Turn-On Delay Time	f = 1.0 MHz V _{DD} = 300 V, I _D = 7.5A,		12 16.5	135 16 45	pF pF ns
Switchi	Reverse Transfer Capacitance			12	16	pF
Coss Crss Switchi d(on)	Reverse Transfer Capacitance ng Characteristics Turn-On Delay Time Turn-On Rise Time			12 16.5 60.5	16 45 130	pF ns ns
Coss Crss Switchi d(on) r d(off)	Reverse Transfer Capacitance ng Characteristics Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time	V _{DD} = 300 V, I _D = 7.5A, R _G = 25 Ω		12 16.5 60.5 81	16 45 130 170	pF ns ns ns
Coss Crss Switchi d(on) r d(off) f	Reverse Transfer Capacitance ng Characteristics Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time	V_{DD} = 300 V, I _D = 7.5A, R _G = 25 Ω (Note 4, 5)		12 16.5 60.5 81 64.5	16 45 130 170 140	pF ns ns ns ns
Coss Crss Coss Coss Coss Coss Coss Coss	Reverse Transfer Capacitance ng Characteristics Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time Total Gate Charge	$V_{DD} = 300$ V, I _D = 7.5A, R _G = 25 Ω (Note 4, 5) V _{DS} = 480 V, I _D = 7.5A,	 	12 16.5 60.5 81 64.5 28	16 45 130 170 140 36	pF ns ns ns ns nC
Coss Crss Switchi d(on) r d(off) f Qg Qgs	Reverse Transfer Capacitance ng Characteristics Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time Total Gate Charge Gate-Source Charge	$V_{DD} = 300 \text{ V, } I_D = 7.5\text{A},$ $R_G = 25 \Omega$ (Note 4, 5) $V_{DS} = 480 \text{ V, } I_D = 7.5\text{A},$ $V_{GS} = 10 \text{ V}$	 	12 16.5 60.5 81 64.5 28 4.5	16 45 130 170 140	pF ns ns ns nC nC
Coss Prss Coss Coss Coss Coss Coss Coss Coss C	Reverse Transfer Capacitance ng Characteristics Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time Total Gate Charge	$V_{DD} = 300$ V, I _D = 7.5A, R _G = 25 Ω (Note 4, 5) V _{DS} = 480 V, I _D = 7.5A,	 	12 16.5 60.5 81 64.5 28	16 45 130 170 140 36	pF ns ns ns ns nc
C _{oss} C _{rss} Switchi d(on) r d(off) f Q _g Q _{gs} Q _{gd}	Reverse Transfer Capacitance ng Characteristics Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time Total Gate Charge Gate-Source Charge	$V_{DD} = 300 \text{ V}, \text{ I}_{D} = 7.5\text{A},$ $R_{G} = 25 \Omega$ (Note 4, 5) $V_{DS} = 480 \text{ V}, \text{ I}_{D} = 7.5\text{A},$ $V_{GS} = 10 \text{ V}$ (Note 4, 5)	 	12 16.5 60.5 81 64.5 28 4.5	16 45 130 170 140 36 	pF ns ns ns nC nC
$\begin{array}{c} C_{oss} \\ \hline C_{rss} \\ \hline \end{array}$	Reverse Transfer Capacitance ng Characteristics Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time Total Gate Charge Gate-Source Charge Gate-Drain Charge	$V_{DD} = 300 \text{ V, } I_D = 7.5\text{A},$ $R_G = 25 \Omega$ (Note 4, 5) $V_{DS} = 480 \text{ V, } I_D = 7.5\text{A},$ $V_{GS} = 10 \text{ V}$ (Note 4, 5) nd Maximum Ratings	 	12 16.5 60.5 81 64.5 28 4.5	16 45 130 170 140 36 	pF ns ns ns nC nC
C _{oss} C _{rss} Switchi (d(on) (r (d(off)) (f (a) (a) (a) (a) (a) (a) (a) (a) (a) (a)	Reverse Transfer Capacitance ng Characteristics Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time Total Gate Charge Gate-Source Charge Gate-Drain Charge ource Diode Characteristics ar	$V_{DD} = 300 \text{ V}, \text{ I}_{D} = 7.5\text{A},$ $R_{G} = 25 \Omega$ (Note 4, 5) $V_{DS} = 480 \text{ V}, \text{ I}_{D} = 7.5\text{A},$ $V_{GS} = 10 \text{ V}$ (Note 4, 5) (Not	 	12 16.5 60.5 81 64.5 28 4.5 12	16 45 130 170 140 36 	pF ns ns ns nC nC nC
C_{oss} C_{rss} Switchi d(on) r d(off) f Q_g Q_{gs} Q_{gd} Drain-S	Reverse Transfer Capacitance ng Characteristics Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time Total Gate Charge Gate-Source Charge Gate-Drain Charge ource Diode Characteristics ar Maximum Continuous Drain-Source Diode F	$V_{DD} = 300 \text{ V}, \text{ I}_{D} = 7.5\text{A},$ $R_{G} = 25 \Omega$ (Note 4, 5) $V_{DS} = 480 \text{ V}, \text{ I}_{D} = 7.5\text{A},$ $V_{GS} = 10 \text{ V}$ (Note 4, 5) (Not	 	12 16.5 60.5 81 64.5 28 4.5 12	16 45 130 170 140 36 7.5	pF ns ns ns nC nC nC A
Coss Crss Switchi d(on) r d(off) f Qg Qgs Qgd Drain-S s SM	Reverse Transfer Capacitance ng Characteristics Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time Total Gate Charge Gate-Source Charge Gate-Drain Charge ource Diode Characteristics ar Maximum Continuous Drain-Source Dio	$V_{DD} = 300 \text{ V}, \text{ I}_{D} = 7.5\text{A},$ $R_{G} = 25 \Omega$ (Note 4, 5) $V_{DS} = 480 \text{ V}, \text{ I}_{D} = 7.5\text{A},$ $V_{GS} = 10 \text{ V}$ (Note 4, 5) (Not	 	12 16.5 60.5 81 64.5 28 4.5 12	16 45 130 170 140 36 7.5 30	pF ns ns ns nC nC nC A A

Rev. A1, October 2008




Rev. A1, October 2008



Downloaded from Elcodis.com electronic components distributor

Rev. A1, October 2008

SEMICONDUCTOR

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

Build it Now™ CorePLUS™ CorePOWER™ CROSSVOLT™ CTL™ Current Transfer Logic™ EcoSPARK[®] EfficentMax™ EZSWITCH™ *

Fairchild® Fairchild Semiconductor® FACT Quiet Series™ FACT® FAST® FastvCore™ FlashWriter[®] * **FPS™** F-PFS™

IntelliMAX™ ISOPI ANARTM MegaBuck[™] MICROCOUPLER™ MicroFET™ MicroPak™ MillerDrive™ MotionMax™ Motion-SPM™ OPTOLOGIC[®] OPTOPLANAR[®] PDP SPM™ Power-SPM™ PowerTrench[®]

PowerXS™

FRFET®

GTO™

Green FPS™

Global Power ResourceSM

Green FPS™ e-Series™

Programmable Active Droop™ QFET QS™ Quiet Series™ RapidConfigure™ Saving our world, 1mW /W /kW at a time™ SmartMax™ SMART START™ SPM[®]

STEALTH™

SuperFET™

SuperSOT™-3

SuperSOT™-6

SuperSOT™-8

The Power Franchise[®]

SupreMOS™

SyncFET™

franchise TinyBoost™ TinyBuck™ TinyLogic® TINYOPTO™ TinyPower™ TinyPWM™ TinyWire™ μSerDes™

UHC® Ultra FRFET™ UniFET™ VCX™ VisualMax™ XS™

* EZSWITCH™ and FlashWriter[®] are trademarks of System General Corporation, used under license by Fairchild Semiconductor

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- Life support devices or systems are devices or systems which, (a) are 1. intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user
- A critical component in any component of a life support, device, or 2. system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Farichild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufactures of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Farichild strongly encourages customers to purchase Farichild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handing and storage and provide access to Farichild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Farichild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.
		Rev.

FQB8N60C / FQI8N60C Rev. A1

www.fairchildsemi.com