February 2012

FGB5N60UNDF 600V, 5A Short Circuit Rated

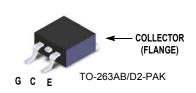
FAIRCHILD

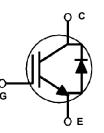
SEMICONDUCTOR

FGB5N60UNDF 600V, 5A Short Circuit Rated IGBT

Features

- · Short circuit rated 10us
- · High current capability
- · High input impedance
- · Fast switching
- · RoHS compliant




Applications

 Home appliance inverter-driven appplication
Fan Motor Driver, Circulation Pump, Refrigerator, Dish Washer

General Description

Using advanced NPT IGBT Technology, Fairchild's the NPT IGBTs offer the optimum performance for low power inverterdriven applications where low-losses and short circuit ruggedness feature are essential.

Absolute Maximum Ratings

Symbol	Description		Ratings	Units
V _{CES}	Collector to Emitter Voltage		600	V
V _{GES}	Gate to Emitter Voltage		± 20	V
I _C	Collector Current	@ T _C = 25°C	10	А
·C	Collector Current	@ T _C = 100°C	5	А
I _{CM (1)}	Pulsed Collector Current	@ T _C = 25°C	15	A
I _F	Diode Forward Current	@ T _C = 25°C	5	A
P _D	Maximum Power Dissipation	@ T _C = 25°C	73.5	W
	Maximum Power Dissipation	@ T _C = 100 ^o C	29.4	W
TJ	Operating Junction Temperature		-55 to +150	٥C
T _{stg}	Storage Temperature Range		-55 to +150	°C
TL	Maximum Lead Temp. for soldering Purposes, 1/8" from case for 5 seconds		300	°C

1

Notes:

1: Repetitive rating: Pulse width limited by max. junction temperature

Thermal Characteristics

Symbol	Parameter	Тур.	Max.	Units
$R_{\theta JC}(IGBT)$	Thermal Resistance, Junction to Case		1.7	°C/W
$R_{\theta JC}(Diode)$	Thermal Resistance, Junction to Case		4.5	°C/W
$R_{ ext{ heta}JA}$	Thermal Resistance, Junction to Ambient (PCB Mount)(2)		40	°C/W

Notes: 2: Mounted on 1" square PCB (FR4 or G-10 material)

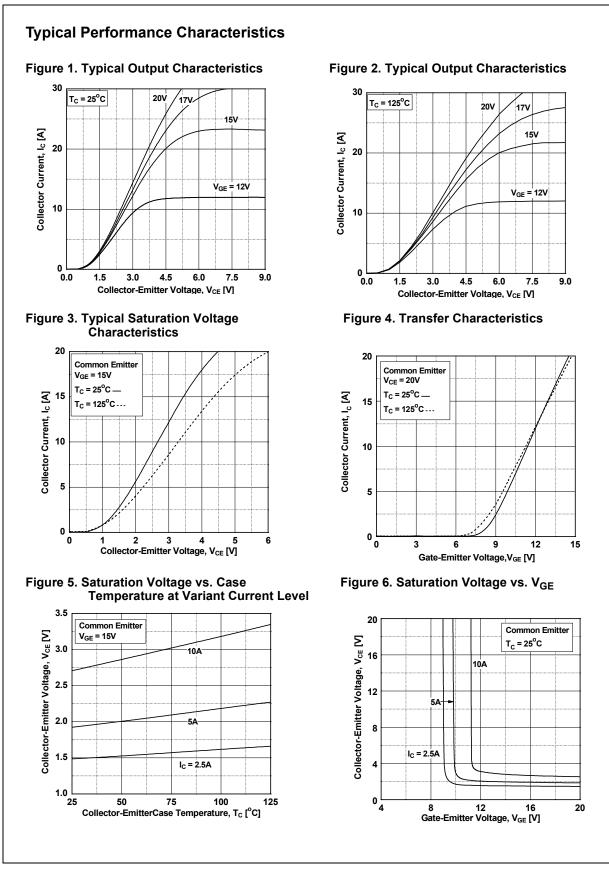
Package Marking and Ordering Information

Device Marking	Device	Package	Rel Size	Tape Width	Quantity
FGB5N60UNDF	FGB5N60UNDF	TO-263AB/D2-PAK		-	50

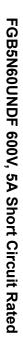
Electrical Characteristics of the IGBT $T_{C} = 25^{\circ}C$ unless otherwise noted

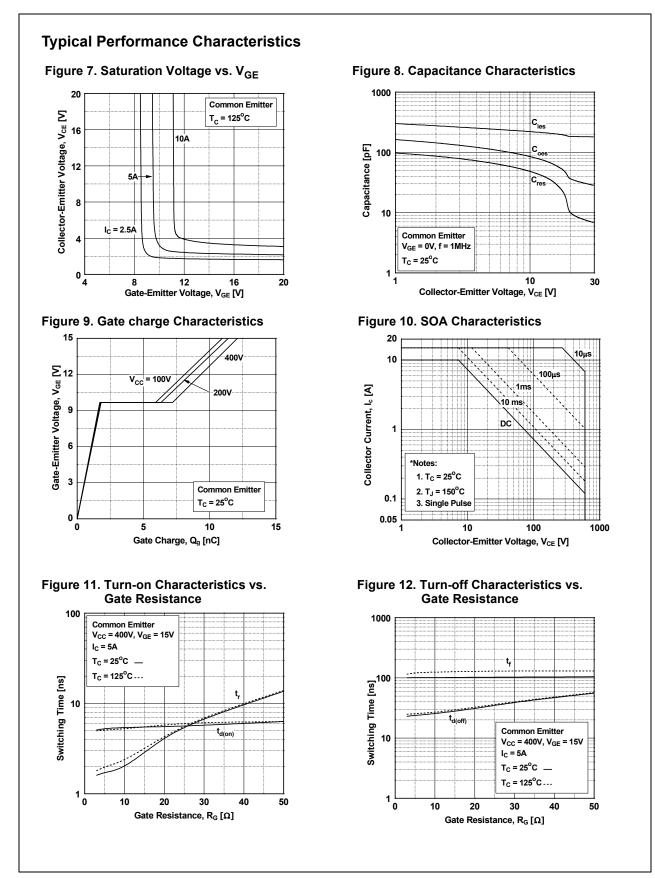
Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Units	
Off Characteristics							
BV _{CES}	Collector to Emitter Breakdown Voltage	V _{GE} = 0V, I _C = 250μA	600	-	-	V	
ICES	Collector Cut-Off Current	$V_{CE} = V_{CES}, V_{GE} = 0V$	-	-	1	mA	
I _{GES}	G-E Leakage Current	$V_{GE} = V_{GES}, V_{CE} = 0V$	-	-	±10	uA	
On Charac	teristics						
V _{GE(th)}	G-E Threshold Voltage	I _C = 5mA, V _{CE} = V _{GE}	5.5	6.8	8.5	V	
()		I _C = 5A, V _{GE} = 15V	-	1.9	2.4	V	
V _{CE(sat)}	Collector to Emitter Saturation Voltage	$I_{C} = 5A, V_{GE} = 15V,$ $T_{C} = 125^{\circ}C$	-	2.3	-	V	
Dynamic C	characteristics		- IL	1	1	1	
C _{ies}	Input Capacitance		-	181		pF	
C _{oes}	Output Capacitance	$V_{CE} = 30V, V_{GE} = 0V,$	-	28		pF	
C _{res}	Reverse Transfer Capacitance	f = 1MHz	-	7		pF	
Switching	Characteristics	T			1	1	
t _{d(on)}	Turn-On Delay Time	-	-	5.4		ns	
t _r	Rise Time	-	-	1.9		ns	
t _{d(off)}	Turn-Off Delay Time	$V_{CC} = 400V, I_C = 5A,$	-	25.4		ns	
t _f	Fall Time	$R_G = 10\Omega$, $V_{GE} = 15V$, Inductive Load, $T_C = 25^{\circ}C$	-	101	202	ns	
Eon	Turn-On Switching Loss		-	0.08		mJ	
E _{off}	Turn-Off Switching Loss		-	0.07		mJ	
E _{ts}	Total Switching Loss		-	0.15		mJ	
t _{d(on)}	Turn-On Delay Time		-	5.2		ns	
t _r	Rise Time		-	2.3		ns	
t _{d(off)}	Turn-Off Delay Time	V _{CC} = 400V, I _C = 5A,	-	26.6		ns	
t _f	Fall Time	$R_{G} = 10\Omega, V_{GE} = 15V,$	-	125		ns	
Eon	Turn-On Switching Loss	Inductive Load, T _C = 125 ^o C	-	0.15		mJ	
E _{off}	Turn-Off Switching Loss	1	-	0.09		mJ	
E _{ts}	Total Switching Loss		-	0.24		mJ	
T _{sc}	Short Circuit Withstand Time	$V_{CC} = 350V,$ $R_{G} = 100\Omega, V_{GE} = 15V,$ $T_{C} = 150^{\circ}C$	10	-	-	μS	

FGB5N60UNDF Rev. A


FGB5N60UNDF 600V, 5A Short Circuit Rated

Electrical Characteristics of the IGBT $T_c = 25^{\circ}C$ unless otherwise noted


Qg	Total Gate Charge		-	12.1	nC
Q _{ge}	Gate to Emitter Charge	V _{CE} = 400V, I _C = 5A, V _{GE} = 15V	-	1.7	nC
Q _{gc}	Gate to Collector Charge	VGE - 10V	-	7.2	nC


Electrical Characteristics of the Diode $T_C = 25^{\circ}C$ unless otherwise noted

Symbol	Parameter	Test Conditions		Min.	Тур.	Мах	Units
V _{FM}	Diode Forward Voltage	I _F = 5A	T _C = 25°C	-	1.7	2.2	V
	IF ON	T _C = 125 ^o C	-	1.6	-		
t Diode Reverse Recovery Time	Diode Reverse Recovery Time	I _F =5A, dI _F /dt = 200A/μs	T _C = 25°C	-	35		ns
۲r			T _C = 125 ^o C	-	87		
Q _{rr}	Q _{rr} Diode Reverse Recovery Charge		T _C = 25°C	-	71		nC
			T _C = 125 ^o C	-	240	-	

FGB5N60UNDF Rev. A

FGB5N60UNDF Rev. A

www.fairchildsemi.com

Typical Performance Characteristics Figure 13. Turn-on Characteristics vs. Collector Current Figure 14. Turn-off Characteristics vs. **Collector Current** 1000 t_f Switching Time [ns] 100 t_{d(off)} 10 Common Emitter V_{GE} = 15V, R_G = 10Ω $T_{c} = 25^{\circ}C$ — T_C = 125^oC... 1 ⊾ 2 6 8 10 4 6 8 10 Collector Current, Ic [A] Collector Current, I_C [A] Figure 15. Switching Loss vs. Figure 16. Switching Loss vs Gate Resistance Collector Current 1000 Common Emitter V_{CC} = 400V, V_{GE} = 15V I_C = 5A T_c = 25°C ____ Switching Loss [uJ] Eon T_c = 125^oC 100 E Common Emitter V_{GE} = 15V, R_G = 10Ω T_c = 25°C ____ = 125°C ር E_{off} 10 L 2 30 4 6 8 10 40 50 Collector Current, Ic [A] Gate Resistance, R_G [Ω] Figure 17. Turn off Switching **Figure 18. Forward Characteristics SOA Characteristics** 30 Forward Current, I_F [A] 10 $T_C = 125^{\circ}C$ T_C = 75°C 25°C Γc 1 ⊾ 0 100 1000 1 2 3 4 5 Forward Voltage, V_F [V] Collector-Emitter Voltage, V_{CE} [V]

FGB5N60UNDF 600V, 5A Short Circuit Rated

FGB5N60UNDF Rev. A

10

Switching Time [ns]

0.1

1000

Switching Loss [uJ]

100

50 └─ 0

20

Collector Current, I_c [A] 0

10

Safe Operating Area

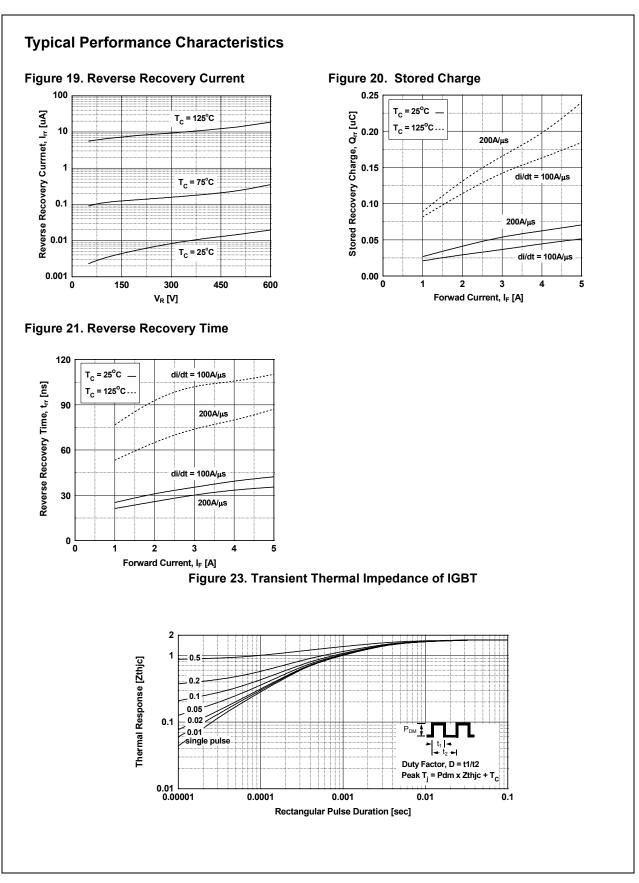
V_{GE} = 15V, T_C = 125^oC

10

t_{d(on)}

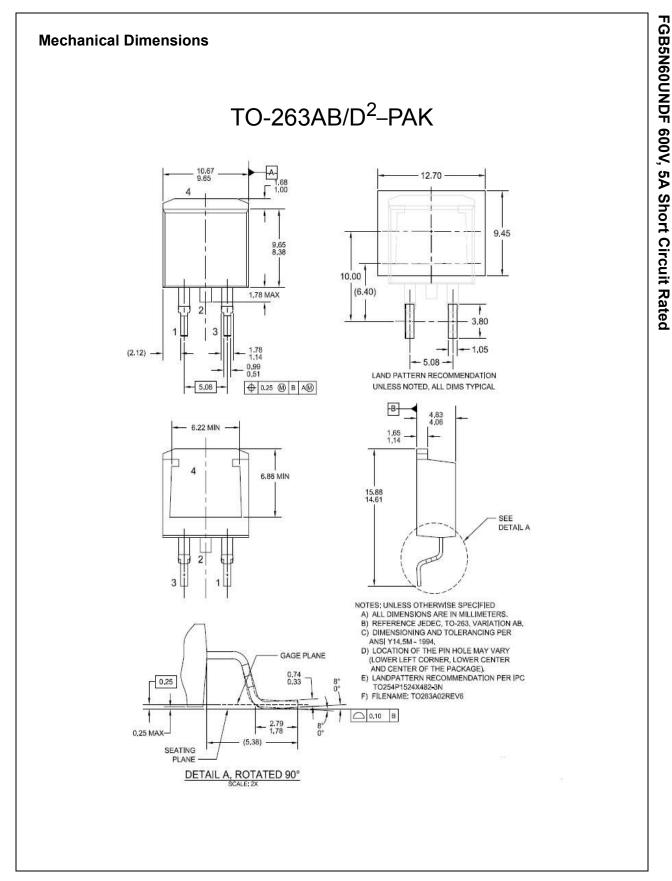
Common Emitter

T_C = 25°C ____


T_C = 125^oC ...

 V_{GE} = 15V, R_G =10 Ω

4


Eon

20

FGB5N60UNDF Rev. A

FGB5N60UNDF 600V, 5A Short Circuit Rated

FGB5N60UNDF Rev. A

SEMICONDUCTOR

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

PDP SPM™

2Cool™ AccuPower™ Auto-SPM™ AX-CAP™* BitSiC[®] Build it Now™ CorePLUS™ CorePOWER™ CROSSVOLT™ CTI ™ Current Transfer Logic™ DEUXPEED® Dual Cool™ EcoSPARK[®] EfficentMax™ ESBC™

Fairchild Semiconductor®

FACT Quiet Series [™] FACT[®]

FRFET® Global Power ResourceSM Green FPS™ Green FPS™ e-Series™ G*max*™ GTO™ IntelliMAX™ **ISOPLANAR™** Marking Small Speakers Sound Louder and Better™ MegaBuck™ MICROCOUPLER™ MicroFET™ MicroPak™ MicroPak2™ MillerDrive ™ MotionMax™ Motion-SPM™ mWSaver™ OptoHiT™ **OPTOLOGIC[®] OPTOPLANAR[®]**

FPS™

F-PFS™

Power-SPM™ PowerTrench[®] PowerXS™ Programmable Active Droop™ **QFET**® QS™ Quiet Series™ RapidConfigure™ Saving our world, 1mW/W/kW at a time™ SignalWise™ SmartMax™ SMART START™ Solutions for Your Success™ SPM® STEALTH™ SuperFET[®] SuperSOT™-3 . SuperSOT™-6 SuperSOT™-8 SupreMOS[®] SyncFET™ Sync-Lock™

þ wer TinyBoost™ TinyBuck™ TinyCalc™ TinyLogic® TINYOPTO™ TinyPower™ TinyPWM™

The Power Franchise®

UHC® Ultra FRFET™ UniFET™ VCX™ VisualMax™ VoltagePlus™ XS™

*Trademarks of System General Corporation, used under license by Fairchild Semiconductor

DISCLAIMER

₣

Fairchild®

FAST®

FastvCore™

FETBench™

FlashWriter[®] *

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

GENERAL ®

LIFE SUPPORT POLICY FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used here in:

- Life support devices or systems are devices or systems which, (a) are 1 intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- 2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.Fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufactures of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handing and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS

Datasheet Identification	Product Status	Definition			
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.			
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.			
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.			
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.			

FGB5N60UNDF Rev. A