Features

－ 1.2 V to 5.5 V Input Voltage Operating Range
－Typical Ron：
－$\quad 20 \mathrm{~m} \Omega$ at $\mathrm{V}_{\mathbb{I N}}=5.5 \mathrm{~V}$
－$\quad 21 \mathrm{~m} \Omega$ at $\mathrm{V}_{\mathrm{IN}}=4.5 \mathrm{~V}$
－$\quad 37 \mathrm{~m} \Omega$ at $\mathrm{V}_{\text {IN }}=1.8 \mathrm{~V}$
－$\quad 75 \mathrm{~m} \Omega$ at $\mathrm{V}_{\text {IN }}=1.2 \mathrm{~V}$
－Slew Rate／Inrush Control with t_{R} ： 2.7 ms （Typical）
－3A Maximum Continuous Current Capability
－Output Capacitor Discharge Function on FPF1039
－Low $<1 \mu \mathrm{~A}$ Shutdown Current
－ESD Protected：Above 8kV HBM，1．5kV CDM
－GPIO／CMOS－Compatible Enable Circuitry

Applications

－HDD，Storage，and Solid－State Memory Devices
－Portable Media Devices，UMPC，Tablets，MIDs
－Wireless LAN Cards and Modules
－SLR Digital Cameras
－Portable Medical Devices
－GPS and Navigation Equipment
－Industrial Handheld and Enterprise Equipment

Description

The FPF1038／39 advanced load－management switches target applications requiring a highly integrated solution for disconnecting loads powered from DC power rail （＜6V）with stringent shutdown current targets and high load capacitances（up to $200 \mu \mathrm{~F}$ ）．The FPF1038／39 consists of slew－rate controlled low－impedance MOSFET switch（ $21 \mathrm{~m} \Omega$ typical）and other integrated analog features．The slew－rate controlled turn－on characteristic prevents inrush current and the resulting excessive voltage droop on power rails．
These devices have exceptionally low shutdown current drain（ $<1 \mu \mathrm{~A}$ maximum）that facilitates compliance in low standby power applications．The input voltage range operates from 1.2 V to 5.5 V DC to support a wide range of applications in consumer，optical，medical，storage， portable，and industrial device power management．
Switch control is managed by a logic input（active HIGH） capable of interfacing directly with low－voltage control signal／GPIO with no external pull－up required．The device is packaged in advanced fully＂green＂ 1 mm $x 1.5 \mathrm{~mm}$ Wafer－Level Chip－Scale Packaging（WLCSP）； providing excellent thermal conductivity，small footprint， and low electrical resistance for wider application usage．

Ordering Information

Part Number	Top Mark	Switch $\mathbf{R}_{\text {ON }}$ （Typical） at 4．5V $\mathbf{I N}^{\prime}$	Input Buffer	Output Discharge	ON Pin Activity	$\mathbf{t}_{\mathbf{R}}$	Package
FPF1038UCX	QE	$21 \mathrm{~m} \Omega$	CMOS	NA	Active HIGH	2.7 ms	C－Bump，WLCSP， 1.0 mm
FPF1039UCX	QF	$21 \mathrm{~m} \Omega$	CMOS	65Ω	Active HIGH	2.7 ms	$\times 1.5 \mathrm{~mm}, 0.5 \mathrm{~mm}$ Pitch

Application Diagram

Figure 1. Typical Application

Functional Block Diagram

Figure 2. Functional Block Diagram (Output Discharge for FPF1039 Only)

Pin Configuration

Figure 3. Top View

Figure 4. Bottom View

Pin Definitions

Pin \#	Name	Description
A1, B1	V $_{\text {OUT }}$	Switch Output
A2, B2	$V_{\text {IN }}$	Supply Input: Input to the Power Switch
C1	GND	Ground
C2	ON	ON/OFF Control, Active High - GPIO Compatible

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameters		Min.	Max.	Unit
$\mathrm{V}_{\text {IN }}$	$\mathrm{V}_{\text {IN }}, \mathrm{V}_{\text {OUt }}, \mathrm{V}_{\text {ON }}$ to GND		-0.3	6.0	V
Isw	Maximum Continuous Switch Current			3	A
P_{D}	Power Dissipation at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			1.2	W
TSTG	Storage Junction Temperature		-65	+150	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {A }}$	Operating Temperature Range		-40	+85	${ }^{\circ} \mathrm{C}$
$\Theta_{J A}$	Thermal Resistance, Junction-to-Ambient			$85^{(1)}$	${ }^{\circ} \mathrm{C} / \mathrm{W}$
ESD	Electrostatic Discharge Capability	Human Body Model, JESD22-A114	8.0		kV
		Charged Device Model, JESD22-C101	1.5		

Notes:

1. Measured using 2S2P JEDEC std. PCB
2. Measured using 2S2P JEDEC PCB COLD PLATE method.

Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not recommend exceeding them or designing to Absolute Maximum Ratings.

Symbol	Parameters	Min.	Max.	Unit
V_{IN}	Input Voltage	1.2	5.5	V
$\mathrm{~T}_{\mathrm{A}}$	Ambient Operating Temperature	-40	+85	${ }^{\circ} \mathrm{C}$

Electrical Characteristics

Unless otherwise noted, $\mathrm{V}_{I N}=1.2$ to 5.5 V and $\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$; typical values are at $\mathrm{V}_{I N}=4.5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

Symbol	Parameters	Conditions	Min.	Typ.	Max.	Units
Basic Operation						
$\mathrm{V}_{\text {IN }}$	Input Voltage		1.2		5.5	V
$\mathrm{I}_{\text {Q(OFF) }}$	Off Supply Current	$\mathrm{V}_{\text {ON }}=\mathrm{GND}, \mathrm{V}_{\text {OUT }}=$ Open			1.0	$\mu \mathrm{A}$
$I_{\text {SD }}$	Shutdown Current	$\mathrm{V}_{\text {ON }}=\mathrm{GND}, \mathrm{V}_{\text {OUT }}=\mathrm{GND}$		0.2	1.0	$\mu \mathrm{A}$
I_{Q}	Quiescent Current	l Out $=0 \mathrm{~mA}$		5.5	8.0	$\mu \mathrm{A}$
R_{ON}	On Resistance	$\mathrm{V}_{\text {IN }}=5.5 \mathrm{~V}$, $\mathrm{l}_{\text {OUT }}=1 \mathrm{~A}^{(3)}$		20	24	$m \Omega$
		$\mathrm{V}_{\text {IN }}=4.5 \mathrm{~V}$, I Iout $=1 \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		21	25	
		$\mathrm{V}_{\mathrm{IN}}=3.3 \mathrm{~V}$, $\mathrm{l}_{\text {OUT }}=500 \mathrm{~mA}^{(3)}$		24	29	
		$\mathrm{V}_{\text {IN }}=2.5 \mathrm{~V}$, I lout $=500 \mathrm{~mA}^{(3)}$		28	35	
		$\mathrm{V}_{\text {IN }}=1.8 \mathrm{~V}$, $\mathrm{I}_{\text {OUT }}=250 \mathrm{~mA}^{(3)}$		37	45	
		$\mathrm{V}_{\text {IN }}=1.2 \mathrm{~V}, \mathrm{l}_{\text {OUT }}=250 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		75	100	
$\mathrm{R}_{\text {PD }}$	Output Discharge Rpull down	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{ON}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{FORCE}}=20 \mathrm{~mA}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{FPF} 1039 \text { Only } \end{aligned}$		65	85	Ω
V_{IH}	On Input Logic HIGH Voltage		1.0			V
VIL	On Input Logic LOW Voltage				0.4	V
Ion	On Input Leakage	FPF1038			1.0	$\mu \mathrm{A}$
		FPF1039			1.5	

Dynamic Characteristics

toon	Turn-On Delay ${ }^{(4)}$	$\begin{aligned} & V_{I N}=4.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=5 \Omega, \mathrm{C}_{\mathrm{L}}=100 \mu \mathrm{~F}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	1.7	ms
t_{R}	$\mathrm{V}_{\text {Out }}$ Rise Time ${ }^{(4)}$		2.7	ms
ton	Turn-On Time ${ }^{(6)}$		4.4	ms
$\mathrm{t}_{\text {DOFF }}$	Turn-Off Delay ${ }^{(4)}$	$\mathrm{V}_{\text {IN }}=4.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=150 \Omega, \mathrm{C}_{\mathrm{L}}=100 \mu \mathrm{~F}$, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, FPF1038 (No Load Discharge)	2.0	ms
t_{F}	$V_{\text {Out }}$ Fall Time ${ }^{(4)}$		30.0	ms
toff	Turn-Off ${ }^{(7)}$		32.0	ms
$\mathrm{t}_{\text {DOFF }}$	Turn-Off Delay ${ }^{(4,5)}$	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=4.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=150 \Omega, \mathrm{C}_{\mathrm{L}}=100 \mu \mathrm{~F}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} ; \mathrm{FPF}^{2} 039^{55)} \end{aligned}$	0.5	ms
t_{F}	$V_{\text {out }}$ Fall Time ${ }^{(4,5)}$		10.0	ms
toff	Turn-Off ${ }^{(5,7)}$		10.5	ms

Notes:

3. This parameter is guaranteed by design and characterization; not production tested.
4. $t_{\text {DON }} / t_{\text {DOFF }} / t_{R} / t_{F}$ are defined in Figure 36.
5. Output discharge enabled during off-state.
6. $t_{\mathrm{ON}}=\mathrm{t}_{\mathrm{R}}+\mathrm{t}_{\mathrm{DON}}$
7. $t_{\text {OFF }}=t_{\text {F }}+t_{\text {DOFF }}$

Typical Characteristics

Figure 5. Shutdown Current vs. Temperature

Figure 7. Off Supply Current vs. Temperature (FPF1038, V ${ }_{\text {out }}$ Floating)

Figure 9. Off Supply Current vs. Temperature (FPF1039, $\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$)

Figure 6. Shutdown Current vs. Supply Voltage

Figure 8. Off Supply Current vs. Supply Voltage (FPF1038, V ${ }_{\text {OUT }}$ Floating)

Figure 10. Off Supply Current vs. Supply Voltage $\left(\right.$ FPF1039, $\left.\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}\right)$

Typical Characteristics (Continued)

Figure 11. Quiescent Current vs. Temperature

Figure 13. Quiescent Current vs. On Voltage ($\mathrm{V}_{\mathrm{IN}}=4.5 \mathrm{~V}$)

Figure 15. Output Discharge Resistor RPD vs. Temperature (FPF1039 Only)

Figure 12. Quiescent Current vs. Supply Voltage

Figure 14. Quiescent Current vs. On Voltage $\left(\mathrm{V}_{\mathrm{IN}}=5.5 \mathrm{~V}\right)$

Figure 16. Output Discharge Resistor RPD vs. Supply Voltage (FPF1039 Only)

Typical Characteristics (Continued)

Figure 17. Ron vs. Temperature

Figure 19. On Pin Threshold Low vs. Temperature

Figure 21. On Pin Threshold High vs. Temperature

Figure 23. On Pin Threshold vs. Supply Voltage

Figure 18. Ron vs. Supply Voltage

Figure 20. On Pin Threshold Low vs. V_{IN}

Figure 22. On Pin Threshold High vs. Vin

Figure 24. Isw vs. $\left(\mathrm{V}_{\mathrm{IN}}-\mathrm{V}_{\text {OUT }}\right)$ — SOA

Typical Characteristics (Continued)

Figure 25. $\quad t_{R} / t_{\text {DoN }}$ vs. Temperature (FPF1038)

Figure 27. $\quad t_{R}$ Vs. Supply Voltage

Figure 29. $\quad t_{R} / t_{F}$ vs. Temperature (FPF1038)

Figure 26. $\quad t_{R} / t_{\text {DoN }}$ vs. Temperature (FPF1039)

Figure 28. $\quad t_{R}$ vs. Supply Voltage

Figure 30. $\quad t_{R} / t_{F}$ vs. Temperature (FPF1039)

Typical Characteristics (Continued)

Figure 31. Turn-On Response ($\mathrm{V}_{\mathrm{IN}}=4.5 \mathrm{~V}, \mathrm{C}_{\mathrm{IN}}=10 \mu \mathrm{~F}$, $\mathrm{C}_{\mathrm{L}}=1 \mu \mathrm{~F}, \mathrm{R}_{\mathrm{L}}=50 \Omega$)

Figure 33. Turn-Off Response ($\mathrm{V}_{\mathrm{IN}}=4.5 \mathrm{~V}, \mathrm{C}_{\mathrm{IN}}=10 \mu \mathrm{~F}$, $\mathrm{C}_{\mathrm{L}}=100 \mu \mathrm{~F}$, FPF1039 without External RL)

Figure 35. Fall Time as a Function of External Capacitive Load (RL=5 $\Omega, 50 \Omega$, and 500Ω)(FPF1039)

Figure 32. Turn-On Response ($\mathrm{V}_{\mathrm{IN}}=4.5 \mathrm{~V}, \mathrm{C}_{\mathrm{IN}}=10 \mu \mathrm{~F}$, $C_{L}=100 \mu F, R_{L}=5 \Omega$)

Figure 34. Fall Time as a Function of External Resistive Load ($\mathrm{C}_{\mathrm{L}}=1 \mu \mathrm{~F}, 10 \mu \mathrm{~F}$, and $100 \mu \mathrm{~F}$) (FPF 1039)

Figure 36. Timing Diagram

Application Information

Input Capacitor

This IntelliMAX ${ }^{\text {TM }}$ switch doesn't require an input capacitor. To reduce device inrush current, a $0.1 \mu \mathrm{~F}$ ceramic capacitor, C_{IN}, is recommended close to the VIN pin. A higher value of $\mathrm{C}_{\text {IN }}$ can be used to reduce the voltage drop experienced as the switch is turned on into a large capacitive load.

Output Capacitor

While this switch works without an output capacitor: if parasitic board inductance forces Vout below GND when switching off; a $0.1 \mu \mathrm{~F}$ capacitor, $\mathrm{C}_{\text {out }}$, should be placed between $\mathrm{V}_{\text {out }}$ and GND.

Fall Time

Device output fall time can be calculated based on RC constant of the external components as follows:

$$
\begin{equation*}
t_{F}=R_{L} \times C_{L} \times 2.2 \tag{1}
\end{equation*}
$$

where t_{F} is 90% to 10% fall time, R_{L} is output load, and C_{L} is output capacitor.

The same equation works for a device with a pull-down output resistor. R_{L} is replaced by a parallel connected pull-down and an external output resistor combination as:

$$
\begin{equation*}
t_{F}=\frac{R_{L} \times R_{P D}}{R_{L}+R_{P D}} \times C_{L} \times 2.2 \tag{2}
\end{equation*}
$$

where t_{F} is 90% to 10% fall time, R_{L} is output load, $R_{P D}=65 \Omega$ is output pull-down resistor, and C_{L} is the output capacitor.

Resistive Output Load

If resistive output load is missing, the IntelliMAX switch without a pull-down output resistor does not discharge the output voltage. Output voltage drop depends, in that case, mainly on external device leaks.

Application Specifics

Figure 37. Device Setup

At maximum operational voltage ($\mathrm{V}_{1 \mathrm{~N}}=5.5 \mathrm{~V}$), device inrush current might be higher than expected. Spike current should be taken into account if $\mathrm{V}_{\operatorname{IN}}>5 \mathrm{~V}$ and the output capacitor is much larger than the input capacitor. Input current can be calculated as:

$$
\begin{equation*}
\mathrm{I}_{\mathrm{IN}}(\mathrm{t}) \approx \frac{\mathrm{V}_{\mathrm{OUT}}(\mathrm{t})}{\mathrm{R}_{\text {LOAD }}}+\left(\mathrm{C}_{\text {LOAD }}-\mathrm{C}_{\text {IN }}\right) \frac{d \mathrm{~V}_{\mathrm{OUT}}(\mathrm{t})}{\mathrm{dt}} \tag{3}
\end{equation*}
$$

where switch and wire resistances are neglected and capacitors are assumed ideal.

Estimating $\mathrm{V}_{\text {OUT }}(\mathrm{t})=\mathrm{V}_{\text {IN }} / 10$ and using experimental formula for slew rate ($\mathrm{dV} \mathrm{V}_{\text {Out }}(\mathrm{t}) / \mathrm{dt}$), spike current can be written as:

$$
\begin{equation*}
\max \left(\mathrm{I}_{\mathrm{IN}}\right)=\frac{\mathrm{V}_{\mathbb{I N}}}{10 \mathrm{R}_{\mathrm{LOAD}}}+\left(\mathrm{C}_{\mathrm{LOAD}}-\mathrm{C}_{\mathrm{IN}}\right)\left(0.05 \mathrm{~V}_{\mathrm{IN}}-0.255\right) \tag{4}
\end{equation*}
$$

where supply voltage $\mathrm{V}_{\mathbb{I N}}$ is in volts, capacitances are in micro farads, and resistance is in ohms.

Example: If $\mathrm{V}_{\mathrm{IN}}=5.5 \mathrm{~V}, \mathrm{C}_{\text {LOAD }}=100 \mu \mathrm{~F}, \mathrm{C}_{\mathrm{IN}}=10 \mu \mathrm{~F}$, and $R_{\text {LOAD }}=50 \Omega$; calculate the spike current by:

$$
\begin{equation*}
\max \left(\mathrm{l}_{\mathrm{N}}\right)=\frac{5.5}{10^{*} 50}+(100-10)\left(0.05^{*} 5.5-0.255\right) \mathrm{A}=1.8 \mathrm{~A} \tag{5}
\end{equation*}
$$

Maximum spike current is 1.8 A , while average ramp-up current is:
$\mathrm{I}_{\mathrm{IN}}(\mathrm{t}) \approx \frac{\mathrm{V}_{\text {OUT }}(\mathrm{t})}{\mathrm{R}_{\text {LOAD }}}+\left(\mathrm{C}_{\text {LOAD }}-\mathrm{C}_{\text {IN }}\right) \frac{\mathrm{d} \mathrm{V}_{\text {IN }}(\mathrm{t})}{\mathrm{dt}}$
$\approx 2.75 / 50+100 * 0.0022=0.275 \mathrm{~A}$

Output Discharge

FPF1039 contains a 65Ω on-chip pull-down resistor for quick output discharge. The resistor is activated when the switch is turned off.

Recommended Layout

For best thermal performance and minimal inductance and parasitic effects, it is recommended to keep input and output traces short and capacitors as close to the device as possible. Figure 38 is a recommended layout for this device to achieve optimum performance.

Figure 38. Recommended Land Pattern, Layout

Physical Dimensions

NOTES:
A. NO JEDEC REGISTRATION APPLIES.

B. DIMENSIONS ARE IN MILLIMETERS.
C. DIMENSIONS AND TOLERANCE PER ASMEY14.5M, 1994.

D. DATUM C IS DEFINED BY THE SPHERICAL CROWNS OF THE BALLS.
E. PACKAGE NOMINAL HEIGHT IS 582 MICRONS ± 43 MICRONS (539-625 MICRONS).
F. FOR DIMENSIONS D, E, X, AND Y SEE PRODUCT DATASHEET.
bOTTOM VIEW
G. DRAWING FILNAME: MKT-UC006AFrev2.

Figure 39. 6 Ball, $1.0 \times 1.5 \mathrm{~mm}$ Wafer-Level Chip-Scale Packaging (WLCSP)

Product-Specific Dimensions

Product	D	E	X	Y
FPF1038UCX	$1.5 \mathrm{~mm}+/-0.03$	$1.0 \mathrm{~mm}+/-0.03$	0.240 mm	0.240 mm
FPF1039UCX				

Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings:
http://hww.fairchildsemi.com/packagingl.

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'SWORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.
LIFE SUPPORT POLICY
FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our extemal website, www.fairchildsemi.com, under Sales Support.
Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to procect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handing and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS
Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.

