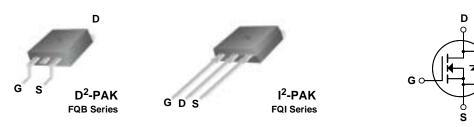




# FQB34N20L / FQI34N20L

### 200V LOGIC N-Channel MOSFET


### **General Description**

These N-Channel enhancement mode power field effect transistors are produced using Fairchild's proprietary, planar stripe, DMOS technology.

This advanced technology has been especially tailored to minimize on-state resistance, provide superior switching performance, and withstand high energy pulse in the avalanche and commutation mode. These devices are well suited for high efficiency switching DC/DC converters, switch mode power supply, motor control.

### **Features**

- 31A, 200V,  $R_{DS(on)} = 0.075\Omega @V_{GS} = 10 \text{ V}$
- Low gate charge (typical 55 nC)
- Low Crss (typical 52 pF)
- · Fast switching
- 100% avalanche tested
- · Improved dv/dt capability
- Low level gate drive requirement allowing direct opration from logic drivers
- · RoHS Compliant



# **Absolute Maximum Ratings** $T_C = 25$ °C unless otherwise noted

| Symbol                            | Parameter                                                                     |          | FQB34N20L / FQI34N20L | Units |
|-----------------------------------|-------------------------------------------------------------------------------|----------|-----------------------|-------|
| V <sub>DSS</sub>                  | Drain-Source Voltage                                                          |          | 200                   | V     |
| I <sub>D</sub>                    | Drain Current - Continuous (T <sub>C</sub> = 25°C)                            |          | 31                    | Α     |
|                                   | - Continuous (T <sub>C</sub> = 100°C                                          | ;)       | 20                    | Α     |
| I <sub>DM</sub>                   | Drain Current - Pulsed                                                        | (Note 1) | 124                   | Α     |
| V <sub>GSS</sub>                  | Gate-Source Voltage                                                           |          | ± 20                  | V     |
| E <sub>AS</sub>                   | Single Pulsed Avalanche Energy                                                | (Note 2) | 640                   | mJ    |
| I <sub>AR</sub>                   | Avalanche Current                                                             | (Note 1) | 31                    | А     |
| E <sub>AR</sub>                   | Repetitive Avalanche Energy                                                   | (Note 1) | 18                    | mJ    |
| dv/dt                             | Peak Diode Recovery dv/dt                                                     | (Note 3) | 5.5                   | V/ns  |
| P <sub>D</sub>                    | Power Dissipation (T <sub>A</sub> = 25°C) *                                   |          | 3.13                  | W     |
|                                   | Power Dissipation (T <sub>C</sub> = 25°C)                                     |          | 180                   | W     |
|                                   | - Derate above 25°C                                                           |          | 1.43                  | W/°C  |
| T <sub>J</sub> , T <sub>STG</sub> | Operating and Storage Temperature Range                                       |          | -55 to +150           | °C    |
| T <sub>L</sub>                    | Maximum lead temperature for soldering purposes, 1/8" from case for 5 seconds |          | 300                   | °C    |

### **Thermal Characteristics**

| Symbol          | Parameter                                 | Тур | Max  | Units |
|-----------------|-------------------------------------------|-----|------|-------|
| $R_{\theta JC}$ | Thermal Resistance, Junction-to-Case      |     | 0.7  | °C/W  |
| $R_{\theta JA}$ | Thermal Resistance, Junction-to-Ambient * |     | 40   | °C/W  |
| $R_{\theta JA}$ | Thermal Resistance, Junction-to-Ambient   |     | 62.5 | °C/W  |

\* When mounted on the minimum pad size recommended (PCB Mount)

| Symbol                                                                                                                                                      | Parameter                                                                                                                                                                                                                                     | Test Conditions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Min          | Тур                                  | Max                                           | Units                            |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--------------------------------------|-----------------------------------------------|----------------------------------|
| Off Cha                                                                                                                                                     | aracteristics                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |                                      |                                               |                                  |
| BV <sub>DSS</sub>                                                                                                                                           | Drain-Source Breakdown Voltage                                                                                                                                                                                                                | $V_{GS} = 0 \text{ V}, I_D = 250 \mu\text{A}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 200          |                                      |                                               | V                                |
| ΔBV <sub>DSS</sub><br>/ ΔΤ <sub>J</sub>                                                                                                                     | Breakdown Voltage Temperature<br>Coefficient                                                                                                                                                                                                  | $I_D$ = 250 $\mu$ A, Referenced to 25°C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              | 0.16                                 |                                               | V/°C                             |
| I <sub>DSS</sub>                                                                                                                                            | Zero Gate Voltage Drain Current                                                                                                                                                                                                               | V <sub>DS</sub> = 200 V, V <sub>GS</sub> = 0 V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              |                                      | 1                                             | μΑ                               |
|                                                                                                                                                             |                                                                                                                                                                                                                                               | V <sub>DS</sub> = 160 V, T <sub>C</sub> = 125°C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |                                      | 10                                            | μΑ                               |
| I <sub>GSSF</sub>                                                                                                                                           | Gate-Body Leakage Current, Forward                                                                                                                                                                                                            | V <sub>GS</sub> = 20 V, V <sub>DS</sub> = 0 V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |              |                                      | 100                                           | nA                               |
| I <sub>GSSR</sub>                                                                                                                                           | Gate-Body Leakage Current, Reverse                                                                                                                                                                                                            | V <sub>GS</sub> = -20 V, V <sub>DS</sub> = 0 V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              |                                      | -100                                          | nA                               |
| On Cha                                                                                                                                                      | aracteristics                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | •            |                                      |                                               |                                  |
| V <sub>GS(th)</sub>                                                                                                                                         | Gate Threshold Voltage                                                                                                                                                                                                                        | $V_{DS} = V_{GS}, I_{D} = 250 \mu\text{A}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.0          |                                      | 2.0                                           | V                                |
| R <sub>DS(on)</sub>                                                                                                                                         | Static Drain-Source                                                                                                                                                                                                                           | V <sub>GS</sub> = 10 V, I <sub>D</sub> = 15.5 A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              | 0.057                                | 0.075                                         | -                                |
| DQ(on)                                                                                                                                                      | On-Resistance                                                                                                                                                                                                                                 | V <sub>GS</sub> = 5 V, I <sub>D</sub> = 15.5 A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              | 0.060                                | 0.080                                         | Ω                                |
| 9 <sub>FS</sub>                                                                                                                                             | Forward Transconductance                                                                                                                                                                                                                      | V <sub>DS</sub> = 30 V, I <sub>D</sub> = 15.5 A (Note 4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              | 41                                   |                                               | S                                |
| C <sub>oss</sub><br>C <sub>rss</sub>                                                                                                                        | Output Capacitance Reverse Transfer Capacitance                                                                                                                                                                                               | $V_{DS} = 25 \text{ V}, V_{GS} = 0 \text{ V},$<br>f = 1.0  MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              | 400<br>52                            | 520<br>67                                     | pF<br>pF                         |
| C <sub>rss</sub>                                                                                                                                            | Reverse Transfer Capacitance                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              | 52                                   | 67                                            | nF                               |
|                                                                                                                                                             |                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |                                      | I.                                            | Pi                               |
|                                                                                                                                                             | ing Characteristics                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1            | ı                                    | I                                             | ļ Pi                             |
| t <sub>d(on)</sub>                                                                                                                                          | Turn-On Delay Time                                                                                                                                                                                                                            | V <sub>DD</sub> = 100 V, I <sub>D</sub> = 34 A,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              | 45                                   | 100                                           | ns                               |
| Switch<br>t <sub>d(on)</sub><br>t <sub>r</sub>                                                                                                              | Turn-On Delay Time Turn-On Rise Time                                                                                                                                                                                                          | $V_{DD} = 100 \text{ V}, I_{D} = 34 \text{ A},$ $R_{G} = 25 \Omega$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |              | 520                                  | 1050                                          |                                  |
| t <sub>d(on)</sub> t <sub>r</sub> t <sub>d(off)</sub>                                                                                                       | Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time                                                                                                                                                                                      | $R_G = 25 \Omega$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              | 520<br>170                           | 1050<br>350                                   | ns                               |
| t <sub>d(on)</sub> t <sub>r</sub> t <sub>d(off)</sub>                                                                                                       | Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              | 520<br>170<br>370                    | 1050<br>350<br>750                            | ns<br>ns<br>ns                   |
| t <sub>d(on)</sub> t <sub>r</sub> t <sub>d(off)</sub> t <sub>f</sub> Q <sub>g</sub>                                                                         | Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time Total Gate Charge                                                                                                                                                 | $R_G = 25 \Omega$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              | 520<br>170<br>370<br>55              | 1050<br>350                                   | ns<br>ns<br>ns<br>ns             |
| t <sub>d</sub> (on)  t <sub>r</sub> t <sub>d</sub> (off)  t <sub>f</sub> Q <sub>g</sub> Q <sub>gs</sub>                                                     | Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time Total Gate Charge Gate-Source Charge                                                                                                                              | $R_G = 25 \ \Omega$ (Note 4, 5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <br><br>     | 520<br>170<br>370<br>55<br>9.9       | 1050<br>350<br>750<br>72                      | ns<br>ns<br>ns<br>ns             |
| t <sub>d</sub> (on)  t <sub>r</sub> t <sub>d</sub> (off)  t <sub>f</sub> Q <sub>g</sub> Q <sub>gs</sub>                                                     | Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time Total Gate Charge                                                                                                                                                 | $R_{G} = 25~\Omega \label{eq:RG}$ (Note 4, 5) $V_{DS} = 160~V, I_{D} = 34~A,$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |              | 520<br>170<br>370<br>55              | 1050<br>350<br>750<br>72                      | ns<br>ns<br>ns<br>ns             |
| td(on) tr tr td(off) tf Qg Qgs Qgd                                                                                                                          | Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time Total Gate Charge Gate-Source Charge                                                                                                                              | $R_{G} = 25~\Omega \label{eq:controller}$ (Note 4, 5) $V_{DS} = 160~V,~I_{D} = 34~A,$ $V_{GS} = 5~V \label{eq:controller}$ (Note 4, 5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <br><br>     | 520<br>170<br>370<br>55<br>9.9       | 1050<br>350<br>750<br>72                      | ns<br>ns<br>ns<br>ns             |
| t <sub>d(on)</sub> t <sub>r</sub> t <sub>d(off)</sub> t <sub>d(off)</sub> t <sub>f</sub> Q <sub>g</sub> Q <sub>gs</sub> Q <sub>gd</sub>                     | Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time Total Gate Charge Gate-Source Charge Gate-Drain Charge                                                                                                            | $R_G = 25~\Omega$ (Note 4, 5) $V_{DS} = 160~V, I_D = 34~A,$ $V_{GS} = 5~V$ (Note 4, 5) $\mathbf{Maximum~Ratings}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <br><br>     | 520<br>170<br>370<br>55<br>9.9       | 1050<br>350<br>750<br>72                      | ns<br>ns<br>ns<br>ns             |
| td(on) tr td(off) tf Qg Qgs Qgd  Drain-S                                                                                                                    | Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time Total Gate Charge Gate-Source Charge Gate-Drain Charge                                                                                                            | $R_{G} = 25 \ \Omega$ (Note 4, 5) $V_{DS} = 160 \ V, \ I_{D} = 34 \ A,$ $V_{GS} = 5 \ V$ (Note 4, 5) $N_{GS} = 100 \ V = 100 \ V_{OS} = 100 \ V = 100 \ V_{OS} =$ | <br><br><br> | 520<br>170<br>370<br>55<br>9.9<br>27 | 1050<br>350<br>750<br>72<br>                  | ns<br>ns<br>ns<br>ns<br>nC<br>nC |
| $egin{array}{l} t_{d(on)} \\ t_r \\ t_{d(off)} \\ t_f \\ Q_g \\ Q_{gs} \\ Q_{gd} \\ \hline egin{array}{c} \mathbf{Drain-S} \\ I_{SM} \\ \hline \end{array}$ | Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time Total Gate Charge Gate-Source Charge Gate-Drain Charge  Source Diode Characteristics and Maximum Continuous Drain-Source Diode                                    | $R_{G} = 25 \ \Omega$ (Note 4, 5) $V_{DS} = 160 \ V, \ I_{D} = 34 \ A,$ $V_{GS} = 5 \ V$ (Note 4, 5) $N_{GS} = 100 \ V = 100 \ V_{OS} = 100 \ V = 100 \ V_{OS} =$ | <br><br><br> | 520<br>170<br>370<br>55<br>9.9<br>27 | 1050<br>350<br>750<br>72<br>                  | ns<br>ns<br>ns<br>ns<br>nC<br>nC |
| t <sub>d(on)</sub> t <sub>r</sub> t <sub>r</sub> t <sub>d(off)</sub> t <sub>f</sub> Q <sub>g</sub> Q <sub>gs</sub> Q <sub>gd</sub>                          | Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time Total Gate Charge Gate-Source Charge Gate-Drain Charge  Source Diode Characteristics at Maximum Continuous Drain-Source Diode Maximum Pulsed Drain-Source Diode F | $R_{G} = 25 \ \Omega$ $V_{DS} = 160 \ V, \ I_{D} = 34 \ A,$ $V_{GS} = 5 \ V$ (Note 4, 5)  Ad Maximum Ratings ode Forward Current                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <br><br><br> | 520<br>170<br>370<br>55<br>9.9<br>27 | 1050<br>350<br>750<br>72<br><br><br>31<br>124 | ns ns ns ns nC nC nC             |

# **Typical Characteristics**

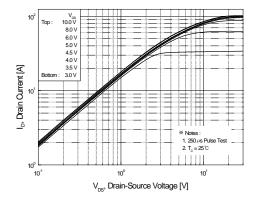



Figure 1. On-Region Characteristics

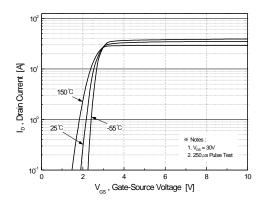



Figure 2. Transfer Characteristics

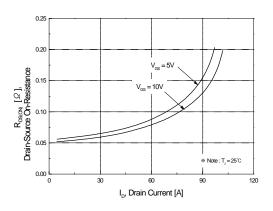



Figure 3. On-Resistance Variation vs. Drain Current and Gate Voltage

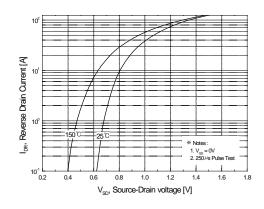



Figure 4. Body Diode Forward Voltage Variation vs. Source Current and Temperature

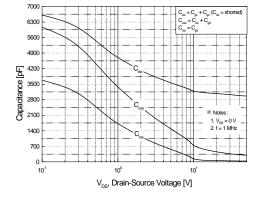



Figure 5. Capacitance Characteristics

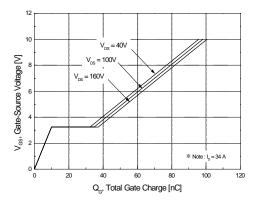
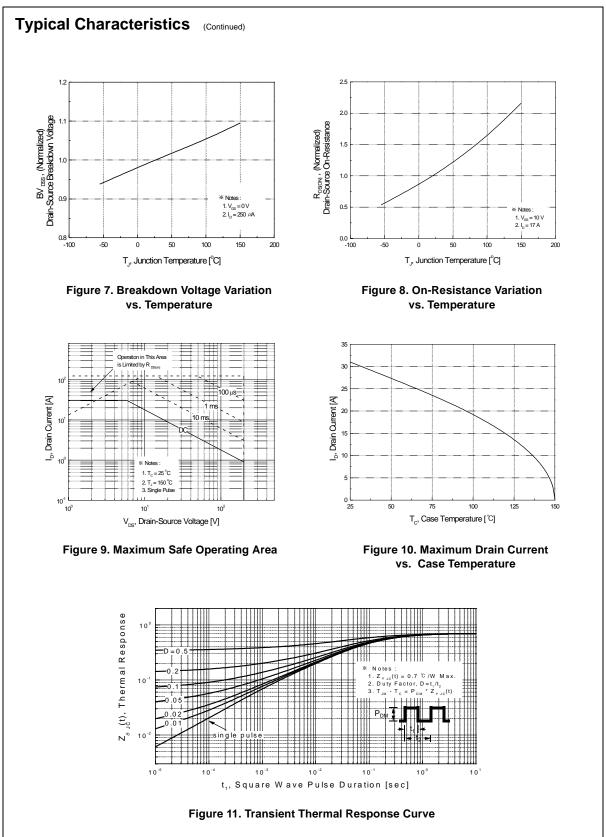
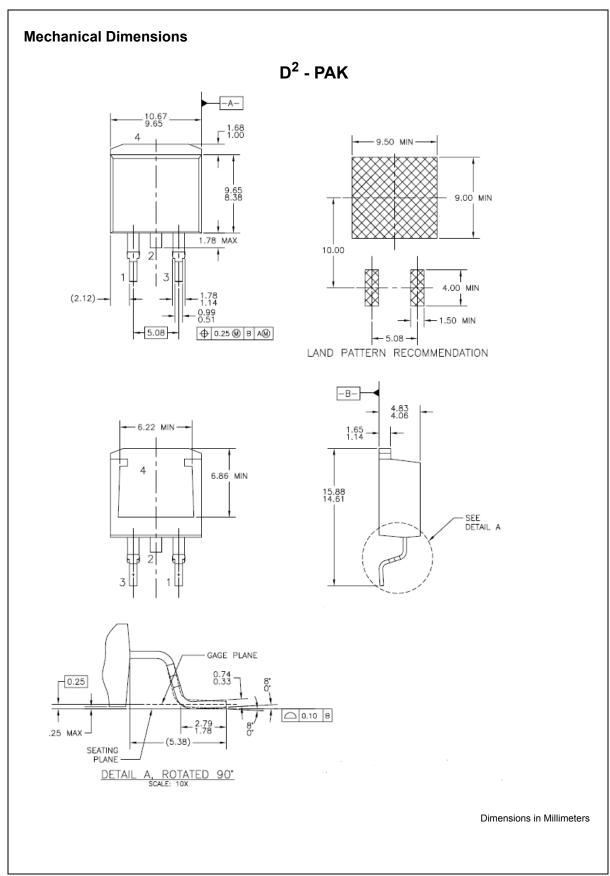



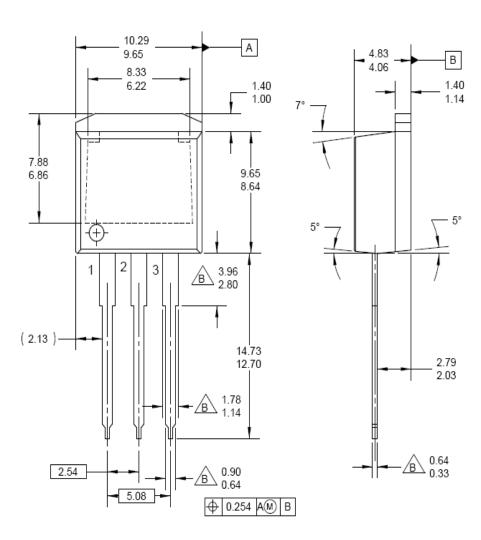

Figure 6. Gate Charge Characteristics




# **Gate Charge Test Circuit & Waveform** $V_{\text{GS}}$ Same Type as DUT 5V ➡ VDS DUT Charge **Resistive Switching Test Circuit & Waveforms** DUT 5∨ ∏ **Unclamped Inductive Switching Test Circuit & Waveforms** $\mathsf{BV}_{\mathsf{DSS}}$ $I_{AS}$ V<sub>DD</sub> $I_D(t)$ $V_{DS}(t)$ DUT $V_{DD}$ Time

# Peak Diode Recovery dv/dt Test Circuit & Waveforms DUT I<sub>SD o</sub> Driver Same Type as DUT $V_{DD}$ • dv/dt controlled by R<sub>G</sub> • I<sub>SD</sub> controlled by pulse period Gate Pulse Width $V_{GS}$ Gate Pulse Period 10V (Driver) I<sub>FM</sub> , Body Diode Forward Current $\mathbf{I}_{\text{SD}}$ di/dt (DUT) $\mathsf{I}_{\mathsf{RM}}$ **Body Diode Reverse Current** V<sub>DS</sub> (DUT) Body Diode Recovery dv/dt

©2008 Fairchild Semiconductor International Rev. A1, Oct 2008


Body Diode Forward Voltage Drop



©2008 Fairchild Semiconductor International

## **Mechanical Dimensions**

# I<sup>2</sup> - PAK



Dimensions in Millimeters





#### TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

Build it Now™ CorePLUS™ CorePOWER™  $CROSSVOLT^{\text{TM}}$ CTL™ Current Transfer Logic™

EcoSPARK® EfficentMax™ EZSWITCH™ \*

airchild®

Fairchild Semiconductor® FACT Quiet Series™

FACT® FAST® FastvCore™ FlashWriter® \* FPS™ F-PES™

FRFET® Global Power Resource<sup>SM</sup> Green FPS™ Green FPS™ e-Series™ GTO™

IntelliMAX™ ISOPI ANAR™ MegaBuck™ MICROCOUPLER™ MicroFET™ MicroPak™

MillerDrive™ MotionMax™ Motion-SPM™ OPTOLOGIC® OPTOPLANAR®

PDP SPM™ Power-SPM™ PowerTrench® PowerXS™

Programmable Active Droop™ QFET QSTM

Quiet Series™ RapidConfigure™

Saving our world, 1mW /W /kW at a time™ SmartMax™ SMART START™ SPM<sup>®</sup>

STEALTH™ SuperFET™ SuperSOT™-3 SuperSOT™-6 SuperSOT™-8 SupreMOS™ SyncFET™

SYSTEM ® GENERAL The Power Franchise®

uwer P we franchise TinyBoost™ TinyBuck™ TinyLogic<sup>®</sup> TIŃYOPTO™ TinyPower™ TinyPWM™ Tinẏ́Wire™ μSerDes™

UHC® Ultra FRFET™ UniFET™ VCX™ VisualMax™ XS™

\* EZSWITCH™ and FlashWriter® are trademarks of System General Corporation, used under license by Fairchild Semiconductor

#### DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

### LIFE SUPPORT POLICY

EIPE SUPPORT FOLICE.

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

### As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user
- A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

### ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Farichild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufactures of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Farichild strongly encourages customers to purchase Farichild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handing and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Farichild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

### PRODUCT STATUS DEFINITIONS Definition of Terms

| Datasheet Identification | Product Status        | Definition                                                                                                                                                                                          |
|--------------------------|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Advance Information      | Formative / In Design | Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.                                                                       |
| Preliminary              | First Production      | Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design. |
| No Identification Needed | Full Production       | Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.                                               |
| Obsolete                 | Not In Production     | Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.                                                    |
|                          | •                     | Rev. I37                                                                                                                                                                                            |

FQB34N20L / FQI34N20L Rev. A1 www.fairchildsemi.com