
Stealth™ Rectifier

FFPF60SA60DS

Features

- Soft Recovery (t_b / t_a > 1.2)
 Fast Recovery (t_{rr} < 25ns)
- Reverse Voltage, 600V
- Forward Voltage (@ $T_C = 125^{\circ}C$), < 2.0 V
- Enhanced Avalanche Energy

TO-220F-3L

Rev. A, October 2004

Applications

- Switch Mode Power Supplies
- Hard Swithed PFC Boost Diode
- UPS Free wheeling Diode
- Motor Drive FWD
- SMPS FWD
- Snubber Diode

Absolute Maximum Ratings (per leg) T_C=25°C unless otherwise noted

Symbol	Parameter	Value	Units
V_{RRM}	Peak Repetitive Reverse Voltage	600	V
V_{RWM}	Working Peak Reverse Voltage	600	V
V _R	DC Blocking Voltage	600	V
I _{F(AV)}	Average Rectified Forward Current @ T _C = 95 °C	8	Α
I _{FSM}	Non-repetitive Peak Surge Current 60Hz Single Half-Sine Wave	80	А
P _D	Power Dissipation	26	W
W _{AVL}	Avalanche Energy (1A, 40mH)	20	mJ
T _{J,} T _{STG}	Operating Junction and Storage Temperature	- 65 to +150	°C

Thermal Characteristics

Symbol	Parameter	Value	Units
$R_{\theta JC}$	Maximum Thermal Resistance, Junction to Case	3.125	°C/W
$R_{\theta JA}$	Maximum Thermal Resistance, Junction to Ambient	62.5	°C/W

Symbol	Parameter		Min.	Тур.	Max.	Units
V _{FM} *	Maximum Instantaneous Forward Voltage $I_F = 8A$ $I_F = 8A$	T _C = 25 °C T _C = 125 °C	-	2.0 1.6	2.4 2.0	V
I _{RM} *	Maximum Instantaneous Reverse Current @ rated V _R	T _C = 25 °C T _C = 125 °C	-	- -	100 1000	μΑ
t _{rr}	Maximum Reverse Recovery Time (I _F =1A, di/dt = 100A/μs, V _R = 30V)		-	-	25	ns
t _{rr}	Maximum Reverse Recovery Time (I _F =8A, di/dt = 100A/μs, V _R = 30V)		-	-	30	ns
t _{rr} I _{rr} Q _{rr}	Reverse Recovery Time Reverse Recovery Current Reverse Recovery Charge (I _F =8A, di/dt = 200A/μs, V _R = 390V)		- - -	39 2 39		ns A nC

^{*} Pulse Test: Pulse Width=300µs, Duty Cycle=2%

Typical Characteristics

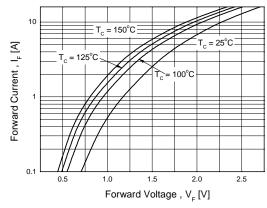


Figure 1. Typical Forward Voltage Drop vs. Forward Current

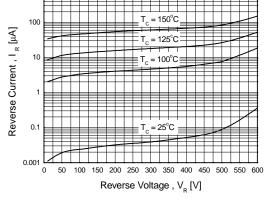


Figure 2. Typical Reverse Current vs. Reverse Voltage

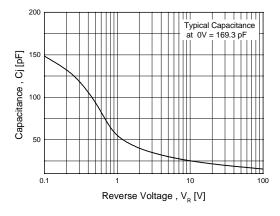


Figure 3. Typical Junction Capacitance

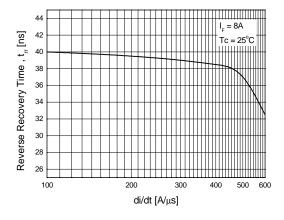


Figure 4. Typical Reverse Recovery Time vs. di/dt

©2004 Fairchild Semiconductor Corporation Rev. A, October 2004

Typical Characteristics (Continued)

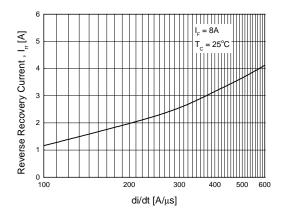


Figure 5. Typical Reverse Recovery Current vs. di/dt

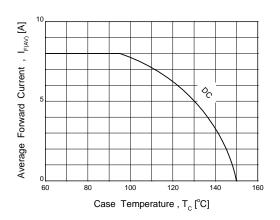


Figure 6. Forward Curent Derating Curve

Test Circuits and Waveforms

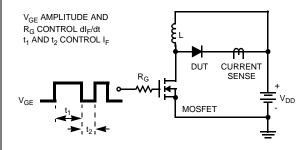


Figure 7. t_{rr} Test Circuit

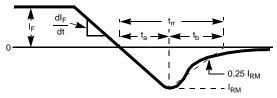


Figure 8. t_{rr} Waveforms and Definitions

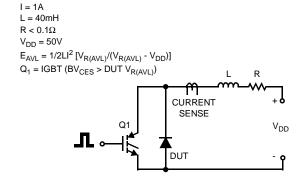


Figure 9. Avalanche Energy Test Circuit

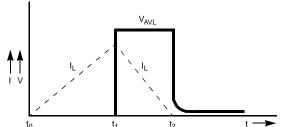
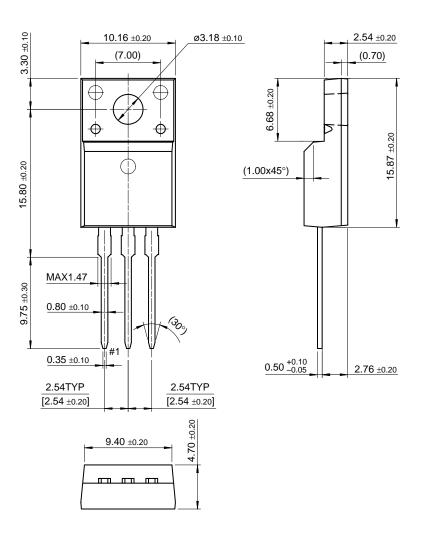



Figure 10. Avalanche Current and Voltage Waveforms

©2004 Fairchild Semiconductor Corporation Rev. A, October 2004

Package Dimensions

TO-220F

Dimensions in Millimeters

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx™	FAST [®]	ISOPLANAR™	Power247™	Stealth™
ActiveArray™	FASTr™	LittleFET™	PowerEdge™	SuperFET™
Bottomless™	FPS™	MICROCOUPLER™	PowerSaver™	SuperSOT™-3
CoolFET™	FRFET™	MicroFET™	PowerTrench [®]	SuperSOT™-6
CROSSVOLT™	GlobalOptoisolator™	MicroPak™	QFET [®]	SuperSOT™-8
DOME™	GTO™	MICROWIRE™	QS™	SyncFET™
EcoSPARK™	HiSeC™	MSX™	QT Optoelectronics™	TinyLogic [®]
E ² CMOS™	I^2C^{TM}	MSXPro™	Quiet Series™	TINYOPTO™
EnSigna™	i-Lo™	OCX™	RapidConfigure™	TruTranslation™
FACT™	ImpliedDisconnect™	OCXPro™	RapidConnect™	UHC™
FACT Quiet Series™		OPTOLOGIC [®]	μSerDes™	UltraFET [®]
Across the board. Around the world.™		OPTOPLANAR™	SILENT SWITCHER®	VCX™
The Power Franchise®		PACMAN™	SMART START™	
Programmable Active Droop™		POP™	SPM™	

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.

©2004 Fairchild Semiconductor Corporation Rev. 113