Advance Technical Information

TrenchT2 ${ }^{\text {TM }}$ GigaMOS ${ }^{\text {TM }}$ Power MOSFET

(Electrically Isolated Tab)

N-Channel Enhancement Mode
Avalanche Rated
MMIX1T550N055T2

Fast Intrinsic Diode

Symbol	Test Conditions	Maximum Ratings	
$\mathrm{V}_{\text {DSs }}$	$\mathrm{T}_{j}=25^{\circ} \mathrm{C}$ to $175^{\circ} \mathrm{C}$	55	V
$V_{\text {DGR }}$	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$ to $175^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{GS}}=1 \mathrm{M} \Omega$	55	V
$\mathrm{V}_{\text {GSM }}$	Transient	± 20	V
$I_{\text {D25 }}$	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ (Chip Capability)	550	A
I_{DM}	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$, Pulse Width Limited by T_{JM}	2000	A
$\mathrm{I}_{\text {A }}$	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	200	A
$\mathrm{E}_{\text {AS }}$	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	3	J
P_{D}	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	830	W
T_{J}		$-55 \ldots+175$	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {JM }}$		175	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$		$-55 \ldots+175$	${ }^{\circ} \mathrm{C}$
T_{L}	1.6 mm (0.062 in.) from Case for 10 s	300	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {sold }}$	Plastic Body for 10s	260	${ }^{\circ} \mathrm{C}$
$\mathrm{V}_{\text {ISOL }}$	50/60 Hz, 1 Minute	2500	V
F_{c}	Mounting Force	$50 . .200 / 11 . .45$	N/lb.
Weight		8	g

$\begin{aligned} & \text { Symbol Test Conditions } \\ & \left(\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}\right. \text {, Unless Otherwise Specified) } \end{aligned}$		Characteristic Values		
		Min.	Typ.	Max.
$\mathrm{BV}_{\text {DSs }}$	$V_{G S}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=250 \mu \mathrm{~A}$	55		V
$\mathrm{V}_{\mathrm{GS}(\mathrm{th})}$	$V_{\text {DS }}=V_{G S}, I_{D}=250 \mu \mathrm{~A}$	1.8		3.8 V
$\mathrm{I}_{\text {Gss }}$	$\mathrm{V}_{\mathrm{GS}}= \pm 20 \mathrm{~V}, \mathrm{~V}_{\text {DS }}=0 \mathrm{~V}$			$\pm 200 \mathrm{nA}$
$\mathrm{I}_{\text {DSS }}$	$\mathrm{V}_{\mathrm{DS}}=\mathrm{V}_{\mathrm{DSS}}, \mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}$			$\begin{aligned} & 10 \mu \mathrm{~A} \\ & 1.5 \mathrm{~mA} \end{aligned}$
$\mathrm{R}_{\mathrm{DS} \text { (on) }}$	$V_{G S}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=100 \mathrm{~A}$, Note 1			$1.3 \mathrm{~m} \Omega$

$\mathrm{G}=$ Gate $\quad \mathrm{D}=$ Drain
S = Source

Features

- Silicon Chip on Direct-Copper Bond (DCB) Substrate
- Isolated Substrate
- Excellent Thermal Transfer
- Increased Temperature and Power Cycling Capability
- High Isolation Voltage (2500V~)
- $175^{\circ} \mathrm{C}$ Operating Temperature
- Very High Current Handling Capability
- Fast Intrinsic Diode
- Avalanche Rated
- Very Low R ${ }_{\text {DS(on) }}$

Advantages

- Easy to Mount
- Space Savings
- High Power Density

Applications

- DC-DC Converters and Off-Line UPS
- Primary-Side Switch
- High Speed Power Switching Applications

Source-Drain Diode

Symbol Test Conditions$\left(T_{j}=25^{\circ} \mathrm{C}\right.$, Unless Otherwise Specified)		Characteristic Values			
		Min.	Typ.	Max	
$\mathrm{I}_{\text {s }}$	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}$			550	A
$\mathrm{I}_{\text {SM }}$	Repetitive, Pulse Width Limited by $\mathrm{T}_{\text {JM }}$			1700	A
$\mathrm{V}_{\text {sD }}$	$\mathrm{I}_{\mathrm{F}}=100 \mathrm{~A}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$, Note 1			1.2	V
$\left.\begin{array}{l}\mathbf{t}_{\mathrm{rr}} \\ \mathrm{I}_{\mathrm{RM}} \\ \mathbf{Q}_{\mathrm{RM}}\end{array}\right\}$	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=100 \mathrm{~A}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V} \\ & -\mathrm{di} / \mathrm{dt}=100 \mathrm{~A} / \mu \mathrm{s} \\ & \mathrm{~V}_{\mathrm{R}}=27.5 \mathrm{~V} \end{aligned}$		$\begin{array}{r} 100 \\ 5 \\ 250 \end{array}$		ns A nC

Note

1. Pulse test, $\mathrm{t} \leq 300 \mu \mathrm{~s}$, duty cycle, $\mathrm{d} \leq 2 \%$.

ADVANCE TECHNICAL INFORMATION

The product presented herein is under development. The Technical Specifications offered are derived from a subjective evaluation of the design, based upon prior knowledge and experience, and constitute a "considered reflection" of the anticipated result. IXYS reserves the right to change limits, test conditions, and dimensions without notice.

IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.

IXYS MOSFETs and IGBTs are covered	4,835,592	4,931,844	5,049,961	5,237,481	6,162,665	6,404,065 B1	6,683,344	6,727,585	7,005,734 B2	7,157,338B2
by one or more of the following U.S. patents:	4,850,072	5,017,508	5,063,307	5,381,025	6,259,123 B1	6,534,343	6,710,405 B2	6,759,692	7,063,975 B2	
	4,881,106	5,034,796	5,187,117	5,486,715	6,306,728 B1	6,583,505	6,710,463	6,771,478 B2	7,071,537	

Package Outline

SYM	INCHES		MILLIMETERS			
	MIN	MAX	MIN	MAX		
A	.209	.224	5.30	5.70		
A1	.154	.161	3.90	4.10		
A2	.055	.063	1.40	1.60		
b	.035	.045	0.90	1.15		
C	.018	.026	0.45	0.65		
D	.976	.994	24.80	25.25		
E	.898	.915	22.80	23.25		
E1	.543	.559	13.80	14.20		
e	.079		BSC	2.00		BSC
e1	.315	BSC	8.00			
BSC						
H	1.272	1.311	32.30	33.30		
L	.181	.209	4.60	5.30		
L1	.051	.067	1.30	1.70		
L2	.000	.006	0.00	0.15		
S	.736	.760	18.70	19.30		
T	.815	.839	20.70	21.30		
α	0	$4{ }^{\circ}$	0	4°		

PIN: 1 = Gate
5-12 = Source 13-24 = Drain

