

October 2011

FDD86110 N-Channel PowerTrench[®] MOSFET

FDD86110 N-Channel PowerTrench[®] MOSFET 100 V, 50 A, 10.2 m Ω

Features

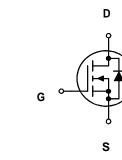
• Max $r_{DS(on)}$ = 10.2 m Ω at V_{GS} = 10 V, I_D = 12.5 A

G

S

- Max $r_{DS(on)}$ = 16 m Ω at V_{GS} = 6 V, I_D = 9.8 A
- 100% UIL tested
- RoHS Compliant

General Description


This N-Channel MOSFET is produced using Fairchild Semiconductor's advanced Power Trench[®] process that has been especially tailored to minimize the on-state resistance and yet maintain superior switching performance.

Application

DC - DC Conversion

D

MOSFET Maximum Ratings T_C = 25 °C unless otherwise noted

D-PAK (TO-252)

Symbol		Parameter			Ratings	Uni		
V _{DS}	Drain to Source Voltage			100	V			
V _{GS}	Gate to Source Voltage			±20				
I _D	Drain Cu	Drain Current -Continuous (Package limited) T _C = 25 °C				50		
		-Continuous (Silicon limited) $T_{C} = 25 \text{ °C}$					Α	
	-Continuous			T _A = 25 °C	(Note 1a)	12.5	A	
		-Pulsed				60		
E _{AS}	Single Pu	Ilse Avalanche Energy			(Note 3)	135	m	
-	Power Di	ssipation		T _C = 25 °C		127	W	
P _D	Power Di	Power Dissipation $T_A = 25 \text{ °C}$ (Note 1a)			3.1			
T _J , T _{STG}	Operating and Storage Junction Temperature Range			-55 to +150				
Thermal Cł R _{θJC}		stics Resistance, Junction to	Case			0.98	°C/	
$R_{ hetaJA}$	Thermal Resistance, Junction to Ambient (Note 1a)				40			
Package M		d Ordering Inforr	nation					
Device Ma	Device Marking Device		Packag	e l	Reel Size	Tape Width	Quantity	
FDD86	110	FDD86110	D-PAK(TO-	252)	13 "	12 mm 2		

©2011 Fairchild Semiconductor Corporation

FDD86110 Rev.C

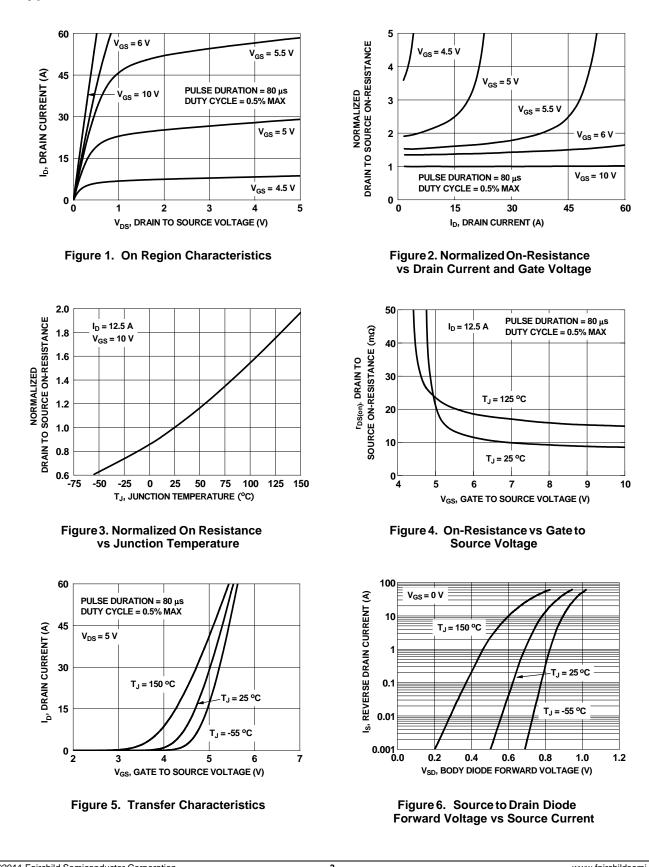
BV _{DSS}	Drain to Source Breakdown Voltage	$I_D = 250 \ \mu A, \ V_{GS} = 0 \ V$	100			V	
$\frac{\Delta BV_{DSS}}{\Delta T_J}$	Breakdown Voltage Temperature Coefficient	I_D = 250 $\mu A,$ referenced to 25 °C		72		mV/°C	
IDSS	Zero Gate Voltage Drain Current	V _{DS} = 80 V, V _{GS} = 0 V			1	μA	
I _{GSS}	Gate to Source Leakage Current	$V_{GS} = \pm 20 \text{ V}, \text{ V}_{DS} = 0 \text{ V}$			±100	nA	
	acteristics			1	-	1	
V _{GS(th)}	Gate to Source Threshold Voltage	$V_{GS} = V_{DS}, I_{D} = 250 \ \mu A$	2	2.8	4	V	
$\frac{\Delta V_{GS(th)}}{\Delta T_{J}}$	Gate to Source Threshold Voltage Temperature Coefficient	$I_D = 250 \ \mu\text{A}$, referenced to 25 °C		-10		mV/°C	
0		V _{GS} = 10 V, I _D = 12.5 A		8.5	10.2		
r _{DS(on)}	Static Drain to Source On Resistance	$V_{GS} = 6 \text{ V}, I_D = 9.8 \text{ A}$		11.3	16	mΩ	
20(0.1)		$V_{GS} = 10 \text{ V}, \text{ I}_{D} = 12.5 \text{ A}, \text{T}_{J} = 125^{\circ}\text{C}$		15	18	-	
9 _{FS}	Forward Transconductance	$V_{DS} = 10 \text{ V}, \text{ I}_{D} = 12.5 \text{ A}$		38		S	
Dynamic	Characteristics						
C _{iss}	Input Capacitance			1702	2265	pF	
C _{oss}	Output Capacitance	$V_{DS} = 50 \text{ V}, \text{ V}_{GS} = 0 \text{ V},$		379	505	pF	
C _{rss}	Reverse Transfer Capacitance	f = 1MHz		17	30	pF	
R _g	Gate Resistance			0.5		Ω	
	g Characteristics						
	Turn-On Delay Time			12	20	ns	
t _{d(on)}	Rise Time	V _{DD} = 50 V, I _D = 12.5 A,		5.4	10	ns	
t v.m	Turn-Off Delay Time	$V_{DD} = 30 \text{ V}, \text{ ID} = 12.3 \text{ A},$ $V_{GS} = 10 \text{ V}, \text{ R}_{GEN} = 6 \Omega$		19	35	ns	
t _{d(off)}	Fall Time			3.9	10	ns	
t _f Q _g	Total Gate Charge	$V_{GS} = 0 V$ to 10 V		25	35	nC	
Q _{gs}	Gate to Source Charge	$V_{DD} = 50 V,$		7.1		nC	
Q _{gs} Q _{gd}	Gate to Drain "Miller" Charge	I _D = 12.5 A		5.2		nC	
Drain-So	ource Diode Characteristics	V _{GS} = 0 V, I _S = 12.5 A (Note 2)		0.80	1.3	V	
V _{SD}	Source-Drain Diode Forward Voltage	$V_{GS} = 0 V, I_S = 2.6 A$ (Note 2)		0.72	1.2	v	
t _{rr}	Reverse Recovery Time			52	83	ns	
Q _{rr}	Reverse Recovery Charge	I _F = 12.5 A, di/dt = 100 A/μs		60	96	nC	
	sum of the junction-to-case and case-to-ambient thermal re ranteed by design while R _{0JA} is determined by the user's b a) 40 °C/W when mot 1 in ² pad of 2 oz co	unted on a b) 96 °C	d as the sold		g surface of t	ne drain pin	
		60000					

Test Conditions

Min

Тур

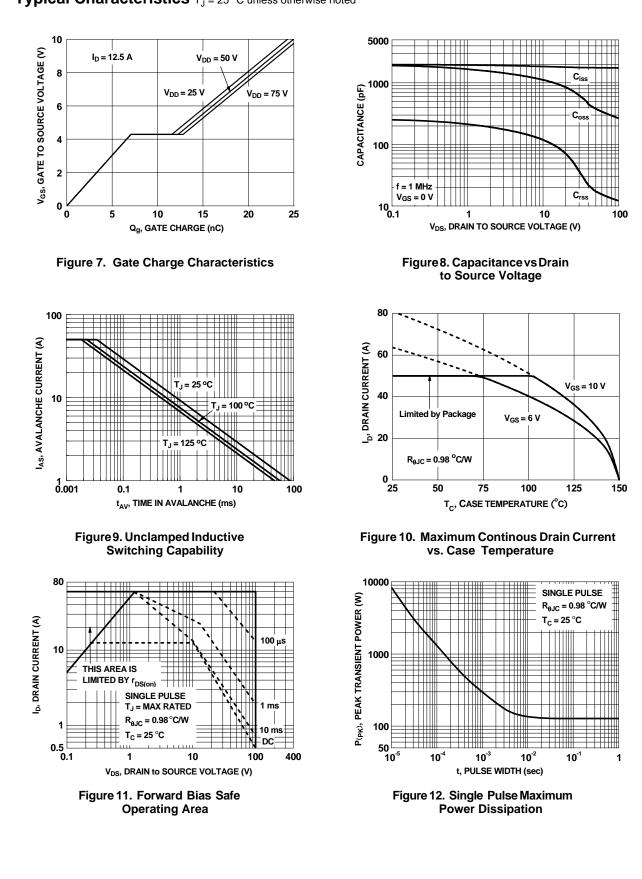
Max


Units

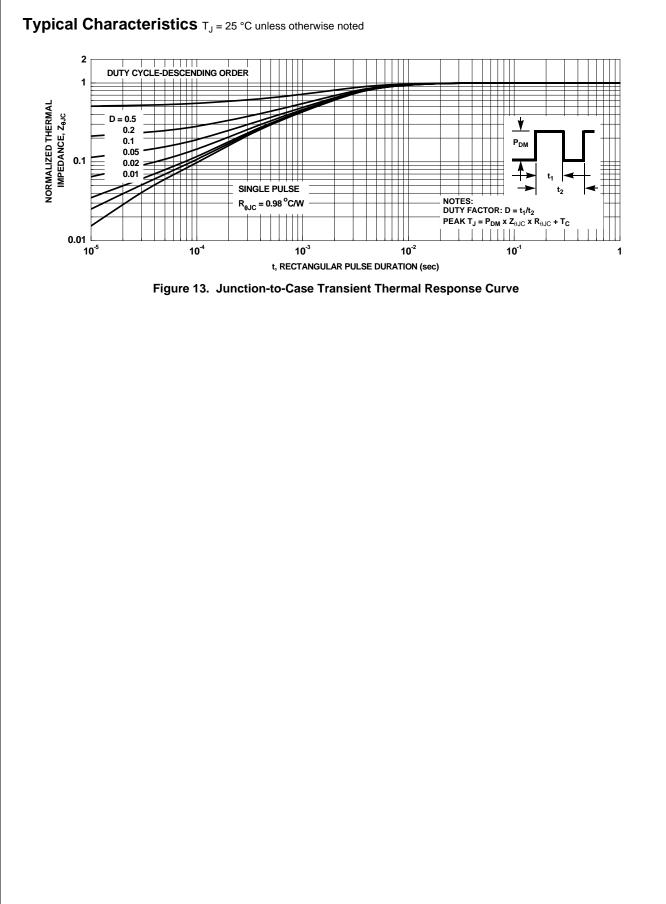
Electrical Characteristics $T_J = 25 \ ^{\circ}C$ unless otherwise noted

Parameter

Symbol


Off Characteristics

Typical Characteristics T_J = 25 °C unless otherwise noted


©2011 Fairchild Semiconductor Corporation FDD86110 Rev.C

Typical Characteristics T_J = 25 °C unless otherwise noted

©2011 Fairchild Semiconductor Corporation FDD86110 Rev.C

©2011 Fairchild Semiconductor Corporation

FDD86110 N-Channel PowerTrench[®] MOSFET

FDD86110 Rev.C

SEMICONDUCTOR

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

2Cool™	FPS™	PDP SPM™	The Power Franchise [®]
AccuPower™	F-PFS™	Power-SPM [™]	the ®
Auto-SPM™	FRFET®	PowerTrench [®]	puwer
AX-CAP™*	Global Power Resource SM	PowerXS™	 franchise TinyBoost™
BitSiC [®]	Green FPS™	Programmable Active Droop [™]	
Build it Now™	Green FPS™ e-Series™	QFET®	TinyBuck™ TinyColo™
CorePLUS™	Gmax™	QS™	TinyCalc™ TinyCalc™
CorePOWER™	GTO™	Quiet Series™	
CROSSVOLT™	IntelliMAX™	RapidConfigure™	TINYOPTO™ TinyPower™
CTL™	ISOPLANAR™	TM C	
Current Transfer Logic™	Marking Small Speakers Sound Lou	der 🔘	TinyPWM™ TinyWire™
	and Better™	Saving our world, 1mW/W/kW at a time™	TranSiC [®]
Dual Cool™	MegaBuck™	SignalWise™	TriFault Detect™
EcoSPARK [®]	MICROCOUPLER™	SmartMax™	TRUECURRENT®*
EfficentMax™	MicroFET™	SMART START™	μSerDes™
ESBC™	MicroPak™	Solutions for Your Success™	µ.Serbes
F R	MicroPak2 [™]	SPM®	μ
+ °	MillerDrive™	STEALTH™	/ SerDes
Fairchild [®]	MotionMax™	SuperFET®	UHC®
Fairchild Semiconductor®	Motion-SPM [™]	SuperSOT™-3	Ultra FRFET™
FACT Quiet Series™	mWSaver™	SuperSOT™-6	UniFET™
FACT®	OptoHiT™	SuperSOT [™] -8	VCXTM
FAST [®]	OPTOLOGIC®	SupreMOS®	VisualMax™
FastvCore™	OPTOPLANAR®	SyncFET™	VoltagePlus™
FETBench™	®	Sync-Lock™	XS™
FlashWriter [®] *	7 U.	SYSTEM ®*	
		GENERAL	

*Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used here in:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.Fairchildsemi.com, under Sales Support. Counterfeiting of semiconductor parts is a growing problem in the industry. All manufactures of semiconductor products are experiencing counterfeiting of their

parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handing and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS Definition of Terms

Advance information Portnative / In Design may change in any manner without notice. Preliminary First Production Datasheet contains preliminary data; supplementary data will be published at a date. Fairchild Semiconductor reserves the right to make changes at any time notice to improve design. No Identification Needed Full Production Datasheet contains final specifications. Fairchild Semiconductor reserves the make changes at any time without notice to improve the design.	Datasheet Identification	Product Status	Definition		
Preliminary First Production date. Fairchild Semiconductor reserves the right to make changes at any time notice to improve design. No Identification Needed Full Production Datasheet contains final specifications. Fairchild Semiconductor reserves the make changes at any time without notice to improve the design.	Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.		
No identification Needed Full Production make changes at any time without notice to improve the design.	Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.		
Detechent contains an aritigations on a product that is discontinued by Feirabil	No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.		
Obsolete Not In Production Datasheet contains specifications on a product that is discontinued by Pairchill Semiconductor. The datasheet is for reference information only.	Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.		