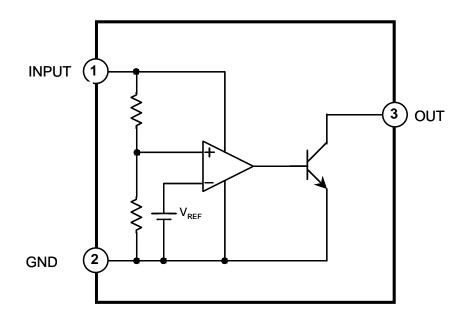

KA75330 Voltage Detector

Features


- Detecting Against Error Operations At The Power On/off.
- Resetting Function For The Low Voltage Microprocessor.
- · Checking Low Battery

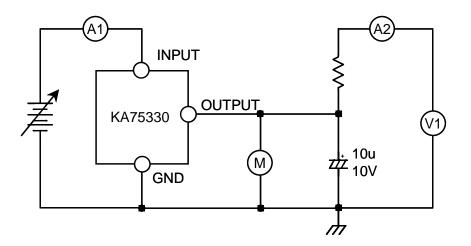
Description

The KA75330 prevents the error of system from supply voltage below normal voltage level at the time the power on and instantaneous power off in systems.

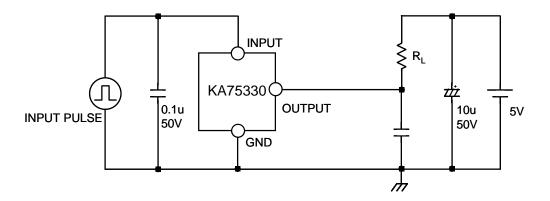
Internal Block Diagram

©2011 Fairchild Semiconductor Corporation

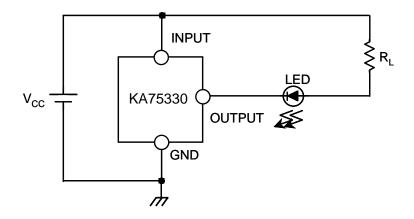
KA75330

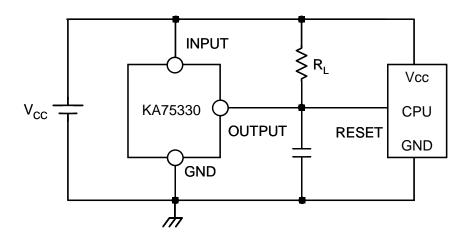

Absolute Maximum Rating (TA=25°C)

Characteristic	Symbol	Value	Unit
Supply Voltage	Vcc	0.3 ~ +15.0	V
Detecting Voltage	VDET	3.3	V
Hysteresis Voltage	VHYS	50	mV
Operating Temperature	TOPR	-25 ~ +85	°C
Storage Temperature	TSTG	-50 ~ +150	°C
Power Dissipation (TO-92)	PD	200	mW
Detecting Voltage Temperature Coefficient	ΔVDET/ΔΤ	RL = 200Ω, +0.01	%/°C

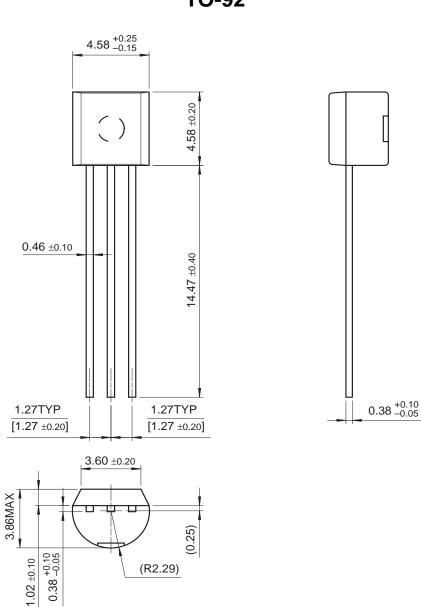

Electrical Characteristics (TA=25°C)

Characteristic	Symbol	Test Conditions	Min	Тур	Max	Unit
Detecting Voltage	Vdet	$R_L = 200\Omega, VOL \le 0.4V$	3.15	3.3	3.45	V
Low Output Voltage	Vol	RL = 200Ω	-	-	0.4	V
Output Leakage Current	ILKG	VCC = 15V	-	-	0.1	uA
Hysteresis Voltage	VHYS	RL = 200Ω	30	50	100	mV
Detecting Voltage Temperature Coefficient	ΔVDET/ΔT	RL = 200Ω	-	±0.01	-	%/°C
Circuit Current(At On Time)	ICCL	VCC = VDET(MIN) -0.05V	-	300	500	uA
Circuit Current(At Off Time)	Іссн	VCC = 5.25V	-	30	50	uA
Threshold Operating Voltage	VTH(OPR)	$R_L = 200\Omega, V_{OL} \le 0.4V$	-	0.8	1.0	V
" L"± Transmission Delay Time	TOL	$R_L = 1.0 k\Omega$, $C_L = 100 pF$	0.6	10	-	us
" H"± Transmission Delay Time	Тон	RL = 1.0kΩ, CL = 100pF	-	15	20	us
Output Current (At On Time)	IOLI	$\label{eq:VCC} \begin{array}{l} VCC = VDET(MIN) \ \text{-}0.05V, \\ T_A = 25^\circC \end{array}$	10	20	30	mA
Output Current (At On Time)	Iolii	V _{CC} = V _{DET} (MIN) - 0.05V T _A = -25 ~ +85°C	8	16	30	mA


Test Circuit 1.


Test Circuit 2.

Test Circuit 3.



Application Circuit

Package

Dimensions in millimeters

TO-92

Ordering Information

Product Number	Package	Operating Temperature
KA75330Z	TO-92	-25 ~ +85°C

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com