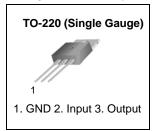
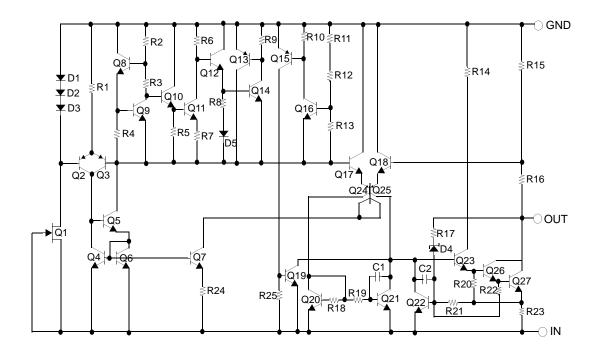


LM79M05


3-Terminal 0.5A Negative Voltage Regulator

Features


- No External Components Required
- Output Current in Excess of 0.5A
- · Internal Thermal Overload
- · Internal Short Circuit Current Limiting
- Output Transistor Safe Area Compensation
- Output Voltages of -5V

Description

The LM79M05 of 3-Terminal medium current negative voltage regulator is monolithic integrated circuits designed as fixed voltage regulator. This regulator employs internal current limiting, thermal shutdown and safe area compensation making them essentially indestructible.

Schematic Diagram

Absolute Maximum Ratings

Parameter	Symbol	Value	Unit
Input Voltage(for Vo = -5V)	Vı	-35	V
Thermal Resistance Junction-Cases	R _θ JC	5	°C/W
Thermal Resistance Junction-Air	$R_{ heta JA}$	65	°C/W
Operating Temperature Range	TOPR	0 ~ +125	°C
Storage Temperature Range	TSTG	-65 ~ +150	°C

Electrical Characteristics (LM79M05)

(Refer to test circuit, $0^{\circ}C \le T_{J} \le +125^{\circ}C$, $I_{O} = 350 \text{mA}$, $V_{I} = -10 \text{V}$, unless otherwise specified, $C_{I} = 0.33 \mu F$, $C_{O} = 0.1 \mu F$)

Parameter	Symbol	Conditions		Min.	Тур.	Max.	Unit
	Vo	T _J = +25°C		-4.8	-5	-5.2	V
Output Voltage		I _O = 5mA to 350mA V _I = -7V to -25V		-4.75	-5	-5.25	
Line Regulation (Note1)	ΔVο	TJ =+25°C	V _I = -7V to -25V	-	7.0	50	- mV
			$V_{I} = -8V \text{ to } -25V$	-	2.0	30	
Load Regulation (Note1)	ΔVο	IO = 5mA to 500mA TJ = +25°C		-	30	100	mV
Quiescent Current	IQ	T _J = +25°C		-	3.0	6.0	mA
Quiescent Current Change	ΔlQ	IO = 5mA to 350mA		-	-	0.4	mA
		I _O = 200mA V _I = -8V to -25V		-	-	0.4	
Output Voltage Drift	ΔVο/ΔΤ	IO = 5mA		-	-0.2	-	mV/°C
Output Noise Voltage	VN	f = 10Hz, 100kHz TA = +25°C		-	40	-	μV
Ripple Rejection	RR	f = 120Hz V _J = -8 to -18V		54	60	1	dB
Dropout Voltage	VD	T _J =+25°C, I _O = 500mA		-	1.1	-	V
Short Circuit Current	Isc	T _J = +25°C, V _I = -35V		-	140	-	mA
Peak Current	IPK	T _J = +25°C		-	650	-	mA

Note:

^{1.} Load and line regulation are specified at constant junction temperature. Change in Vo due to heating effects must be taken into account separately. Pulse testing with low duty is used.

Typical Applications

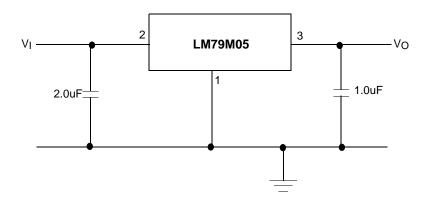


Figure 1. Fixed Output Regulator

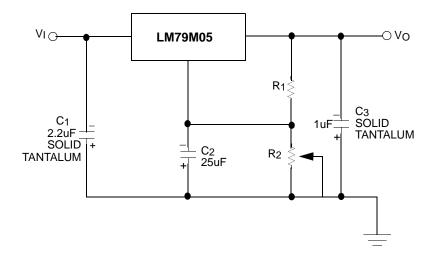
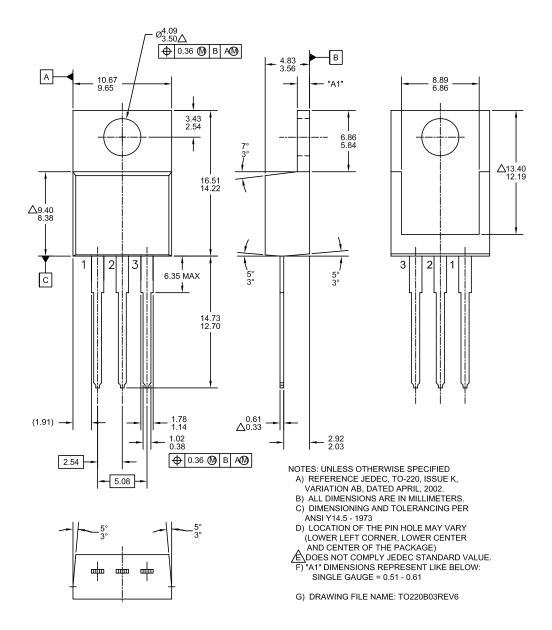


Figure 2. Variable Output

Notes:


- 1. Required for stability. For value given, capacitor must be solid tantalum. $25\mu F$ aluminum electrolytic may be substituted.
- 2. C_2 improves transient response and ripple rejection. Do not increase beyond $50\mu F$.

Mechanical Dimensions

Package

Dimensions in millimeters

TO-220 [SINGLE GAUGE]

Ordering Information

Product Number	Package	Operating Temperature		
LM79M05CT	TO-220 (Single Gauge)	0 ~ +125°C		

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com