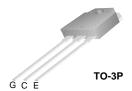
FGA50N100BNTD

1000V, 50A NPT-Trench IGBT CO-PAK

General Description


Trench insulated gate bipolar transistors (IGBTs) with NPT technology show outstanding performance in conduction and switching characteristics as well as enhanced avalanche ruggedness. These devices are well suited for Induction Heating (I-H) applications

Features

- High Speed Switching
- Low Saturation Voltage : $V_{CE(sat)} = 2.5 \text{ V} @ I_{C} = 60 \text{A}$
- High Input Impedance
- Built-in Fast Recovery Diode

Application

Micro- Wave Oven, I-H Cooker, I-H Jar, Induction Heater, Home Appliance

Absolute Maximum Ratings T_C = 25°C unless otherwise noted

Symbol	Description		FGA50N100BNTD	Units
V _{CES}	Collector-Emitter Voltage		1000	V
V _{GES}	Gate-Emitter Voltage		± 25	V
	Collector Current	@ T _C = 25°C	50	Α
I _C	Collector Current	@ T _C = 100°C	35	Α
I _{CM (1)}	Pulsed Collector Current		200	Α
I _F	Diode Continuous Forward Current	@ T _C = 100°C	15	Α
P _D	Maximum Power Dissipation	@ T _C = 25°C	156	W
	Maximum Power Dissipation	@ T _C = 100°C	63	W
T _J	Operating Junction Temperature		-55 to +150	°C
T _{stg}	Storage Temperature Range		-55 to +150	°C
TL	Maximum Lead Temp. for soldering Purposes, 1/8" from case for 5 seconds	3	300	°C

Notes:
(1) Repetitive rating: Pulse width limited by max. junction temperature

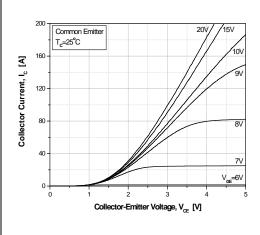
Thermal Characteristics

Symbol	Parameter	Тур.	Max.	Units
R _{θJC} (IGBT)	Thermal Resistance, Junction-to-Case		0.8	°C/W
$R_{\theta JC}(DIODE)$	Thermal Resistance, Junction-to-Case		2.4	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient		25	°C/W

Package Marking and Ordering Information

Device Marking	Device	Package	Packaging Type Qty per Tube		Max Qty per Box
FGA50N100BNTD	FGA50N100BNTDTU	TO-3PN	Rail / Tube	30ea	•

Electrical Characteristics of IGBT To - 25°C unless otherwise noted


Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Units
Off Cha	racteristics					
BV _{CES}	Collector Emitter Breakdown Voltage	$V_{GE} = 0V, I_{C} = 1mA$	1000			V
I _{CES}	Collector Cut-Off Current	$V_{CE} = 1000V, V_{GE} = 0V$			1.0	mA
I _{GES}	G-E Leakage Current	$V_{GE} = \pm 25, V_{CE} = 0V$			± 500	nA
On Chai	racteristics					
$V_{GE(th)}$	G-E Threshold Voltage	$I_C = 60 \text{mA}, V_{CE} = V_{GE}$	4.0	5.0	7.0	V
V _{CE(sat)}	Collector to Emitter	$I_C = 10A$, $V_{GE} = 15V$		1.5	1.8	V
	Saturation Voltage	$I_C = 60A$, $V_{GE} = 15V$		2.5	2.9	>
-	c Characteristics					
C _{ies}	Input Capacitance	V 10V V 0V		6000		pF
C _{oes}	Output Capacitance	$V_{CE} = 10V_{,} V_{GE} = 0V_{,}$ f = 1MHz		260		рF
C _{res}	Reverse Transfer Capacitance	1 = 1101112		200		pF
Switchir	ng Characteristics					
t _{d(on)}	Turn-On Delay Time	V 000 V I 00A		140		ns
t _r	Rise Time	$V_{CC} = 600 \text{ V}, I_{C} = 60\text{A},$		320		ns

	9				
t _{d(on)}	Turn-On Delay Time	$V_{CC} = 600 \text{ V}, I_{C} = 60\text{A},$ $R_{G} = 51\Omega, V_{GE} = 15\text{V},$ Resistive Load, $T_{C} = 25^{\circ}\text{C}$	 140		ns
t _r	Rise Time		 320		ns
t _{d(off)}	Turn-Off Delay Time		 630		ns
t _f	Fall Time	10000110 E0dd, 10 = 20 0	 130	250	ns
Q _g	Total Gate Charge	V 600 V I 60A	 275	350	nC
Q _{ge}	Gate-Emitter Charge	$V_{CE} = 600 \text{ V}, I_{C} = 60\text{A},$ $V_{GE} = 15\text{V}, T_{C} = 25^{\circ}\text{C}$	 45		nC
Q_{gc}	Gate-Collector Charge	VGE = 13V,, 1C = 23 O	 95		nC

Electrical Characteristics of DIODE $T_C = 25^{\circ}C$ unless otherwise noted

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Units
V	Diode Forward Voltage	I _F = 15A		1.2	1.7	V
V_{FM}		I _F = 60A		1.8	2.1	V
t _{rr}	Diode Reverse Recovery Time	$I_F = 60A di/dt = 20 A/us$		1.2	1.5	us
l _R	Instantaneous Reverse Current	VRRM = 1000V		0.05	2	uA

Downloaded from Elcodis.com electronic components distributor

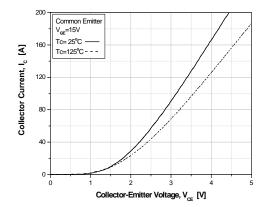
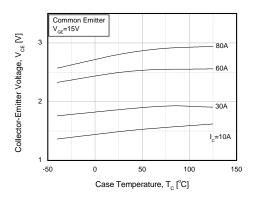



Fig 1. Typical Output Characteristics

Fig 2. Typical Saturation Voltage Characteristics

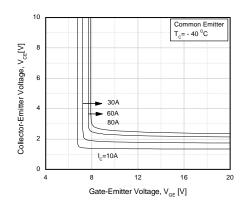
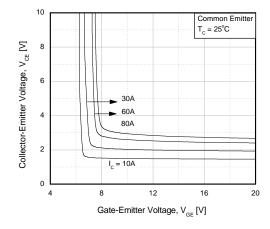



Fig 3. Saturation Voltage vs. Case
Temperature at Varient Current Level

Fig 4. Saturation Voltage vs. V_{GE}

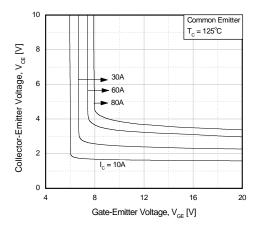
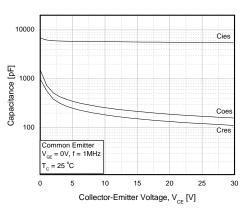



Fig 5. Saturation Voltage vs. V_{GE}

Fig 6. Saturation Voltage vs. V_{GE}

Downloaded from Elcodis.com electronic components distributor

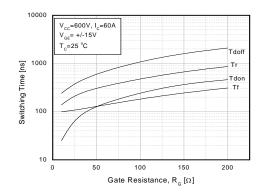
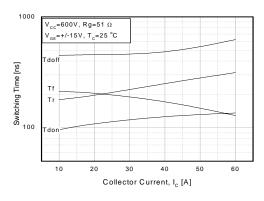



Fig 7. Capacitance Characteristics

Fig 8. Switching Characteristics vs.
Gate Resistance

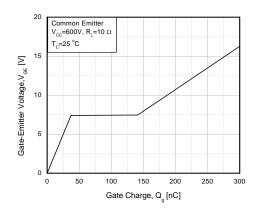
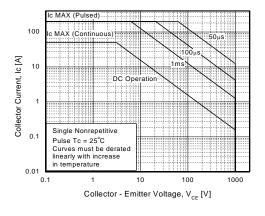



Fig 9. Switching Characteristics vs. Collector Current

Fig 10. Gate Charge Characteristics

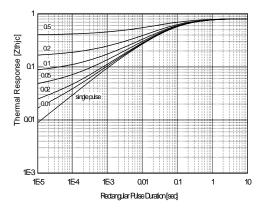


Fig 11. SOA Characteristics

Fig 12. Transient Thermal Impedance of IGBT

©2008Fairchild Semiconductor Corporation

FGA50N100BNTD 1000V, 50A NPT-Trench IGBT CO-PAK Rev. A1

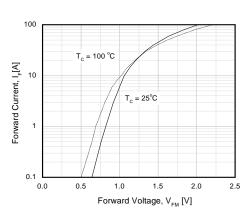


Fig 13. Forward Characteristics

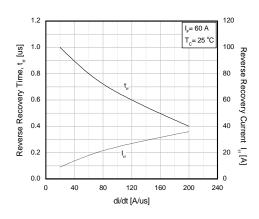


Fig 14. Reverse Recovery Characteristics vs. di/dt

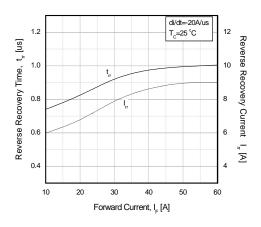


Fig 15. Reverse Recovery Characteristics vs. Forward Current

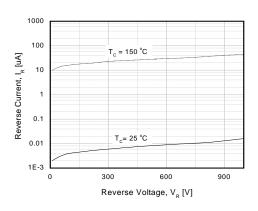


Fig 16. Reverse Current vs. Reverse Voltage

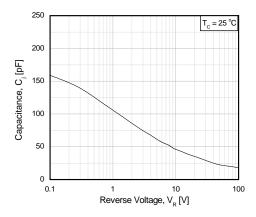
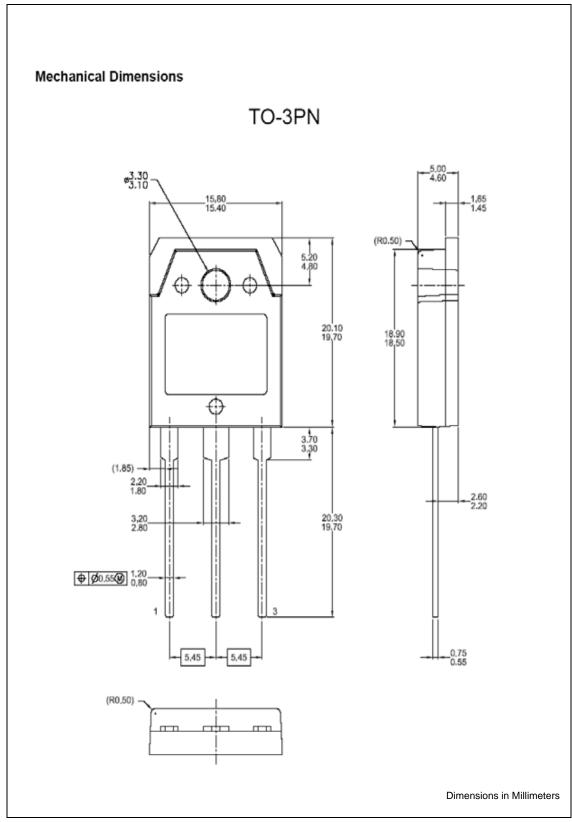



Fig 17. Junction capacitance

©2008 Fairchild Semiconductor Corporation

FGA50N100BNTD 1000V, 50A NPT-Trench IGBT CO-PAK Rev. A1

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

Build it Now™ CorePLUS™ CorePOWER™ $CROSSVOLT^{\text{\tiny TM}}$ CTLTM

Current Transfer Logic™ EcoSPARK® EfficentMax™ EZSWITCH™ *

Fairchild®

Fairchild Semiconductor® FACT Quiet Series™

FACT® FastvCore™

FlashWriter® FPS™ F-PFS™

FRFFT® Global Power Resource SM

Green FPS™ Green FPS™ e-Series™ GTO™

ISOPLANAR™ MegaBuck™ MICROCOUPLER™ MicroFET™ MicroPak™ MillerDrive™ MotionMax™ Motion-SPM™ OPTOLOGIC® OPTOPLANAR®

IntelliMAX™

PDP SPM™ Power-SPM™ PowerTrench® PowerXSTM

Programmable Active Droop™

QFET^o QS™ Quiet Series™ RapidConfigure™

Saving our world, 1mW/W/kW at a time™

SmartMax™ SMART START™ SPM® STEALTH™ SuperFET™ SuperSOT™-3 SuperSOT™-6 SuperSOT™-8 SupreMOS™ SyncFET™ SYSTEM ® GENERAL

The Power Franchise®

bwer franchise TinyBoost™ TinyBuck™ TinyLogic[®] TINYOPTO™ TinvPower™ TinyPWM™ TinyWire™ μSerDes™

Ultra FRFET™ UniFET™ VCX^{TM} VisualMax™ XSTM

UHC

* EZSWITCH™ and FlashWriter® are trademarks of System General Corporation, used under license by Fairchild Semiconductor.

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- 1. Life support devices or systems are devices or systems which, (a) are 2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition			
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.			
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.			
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.			
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.			

Rev. I37