

March 2012

FJAFS1510A ESBCTM Rated NPN Power Transistor

Applications

- High Voltage and High Speed Power Switch Application
- Emitter-Switched Bipolar/MOSFET Cascode Application (ESBCTM)
- Smart Meter, Smart Breakers, SMPS, HV Industrial Power Supplies
- · Motor Driver and Ignition Driver

ESBC Features (FDC655 MOSFET)

V _{CS(ON)}	Ic	Equiv R _{CS(ON)}
0.426 V	6 A	0.071 Ω *

- · Low Equivalent On Resistance
- · Very Fast Switch: 150KHz
- · Avalanche Rated
- · Low Driving Capacitance, no Miller Capacitance
- · Low Switching Losses
- Reliable HV switch: No False Triggering due to High dv/dt Transients.

Description

The FJAFS1510A is a low-cost, high performance power switch designed to provide the best performance when used in an ESBCTM configuration in applications such as: power supplies, motor drivers, Smart Grid, or ignition switches. The power switch is designed to operate up to 1550 volts and up to 6amps while providing exceptionally low on-resistance and very low switching losses.

The ESBCTM switch is designed to be easy to drive using off-the-shelf power supply controllers or drivers. The ESBCTM MOSFET is a low-voltage, low-cost, surface mount device that combines low-input capacitance and fast switching, The ESBCTM configuration further minimizes the required driving power because it does not have Miller capacitance.

The FJAFS1510A provides exceptional reliability and a large operating range due to its square reverse-bias-safe-operating-area (RBSOA) and rugged design. The device is avalanche rated and has no parasitic transistors so is not prone to static dv/dt failures.

The power switch is manufactured using a dedicated high-voltage bipolar process and is packaged in a high-voltage TO-3PF package.

Figure 1. Pin Configuration

Figure 2. Internal Schematic Diagram

Figure 3. ESBC Configuration**

Ordering Information

Part Number	Marking	Package	Packing Method	Remarks
FJAFS1510ATU	J1510A	TO-3PF	TUBE	

^{*} Figure of Merit

© 2012 Fairchild Semiconductor Corporation FJAFS1510A Rev. A1

www.fairchildsemi.com

^{**} Other Fairchild MOSFETs can be used in this ESBC application.

Absolute Maximum Ratings * $T_a = 25$ °C unless otherwise noted

Symbol	Parameter	Value	Units
V _{CBO}	Collector-Base Voltage	1550	V
V _{CEO}	Collector-Emitter Voltage	750	V
V _{EBO}	Emitter-Base Voltage	6	V
I _C	Collector Current (DC)	6	А
P _C	Collector Dissipation (T _C = 25°C)	60	W
T _J	Operating and Junction Temperature Range	-55 to +125	°C
T _{STG}	Storage Temperature Range	-55 to +150	°C

^{*} Pulse Test: Pulse Width = 5 ms, Duty Cycle ≤ 10%

Thermal Characteristics $T_a = 25$ °C unless otherwise note

	Symbol	Parameter	Max.	Units	
Ī	$R_{\theta jC}$	Thermal Resistance, Junction to Case	2.08	°C/W	

Electrical Characteristics $T_a = 25$ °C unless otherwise noted

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Units
I _{CES}	Collector Cut-off Current	V _{CB} =1400V, R _{BE} =0			100	μΑ
I _{CBO}	Collector Cut-off Current	V_{CB} =800V, I_{E} =0			10	μΑ
I _{EBO}	Emitter Cut-off Current	V_{EB} =4V, I_{C} =0			100	μΑ
BV _{EBO}	Base-Emitter Breakdown Voltage	I _E =500μA, I _C =0	6			V
h _{FE1}	DC Current Gain	V _{CE} =5V, I _C =0.5A	15			
h _{FE2}		$V_{CE}=5V$, $I_{C}=3A$	7			
V _{CE} (sat)	Collector-Emitter Saturation	I _C =6A, I _B =1.5A, T _a =125°C		0.5		V
	Voltage					
C _{ob}	Output Capacitance	V _{CB} =200V, I _E =0, f=1MHz		27		pF

ESBC Configured Electrical Characteristics * $T_a = 25$ °C unless otherwise noted

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Units
f _T	Current Gain Bandwidth Product	I _C =0.1A,V _{CE} =10V		15.4		MHz
lt _f	Inductive Current Fall Time	$V_{GS}=10V$, $R_{G}=47\Omega$,		115		ns
t _s	Inductive Storage Time	V _{Clamp} =500V,		670		ns
Vt _f	Inductive Voltage Fall Time	I _C =1A, I _B =0.1A, h _{FE} =10		160		ns
Vt _r	Inductive Voltage Rise Time	L _C =1mH,		95		ns
t _c	Inductive Crossover Time	SRF=350KHz		130		ns
lt _f	Inductive Current Fall Time	V_{GS} =10V, R_{G} =47 Ω ,		12.5		ns
t _s	Inductive Storage Time	V _{Clamp} =500V,		1100		ns
Vt _f	Inductive Voltage Fall Time	I _C =5A, I _B =1A, h _{FE} =5		68		ns
Vt _r	Inductive Voltage Rise Time	L _C =1mH,		110		ns
t _c	Inductive Crossover Time	SRF=350KHz		150		ns
V _{CSW}	Maximum Collector Source Voltage at Turn-off without Snubber	h _{FE} =5, I _C =6A	1550			V
I _{GS(OS)}	Gate-Source Leakage Current	V _{GS} =±20V		1.0		nA
V _{CS(ON)}	Collector-Source On Voltage	$\begin{array}{c} V_{GS}{=}10V,\ I_{C}{=}6A,\ I_{B}{=}2A,\ h_{FE}{=}3\\ V_{GS}{=}10V,\ I_{C}{=}4A,\ I_{B}{=}1.3A,\ h_{FE}{=}3\\ V_{GS}{=}10V,\ I_{C}{=}2A,\ I_{B}{=}0.67A,\ h_{FE}{=}3\\ V_{GS}{=}10V,\ I_{C}{=}1A,\ I_{B}{=}0.2A,\ h_{FE}{=}5\\ \end{array}$		0.426 0.213 0.162 0.141		V V V
V _{GS(th)}	Gate Threshold Voltage	$V_{BS}=V_{GS}$, $I_{B}=250\mu A$		1.9		V
C _{iss}	Input Capacitance (V _{GS} =V _{CB} =0)	V _{CS} =25V, f=1MHz		470		pF
Q _{GS(tot)}	Gate-Source Change V _{CB} =0	V _{GS} =10V, I _C =6A, V _{CS} =25V		9		nC
r _{DS(ON)}	Static Drain to Source On Resistance	V_{GS} =10V, I_{D} =6.3A V_{GS} =10V, I_{D} =6.3A, T_{a} =125°C V_{GS} =4.5V, I_{D} =5.5A		21 30 26		$m\Omega$ $m\Omega$ $m\Omega$

^{*} Used typical FDC655 MOSFET specifications in table. Table could vary if other Fairchild MOSFETs are used.

Typical Performance Characteristics

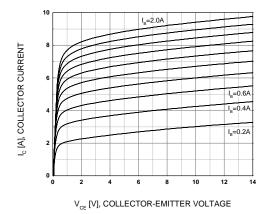


Figure 1. Static Characteristic

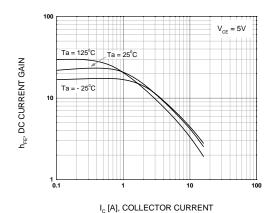


Figure 2. DC current Gain

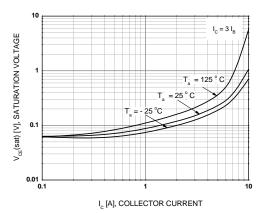


Figure 3. Collector-Emitter Saturation Voltage h_{FE} =3

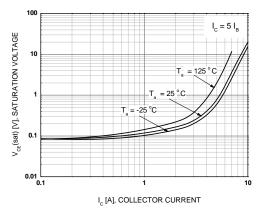


Figure 4. Collector-Emitter Saturation Voltage $\mathbf{h}_{\text{FE}}\text{=}\mathbf{5}$

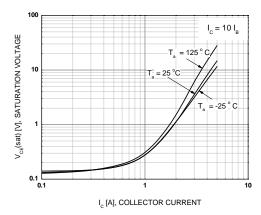


Figure 5. Collector-Emitter Saturation Voltage h_{FE} =10

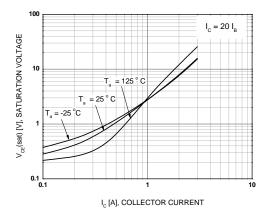


Figure 6. Collector-Emitter Saturation Voltage h_{FE} =20

Typical Performance Characteristics (Continued)

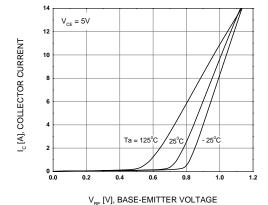


Figure 7. Base-Emitter On Voltage

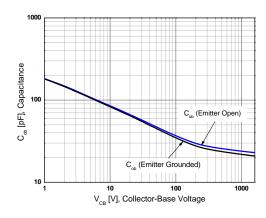


Figure 8. Capacitance

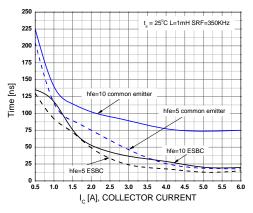


Figure 9. Inductive Load Collector Current Fall-time (t_f)

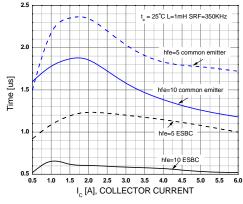


Figure 10. Inductive Load Collector Current Storage time (t_{stq})

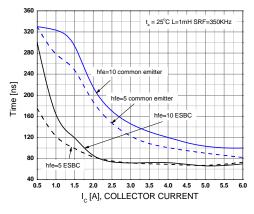


Figure 11. Inductive Load Collector Voltage Fall-time (t_f)

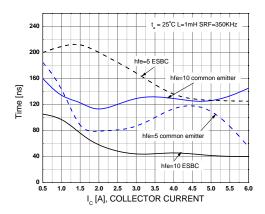


Figure 12. Inductive Load Collector Voltage Rise-time (t_r)

Typical Performance Characteristics (Continued)

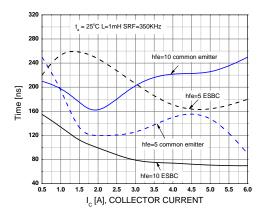


Figure 13. Inductive Load Collector Current/Voltage Crossover (t_c)

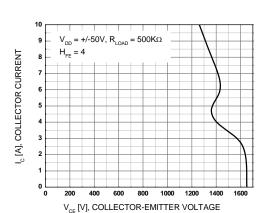


Figure 15. ESBC RBSOA

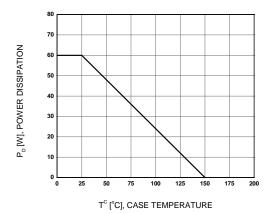


Figure 17. Power Derating

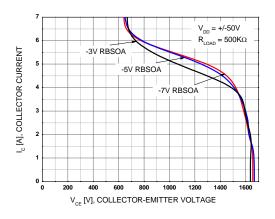


Figure 14. Reverse Bias Safe Operating Area

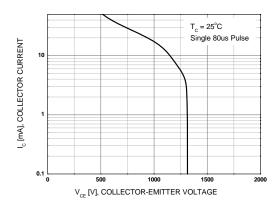


Figure 16. Forward Bias Safe Operating Area

Test Circuits

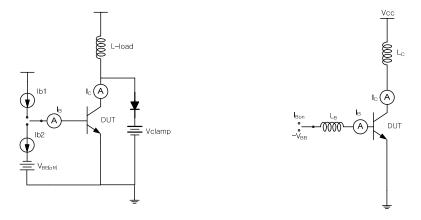


Fig1. Test Circuit For Inductive Load and Reverse Bias Safe Operating

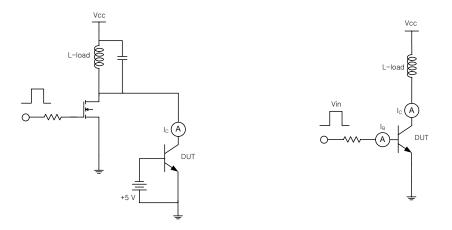


Fig2. Energy Rating Test Circuit

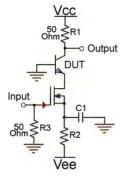


Fig3. Ft Measurement

Fig4. FBSOA

Test Circuits (Continued)

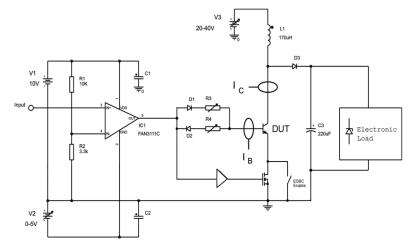
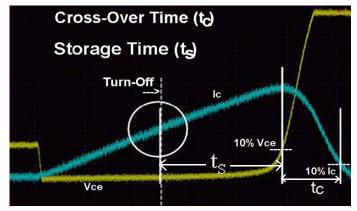



Figure 5. Simplified Saturated Switch Driver Circuit

Functional Test Waveforms

Figure 1. Crossover Time Measurement

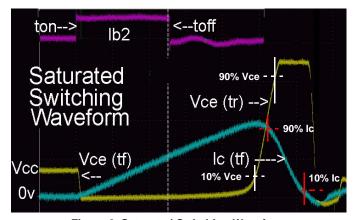


Figure 2. Saturated Switching Waveform

Functional Test Waveforms (Continued)

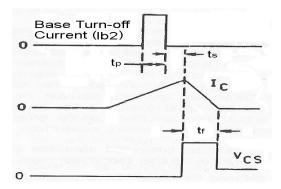


Figure 3. Storage Time - Common Emitter Base turn off (lb2) to Ic Fall-time

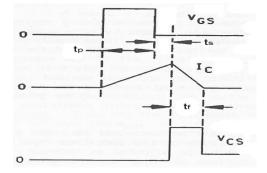
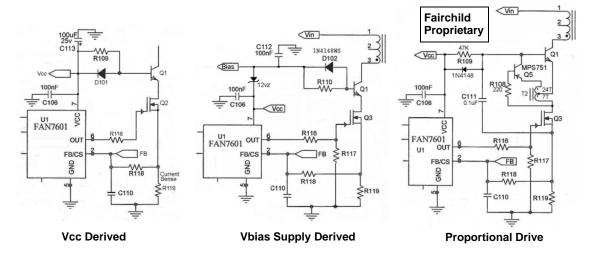


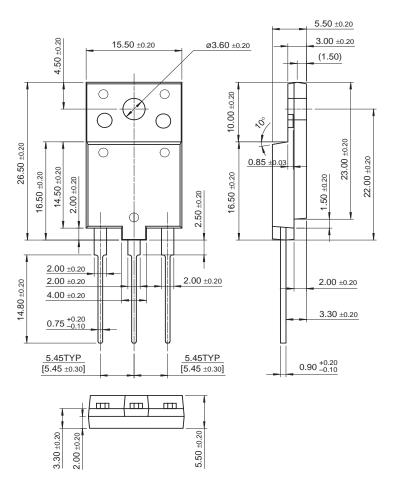

Figure 4. Storage Time - ESBC FET Gate (off) to Ic Fall-time


Very Wide Input Voltage Range Supply

- 30watt; SecReg: 3 cap input; Quasi Resonant

* Make short as possible

Driving ESBC Switches



© 2012 Fairchild Semiconductor Corporation FJAFS1510A Rev. A1

ctor Corporation www.fairchildsemi.com

Physical Dimensions

TO-3PF

Dimensions in Millimeters

SEMICONDUCTOR

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

2Cool™ AccuPower™ AX-CAP™* BitSiC™ Build it Now™ CorePLUS™

CorePOWER™ $CROSSVOLT^{\text{\tiny IM}}$ CTI ™ Current Transfer Logic™

DEUXPEED[®] Dual Cool™ EcoSPARK® EfficientMax™ ESBC™ ®

Fairchild® Fairchild Semiconductor® FACT Quiet Series™ FACT® FAST® FastvCore™ FETBench™ FlashWriter®*

FRFET® Global Power ResourceSM GreenBridge™ Green FPS™

Green FPS™ e-Series™ Gmax™ GTO™ IntelliMAX™ ISOPLANAR™

Making Small Speakers Sound Louder and Better™

MegaBuck™ MICROCOUPLER™ MicroFET™ MicroPak™ MicroPak2™ MillerDrive™ MotionMax™

Motion-SPM™ mWSaver™ OptoHiT^{TN} OPTOLOGIC® **OPTOPLANAR®** PowerTrench® PowerXS™

Programmable Active Droop™

OFET QSTM. Quiet Series™ RapidConfigure™

Saving our world, 1mW/W/kW at a time™

SignalWise™ SmartMax™ SMART START™

Solutions for Your Success™

SPM® STEALTH™ SuperFET® SuperSOT**-3 SuperSOT™-6 SuperSOT™-8 SupreMOS® SyncFET™ Sync-Lock™ SYSTEM GENERAL®* The Power Franchise®

puwer franchise TinyBoost™ TinyBuck™ TinyCalc™ TinyLogic[®] TINYOPTO™ TinyPower™ TinyPWM™ TinyWire™ TranSiC™ TriFault Detect™ TRUECURRENT®* μSerDes™

UHC Ultra FRFET™ UniFET™ VCX™ VisualMax™ VoltagePlus™

* Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN, FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- 2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Deminition of Terms		
Datasheet Identification		Definition
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.

Rev. I61