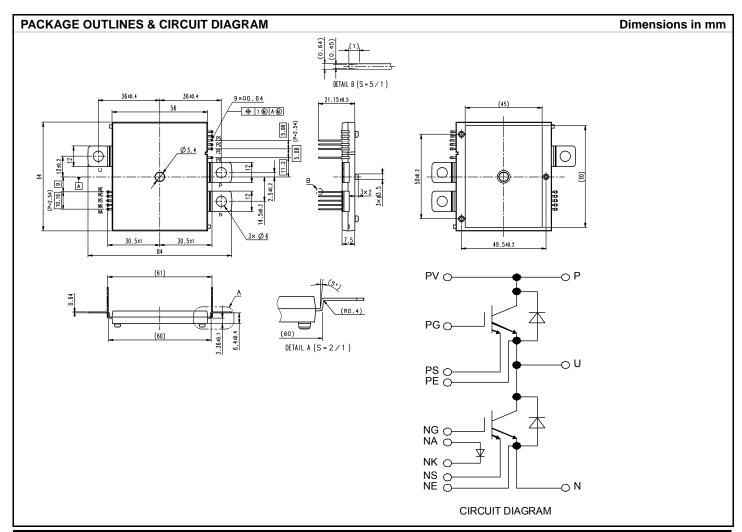


< Transfer-molded Power-Module >


CT300DJH060

FOR HIGH-POWER SWITCHING INSULATED PACKAGE

APPLICATION

EV/HEV and High Reliability Inverter

ABSOLUTE MAXIMUM RATINGS (T_j = 25°C, unless otherwise noted)

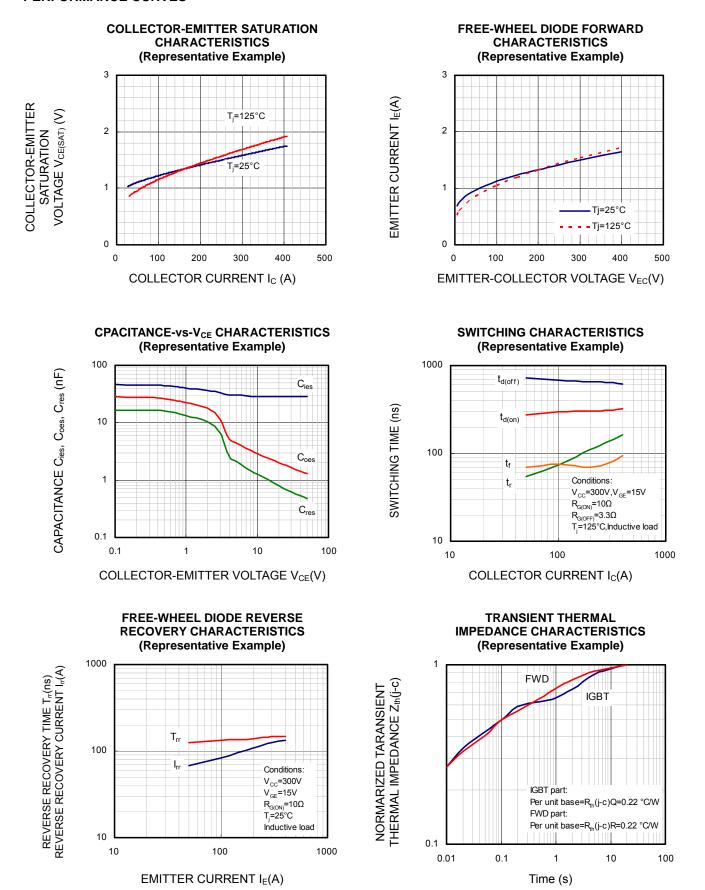
Symbol	Item	Conditions		Ratings	Unit	
V	Callacter Emitter Valtage	T _j = 25°C	G-E short-circuited	650	V	
V_{CES}	Collector-Emitter Voltage	-30°C ≤ T _j ≤ 150 °C	G-E Short-circuited	600		
V _{CC(surge)}	Surge voltage when operating	Between P-N (short-circuit su	Between P-N (short-circuit surge included)		V	
V_{GES}	Gate-emitter voltage	C-E short-circuited		20	V	
_	Sense emitter - emitter voltage	C-E short-circuited, G-E short	rt-circuited, non-repetition	2	V	
_	Temperature sense diode - emitter voltage	C-E short-circuited, G-E short-circuited		20	V	
Ic	Collector current	T _C = 25°C		300	Α	
IE	Emitter current	T _C = 25°C		300	Α	
Pc	Maximum collector dissipation	T _C = 25°C		735	W	
Tj	lumation to manage to ma	_		-30 ~ +125	- °C	
	Junction temperature t = 0.2s, non-repe		mulated time=3600s	+125 ~ +175		
T _{stg}	Storage temperature	_	-40 ~ +125	°C		
V _{iso}	Isolation voltage	Main terminals to base plate	2000	Vrms		

MECHANICAL RATINGS

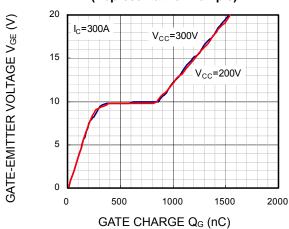
Symbol	Item	Conditions	Ratings	Unit
_	Tightening torque strength	Main terminal screw M5	2.5 ~ 3.5	Nm
_	Tightening surface pressure(Max.) Mounting screw M5		40	MPa
_	Weight	Typical value	100	g

ELECTRICAL STATIC CHARACTERISICS ($T_j = 25^{\circ}C$, unless otherwise noted)

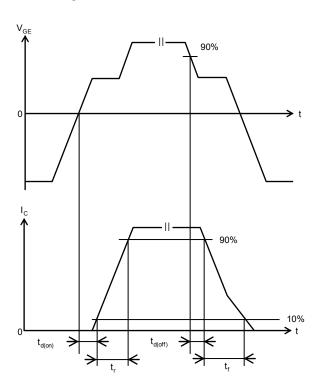
Symbol	Item	Conditions			Unit		
Symbol	item	C	oriditions	Min.	n. Typ. Max.		
I _{CES}	Collector cut-off current	$V_{CE} = V_{CES}, V_{GE} = 0$	V		_	1	mA
$V_{\text{GE(th)}}$	Gate-emitter threshold voltage	$I_{C} = 30 \text{mA}, V_{CE} = 10$	I _C = 30mA,V _{CE} = 10V		6.0	7.0	V
I _{GES}	Gate leakage current	V _{GE} = 20V		_	_	15	μA
.,	0-11	T _j = 25°C	I _C = 300A, V _{GE} = 15.0V	_	1.6	2.0	V
$V_{\text{CE(sat)}}$	Collector-emitter saturation voltage	T _j = 125°C		_	1.7	2.2	V
V _{EC}	Emitter-collector voltage	I _E = 300A, V _{GE} = 0V		_	_	1.8	V
.,	On-chip temperature-sense	I _F = 200μA		2.50	2.60	2.70	V
V_{F}	diode voltage	$I_F = 200 \mu A, T_j = 125$	5°C	1.83	1.93	2.03	V
C _{ies}	Input capacitance	V _{CE} = 10V V _{GE} = 0V		_	30	_	nF
C _{oes}	Output capacitance			_	3	_	nF
Cres	Reverse transfer capacitance			_	1.3	_	nF
Q _G	Total gate charge	V _{CC} = 300V, I _C = 300A, V _{GE} = 15V		_	1.2	1.6	μC

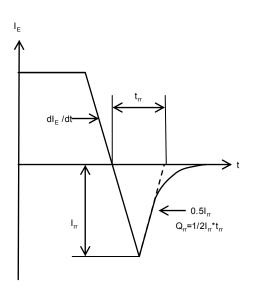

ELECTRICAL DYNAMIC CHARACTERISICS ($T_j = 25^{\circ}C$, unless otherwise noted)

Symbol	ltem	Conditions			Unit	
Syllibol	пеш	item Conditions	Min.	Тур.	Max.	Offic
t _{d(on)}	Turn-on delay time		1	0.35	0.50	μs
t _r	Turn-on rise time	V_{CC} = 300V, I_{C} = 300A, V_{GE} = 15V $R_{G(on)}$ = 10 Ω , $R_{G(off)}$ = 3.3 Ω Inductive load switching operation. Note) Based on switching-time and diode		0.14	0.25	μs
t _{d(off)}	Turn-off delay time			0.68	1.06	μs
t _f	Turn-off fall time			0.09	0.30	μs
t _{rr}	Reverse-recovery time	reverse-recovery waveforms measurements.		0.10	0.18	μs
Q _{rr}	Reverse-recovery charge		_	8.8	_	μC


THERMAL RESISTANCES

Symbol	Item	Conditions	Limits			Unit
Syllibol	iteili	Conditions	Min.	Тур.	Max.	Offic
R _{th(j-c)Q}	Junction-case thermal resistance	IGBT part (1/2 module)	_	_	0.22	°C/W
R _{th(j-c)R}		FWD part (1/2 module)	_	_	0.22	°C/W


PERFORMANCE CURVES


GATE CHARGE CHARACTERISTICS (Representative Example)

Switching time measurement wave forms:

FWDi reverse-recovery characteristic measurement wave form:

Correct and Safety Use of Power Module

Unsuitable operation (such as electrical, mechanical stress and so on) may lead to damage of power modules.

Please pay attention to the following descriptions and use Mitsubishi Electric's IGBT modules according to the guidance.

During Transit:

- Keep shipping cartons right side up. If stress is applied by either placing a carton upside down or by leaning a box against something, terminals can be bent and/or resin packages can be damaged.
- Tossing or dropping of a carton may damage devices inside.
- If a device gets wet with water, malfunctioning and failure may result. Special care should be taken during rain or snow to prevent the devices from getting wet.

Storage:

• The temperature and humidity of the storage place should be 5~35°C and 45~75% respectively. The performance and reliability of devices may be jeopardized if devices are stored in an environment far above or below the range indicated above.

Prolonged Storage:

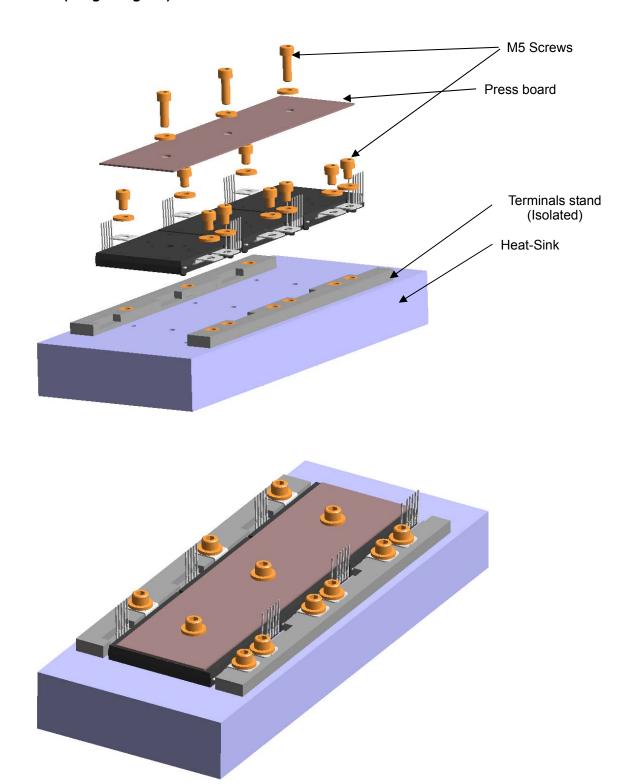
• When storing devices more than one year, dehumidifying measures should be provided for the storage place. When using devices after a long period of storage, make sure to check the exterior of the devices is free from scratches, dirt, rust, and so on.

Operating Environment:

• Devices should not be exposed to water, organic solvents, corrosive gases, explosive gases, fine particles, or corrosive agents, since any of those can lead to a serious accident.

Flame Resistance:

· Although the epoxy resin is in conformity with UL 94-V0 standards, it should be noted that those are not non-flammable.


Anti-electrostatic Measures:

- Following precautions should be taken for MOS-gated devices to prevent static buildup which could damage the devices.
- (1) Precautions against the device rupture caused by static electricity

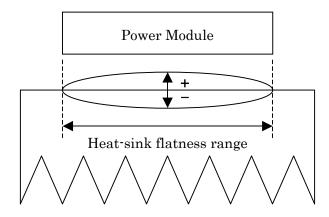
Static electricity of human bodies and cartons and/or excessive voltage applied across the gate to emitter may damage and rupture devices. Sense-emitter and temperature-sensor are also vulnerable to excessive voltage. The basis of anti-electrostatic build-up and quick dissipation of the charged electricity.

- * Containers that are susceptible to static electricity should not be used for transit nor for storage.
- * Signal terminals to emitter should be always shorted with a carbon cloth or the like until right before a module is used. Never touch the signal terminals with bare hands.
- * Always ground the equipment and your body during installation (after removing a carbon cloth or the like. It is advisable to cover the workstation and it's surrounding floor with conductive mats and ground them.
- * It should be noted that devices may get damaged by the static electricity charged to a printed circuit board if the signal terminals to emitter of the circuit board is open.
- * Use soldering irons with grounded tips.
- (2) Precautions when the signal terminals to emitter is open
- * Voltage should not be applied across the collector to emitter when the signal terminals to emitter is open.
- * The signal terminals to emitter should be shorted before removing a device from a unit.

Installation Method (image diagram)

Installation method

When installing a module to a heat sink, fastening with excessive uneven stress might cause the module to be damaged or to be degraded because the internal silicon chips will be stressed.


Initial fastening: As a general rule, set the initial (or temporary) fastening torque to less than 20% of the maximum rating.

Heat-Sink Flatness: In order to get most effective heat dissipation, it is necessary to enlarge the contact area between the module and the heat-sink as much as possible to minimize the contact thermal resistance. Regarding the heat sink flatness (warp/concavity and convexity) on the module installation surface, the surface finishing-treatment should be less than 12s (please refer to the figure below).

*Note: The flatness of the heat sink should be designed to be within <u>-50μm ~ +50μm</u>

Thermal Grease: Evenly apply thermally-conductive grease (about $100\mu m \sim 200\mu m$ thickness) over the contact surface between the module and the heat sink. Applying grease is also useful for preventing the contact surface from corrosion. Furthermore, ensure the grease to be with stable quality and long endurance within wide operating temperature range.

Fastening Torque: Use a torque wrench to fasten up to the specified torque rating. As mentioned above, exceeding the maximum torque limitation might cause a module to be damaged or degraded. Also, pay attention not to have any dirt remaining on the contact surface between the module and the heat sink.

Heat-Sink Flatness Measurement Range

Main Revision for this Edition

No.	Date	Revision		
		Pages	Points	

Keep safety first in your circuit designs!

• Mitsubishi Electric Corporation puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage. Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of non-flammable material or (iii) prevention against any malfunction or mishap.

Notes regarding these materials

- •These materials are intended as a reference to assist our customers in the selection of the Mitsubishi semiconductor product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Mitsubishi Electric Corporation or a third party
- Mitsubishi Electric Corporation assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in these materials.
- •All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Mitsubishi Electric Corporation without notice due to product improvements or other reasons. It is therefore recommended that customers contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor for the latest product information before purchasing a product listed herein.

The information described here may contain technical inaccuracies or typographical errors.

Mitsubishi Electric Corporation assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors.

Please also pay attention to information published by Mitsubishi Electric Corporation by various means, including the Mitsubishi Semiconductor home page (http://www.mitsubishielectric.com/).

- •When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Mitsubishi Electric Corporation assumes no responsibility for any damage, liability or other loss resulting from the information contained herein.
- Mitsubishi Electric Corporation semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, unclear, or undersea repeater use.
- •The prior written approval of Mitsubishi Electric Corporation is necessary to reprint or reproduce in whole or in part these materials.
- •If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination.
- •Please contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor for further details on these materials or the products contained therein.