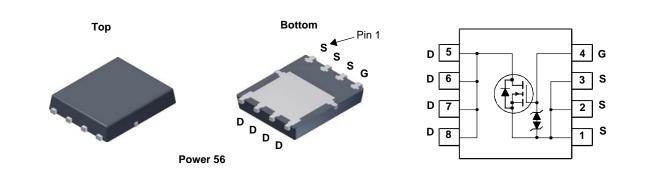
May 2011

FDMS86102LZ N-Channel Power Trench[®] MOSFET 100 V, 22 A, 25 mΩ

Features

- Max $r_{DS(on)} = 25 \text{ m}\Omega$ at $V_{GS} = 10 \text{ V}$, $I_D = 7 \text{ A}$
- Max r_{DS(on)} = 37 mΩ at V_{GS} = 4.5 V, I_D = 5.8 A
- HBM ESD protection level > 6 KV typical (Note 4)
- 100% UIL Tested
- RoHS Compliant



General Description

This N-Channel logic Level MOSFETs are produced using Fairchild Semiconductor's advanced Power Trench[®] process that has been special tailored to minimize the on-state resistance and yet maintain superior switching performance. G-S zener has been added to enhance ESD voltage level.

Applications

- DC DC Conversion
- Inverter
- Synchronous Rectifier

MOSFET Maximum Ratings T_A = 25 °C unless otherwise noted

FDMS86102LZ

Symbol	Parameter			Ratings	Units	
V _{DS}	Drain to Source Voltage	to Source Voltage			V	
V _{GS}	Gate to Source Voltage			±20	V	
ID	Drain Current -Continuous (Packa	age limited) T _C = 25 °	С	22		
	-Continuous (Silico	on limited) $T_{\rm C} = 25$	С	37		
	-Continuous	T _A = 25 °	C (Note 1a)	7	Α	
	-Pulsed			40		
E _{AS}	Single Pulse Avalanche Energy		(Note 3)	84	mJ	
P _D	Power Dissipation	T _C = 25 °	C	69	W	
	Power Dissipation	T _A = 25 °	C (Note 1a)	2.5	VV	
T _J , T _{STG}	Operating and Storage Junction Te	Operating and Storage Junction Temperature Range			°C	
	aracteristics					
$R_{ ext{ heta}JC}$	Thermal Resistance, Junction to Case 1.8				°C/W	
$R_{ ext{ heta}JA}$	Thermal Resistance, Junction to Ambient(Note 1a)50			0,11		
Package Ma	arking and Ordering Informa	ation				
Device Ma	rking Device	Package	Reel Size	Tape Width	Quantity	

©2011 Fairchild Semiconductor Corporation

FDMS86102Z

FDMS86102LZ Rev.C

Power 56

13 "

12 mm

3000 units

FDMS86102LZ
N-Channel
Power Trenc
h [®] MOSFET

BV _{DSS}	Drain to Source Breakdown Voltage	$I_{D} = 250 \ \mu A, \ V_{GS} = 0 \ V$	100			V
ΔBV _{DSS}	Breakdown Voltage Temperature	$I_D = 250 \ \mu$ A, referenced to 25 °C		70		mV/°C
ΔT_{J}	Coefficient			70		IIIV/ C
I _{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = 80 V, V_{GS} = 0 V$			1	μA
I _{GSS}	Gate to Source Leakage Current	$V_{GS} = \pm 20 \text{ V}, V_{DS} = 0 \text{ V}$			±10	μA
On Chara	acteristics					
V _{GS(th)}	Gate to Source Threshold Voltage	$V_{GS} = V_{DS}, I_{D} = 250 \ \mu A$	1.0	1.5	2.5	V
$\frac{\Delta V_{GS(th)}}{\Delta T_J}$	Gate to Source Threshold Voltage Temperature Coefficient	$I_D = 250 \ \mu\text{A}$, referenced to 25 °C		-6		mV/°C
	Static Drain to Source On Resistance	$V_{GS} = 10 \text{ V}, \ I_D = 7 \text{ A}$		18.6	25	
r _{DS(on)}		$V_{GS} = 4.5 \text{ V}, \ I_D = 5.8 \text{ A}$		23.5	37	mΩ
		$V_{GS} = 10 \text{ V}, I_D = 7 \text{ A}, T_J = 125 \text{ °C}$		31.2	42	
9 _{FS}	Forward Transconductance	$V_{DS} = 5 V, I_{D} = 7 A$		26		S
Dynamic	Characteristics					
C _{iss}	Input Capacitance			979	1305	pF
C _{oss}	Output Capacitance	$V_{\rm DS} = 50 \text{ V}, V_{\rm GS} = 0 \text{ V},$		175	235	pF
C _{rss}	Reverse Transfer Capacitance	f = 1 MHz		8.9	15	pF
R _g	Gate Resistance		1	0.9		Ω
*	a Charactoristics					
	g Characteristics Turn-On Delay Time			6.7	14	ns
t _{d(on)}	Rise Time			2.6	10	ns
<u>t</u>	Turn-Off Delay Time	$V_{DD} = 50$ V, $I_D = 7$ A, $V_{GS} = 10$ V, $R_{GEN} = 6$ Ω		19	35	ns
t _{d(off)}	Fall Time	VGS = 10 V, KGEN = 0.32		2.5	10	ns
<u>Ч</u>	Total Gate Charge	$V_{\rm ex} = 0.01$ to 10.01		16	22	nC
Q _{g(TOT)}	Total Gate Charge	$ \begin{array}{c} V_{GS} = 0 \ V \ to \ 10 \ V \\ V_{GS} = 0 \ V \ to \ 4.5 \ V \\ I_D = 7 \ A \end{array} \\ \end{array} \\ \begin{array}{c} V_{DD} = 50 \ V, \\ I_D = 7 \ A \end{array} $		7.8	11	nC
Q _{g(TOT)}	Total Gate Charge	$V_{GS} = 0$ V to 4.3 V $I_D = 7$ A		2.4		nC
Q _{gs}	Gate to Drain "Miller" Charge	-		2.4		nC
Q _{gd}				2.0		no
Drain-So	urce Diode Characteristics	V _{GS} = 0 V, I _S = 7 A (Note 2)		0.81	1.3	
V _{SD}	Source to Drain Diode Forward Voltage	$V_{GS} = 0 V, I_S = 7 A$ (Note 2) $V_{GS} = 0 V, I_S = 2 A$ (Note 2)		0.81	1.3	V
+	Reverse Recovery Time	VGS = 0 V, IS = 2 A (Note 2)		35	57	ns
t _{rr} Q _{rr}	Reverse Recovery Charge	— I _F = 7 A, di/dt = 100 A/μs		25	40	nC
NOTES:	mined with the device mounted on a 1 in ² pad 2 oz copper pa	ad on a 1.5 x 1.5 in. board of FR-4 material. $R_{\theta JC}$ is	guaranteed b			
	a. 50 °C/W when mounted on a 1 in ² pad of 2 oz copper		b	b. 125 °C/W when mounted on a minimum pad of 2 oz copper		
2. Pulse Test: P	Pulse Width < 300 μs, Duty cycle < 2.0%. 25 °C; N-ch: L = 1 mH, I _{AS} = 13 A, V _{DD} = 90 V, V _{GS} = 10 V.					

Test Conditions

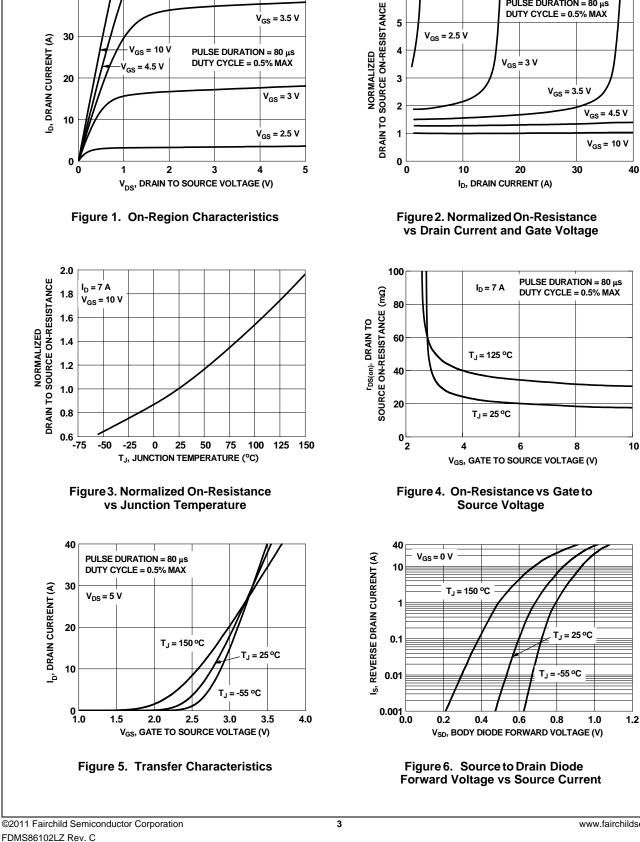
Min

Тур

Мах

Units

Electrical Characteristics T_J = 25 °C unless otherwise noted

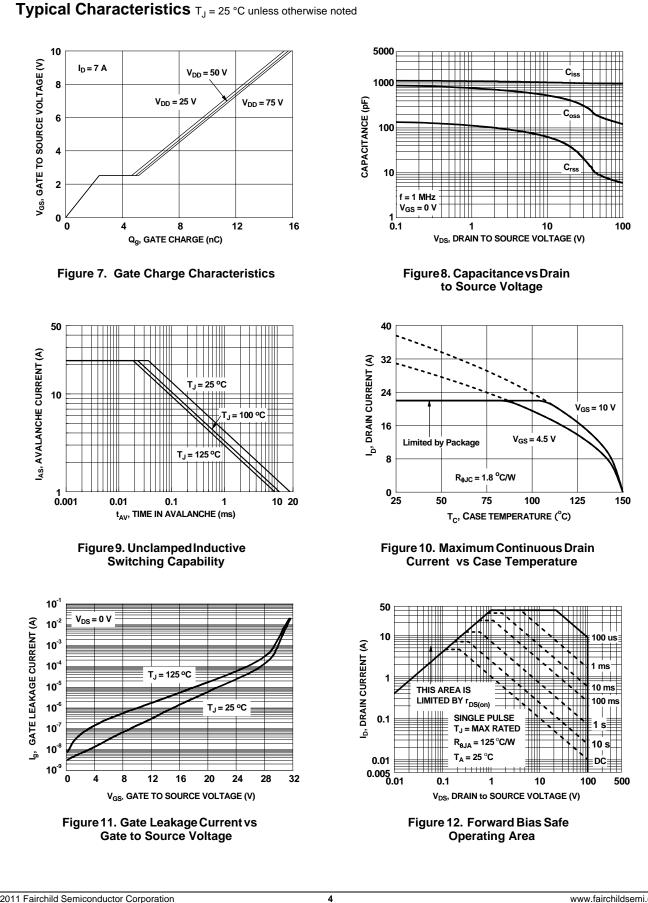

Parameter

Symbol

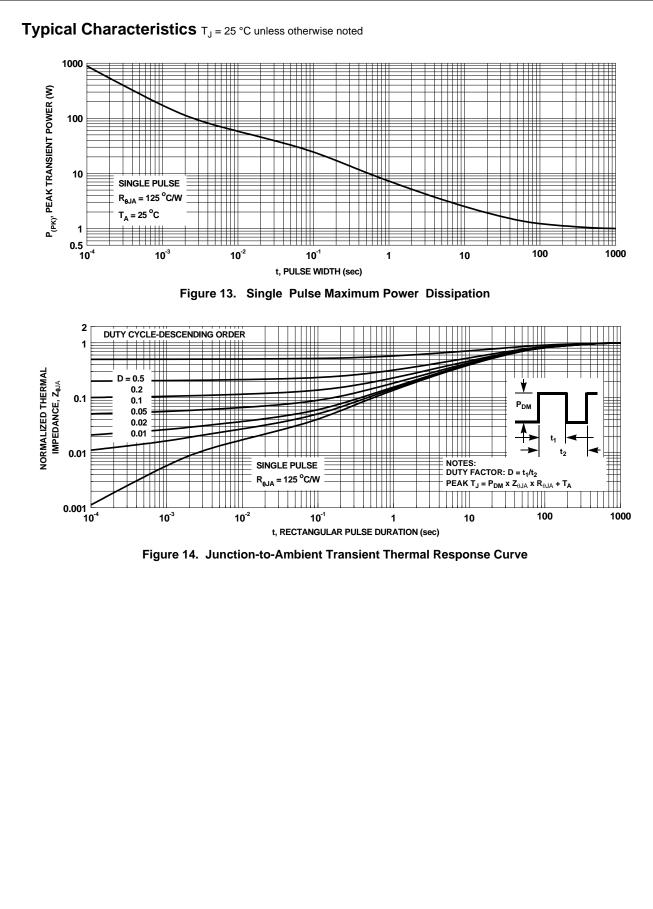
Off Characteristics

PULSE DURATION = 80 µs

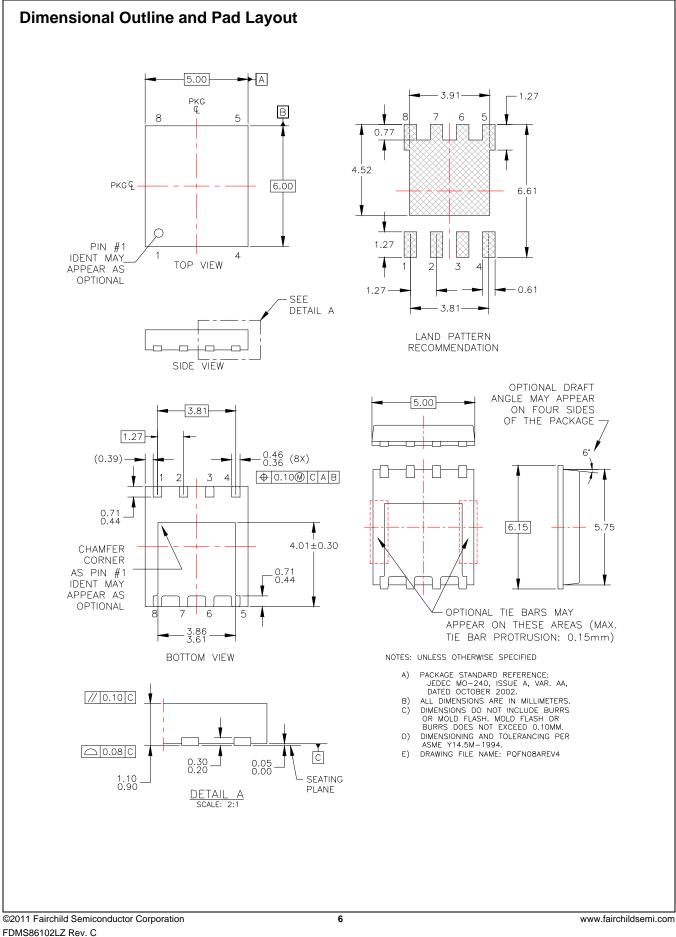
DUTY CYCLE = 0.5% MAX



6


Typical Characteristics T_J = 25 °C unless otherwise noted

40



©2011 Fairchild Semiconductor Corporation FDMS86102LZ Rev. C

FDMS86102LZ N-Channel Power Trench[®] MOSFET

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

AccuPower TM Auto-SPM TM AX-CAP ^{TM*} BitSiC [®] Build it Now TM CorePLUS TM CorePOWER TM CORECULT TM CTL TM CURRED [®] DUAL COOLT TM DEUXPEED [®] DUAL COOLT TM CONSTRUCT CONSTRUCT DEUXPEED [®] DUAL COOLT TM CONSTRUCT DEUXPEED [®] DUAL CONSTRUCT DEUXPEED [®] DUAL CONSTRUCT DUAL CONSTRUCT D	FPS™ F-PFS™ FRFET® Global Power Resource SM Green FPS™ Green FPS™ GTO™ IntelliMAX™ ISOPLANAR™ MGBBUck™ MICROCOUPLER™ MICROCOUPLER™ MICROCOUPLER™ MICROFET™ MICROFET™ MICROFET™ MICROFET™ MICROFET™ MIDERDIVE™ MOTIONAX™ MOTIONAX™ MOTIONAX™ MOTIONAX™ MOTIONAX™ MOTIONAX™ MOTIONAX™ MOTIONAX™ MOTIONAX™ MOTIONAX™ MOTIONAX™ MOTIONAX™ MOTIONAX™ MOTIONAX™ MOTIONAX™ MOTIONAX™ MOTIONAX® U U DP SPM™	Power-SPM™ PowerXS™ Programmable Active Droop™ QFET® QS™ Quiet Series™ RapidConfigure™ TM Distribution TM Saving our world, 1mW/W/kW at a time™ SignalWise™ SmartMax™ SMART START™ SMART START™ SMART START™ SMART START™ SuperSOT™-3 SuperSOT™-6 SuperSOT™-8 SuperSOT SuperSOT SuperSOT SuperSOT SuperSOT SuperSOT SuperSOT SuperSOT SuperSOT SuperS	The Power Franchise [®] The Right Technology for Your Success TM P P P P T T N D W U T N D W U U N U U U U U U U U U U
--	--	--	---

*Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used here in:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.Fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufactures of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handing and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.

©2011 Fairchild Semiconductor Corporation

FDMS86102LZ Rev.C

FDMS86102LZ N-Channel Power Trench[®] MOSFET