
Motor Controllers Soft Starting/Soft Stopping Types RSC-AAM60/RSO

• Rated operational current: 3 x 10, 25, 50, 90, 110 AACrms

CARLO GAVAZZI

- Rated operational voltage: Up to 600 VACrms
- Supply voltage range: 10 to 32 VDC
- · Control current range: 0 to 20 mA/4 to 20 mA
- LED-indication for line ON and load ON
- · Varistor protection

Output module

Control input type Multivoltage

Rated operational voltage

Rated operational current

Product Description

The micro processor based control module RSC-AAM60 is used with output modules RSO 22..., RSO 4. ..., RSO 60 ... to achieve a voltage controlled soft start/soft stop of 3-phase motors and a possibility for energy reduction when e.g. a fan is running with a variable capacity. This function is achieved by controlling the control module with a current between 4 and 20 mA (0 and

20 mA). The output module can be selected according to the rated operational voltage and the size of the load.

This phase angle controlled soft-start unit can be used for pumps, fans, heaters, lights and many other applications.

LED indications for line ON and load ON gives a clear status indication.

Type Selection, Control Module

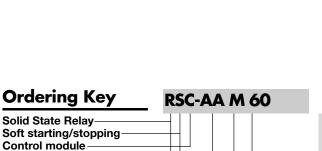
Control current	Mains	Max. operational voltage	Type Number	
0-20 mA/4-20 mA	Multivoltage	600 VAC	RSC-AA M 60	

Type Selection, Output Module

Rated operational voltage	Rated operational current						
	10 A	25 A	50 A	90 A	110 A		
3 x 220 VAC	RSO 2210	RSO 2225	RSO 2250	RSO 2290	RSO 22110		
3 x 400 VAC	RSO 4010	RSO 4025	RSO 4050	RSO 4090	RSO 40110		
3 x 480 VAC	RSO 4810	RSO 4825	RSO 4850	RSO 4890	RSO 48110		
3 x 600 VAC			RSO 6050	RSO 6090	RSO 60110		

General Spec., Control Module

Operational voltage range Line to line [VACrms]	150 to 660 VACrms
Operational frequency range	45 to 65 Hz
Supply current @ no output current @ max. output current	< 30 mA < 180 mA
Supply voltage range	10 to 32 VDC
CE-marking	Yes
Approvals	UL, CSA


Specifications are subject to change without notice (30.11.2001)

Control Specifications

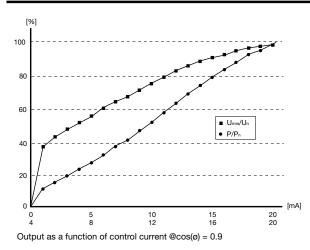
Minimum output voltage	Power supply minus 8 VDC
Output current	
short-circuit protected	≤ 150 mA DC

Thermal Specifications

Operating temperature	-20° to +70°C (-4° to +158°F)
Storage temperature	-40° to +100°C (-40° to +212°F)

RSO 4050

Control Input Specifications


Control current A-input B-input	0 to 20 mA 4 to 20 mA
Input impedance	250 Ω
Power supply reset time	≤ 300 ms
Response time (input to trigger outputs)	≤ 1 cycle

Insulation Control Module

Rated insulation voltage Input to trigger outputs

≥ 4000 VACrms

Operation Diagram

General Specifications, Output Module

Mode of Operation

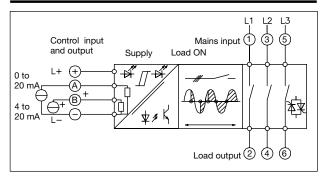
The control module RSC-AAM60 is used with the output module RSO..... to achieve analog control of 3phase induction motors.

Heating elements can also be controlled with the RSC/RSO with the use of appropriate filters.

Soft starting is achieved by increasing the motor voltage in accordance with the input current. Soft stopping is achieved by decreasing the motor voltage in accordance with the input current. When the motor is running idle, the motor voltage can be reduced by lowering the input current, whereby energy is saved.

	-			
	RSO 22	RSO 40	RSO 48	RSO 60
Operational voltage range				
Line to line	150 to 250 VACrms	220 to 420 VACrms	400 to 510 VACrms	400 to 625 VACrms
Non-rep. voltage	1200 V _p	1200 V _p	1200 V _p	1600 V _p
Varistor voltage	275 VAC	420 VAC	510 VAC	625 VAC
CE-marking	Yes	Yes	Yes	Yes

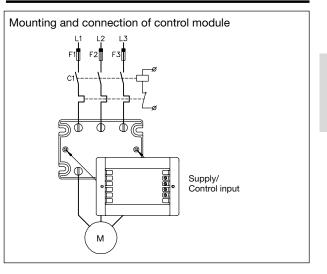
Output Specifications, Output Module

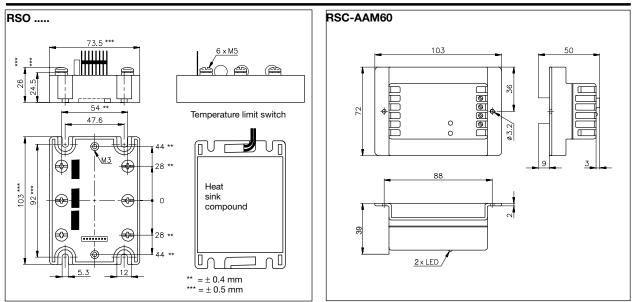

	RSO10	RSO25	RSO50	RSO90	RSO110
Rated operational current AC 1 AC 3	16 Arms 3 Arms	25 Arms 5 Arms	50 Arms 15 Arms	90 Arms 30 Arms	110 Arms 40 Arms
Off-state leakage current	≤ 10 mArms	≤ 10 mArms	≤ 10 mArms	≤ 25 mArms	≤ 25 mArms
On-state voltage drop	≤ 1.6 Vrms	≤ 1.6 Vrms	≤ 1.6 Vrms	≤ 1.8 Vrms	≤ 1.8 Vrms
I ² t for fusing t=1-10 ms	\leq 130 A ² s	\leq 310 A ² s	\leq 1800 A ² s	\leq 5000 A ² s	≤ 11250 A ² s
Critical dl/dt	≥ 50 A/µs	≥ 50 A/µs	≥ 50 A/µs	≥ 50 A/µs	≥ 50 A/µs
Non-rep. surge current t=20 ms	160 A _p	250 A _p	600 A _p	1000 A _p	1500 A _p

CARLO GAVAZZI

Thermal Specifications Output Module

	RSO10	RSO25	RSO50	RSO90	RSO110
Operating temperature	-20° to +70°C (-4° to +158°F)				
Storage temperature	-40° to +100°C (-40° to +212°F)				
Junction temperature	≤ 125°C	≤ 125°C	≤ 125°C	≤ 125°C	≤ 125 °C
R _{th} junction to case	≤ 0.7 K/W	≤ 0.5 K/W	≤ 0.25 K/W	≤ 0.1 K/W	≤ 0.09 K/W

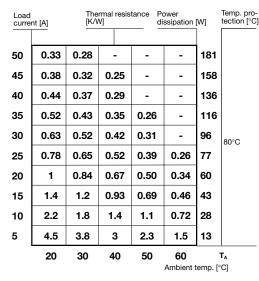

Functional Diagram


Accessories

Heatsinks Fuses Temperature limit switch Power supply For further information refer to "General Accessories".

Wiring Diagram

Dimensions

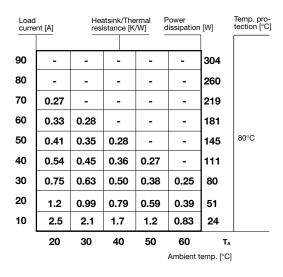

	10						
Load currer	ad Irrent [A]		Thermal resistance [K/W]			n [W]	Temp. pro- tection [°C]
]	
16	0.97	0.81	0.65	0.48	0.32	62	
15	1.1	0.88	0.71	0.53	0.35	57	
14	1.2	0.97	0.77	0.58	0.39	52	
13	1.3	1.1	0.85	0.64	0.43	47	
12	1.4	1.2	0.95	0.71	0.47	42	
11	1.6	1.3	1.1	0.80	0.53	38	80°C
10	1.8	1.5	1.2	0.90	0.60	33	000
9	2.1	1.7	1.4	1	0.69	29	
7	2.8	2.3	1.9	1.4	0.93	21	
5	4.2	3.5	2.8	2.1	1.4	14	
3	7.4	6.2	4.9	3.7	2.5	8	
1	23.8	19.8	15.9	11.9	7.9	3	
	20	30	40	50	60		TA
					Ambient	temp.	[°C]

Heatsink Dimensions (load current versus ambient temperature)

Load curren	Load current [A]				Power dissipation	[W]	Temp. pro- tection [°C]
				-			
25	0.66	0.55	0.44	0.33	-	91	
22.5	0.76	0.63	0.51	0.38	0.25	79	
20	0.88	0.74	0.59	0.44	0.29	68	
17.5	1.1	0.87	0.70	0.52	0.35	57	
15	1.3	1.1	0.85	0.63	0.42	47	80°C
12.5	1.6	1.3	1.1	0.79	0.53	38	
10	2.1	1.7	1.4	1	0.69	29	
7.5	2.9	2.4	1.9	1.4	0.96	21	
5	4.5	3.8	3	2.3	1.5	13	
2.5	9.4	7.8	6.3	4.7	3.1	6	
	20	30	40	50	60		TA
					Ambien	t temp	[°C]

RSO ..50

RSO ..10



Heatsink Selection

Carlo Gavazzi Heatsink (see Accessories)	Thermal resistance
No heatsink required	R _{th s-a} > 8.0 K/W
RHS 300 Assy or backplate	5.0 K/W
RHS 301 Assy	0.8 K/W
RHS 301 F Assy	0.25 K/W
Consult your distributor	< 0.25 K/W

RSO ...90, RSO ...110

RSO ...25

Compare the value found in the load current versus temperature chart with the standard heatsink values and select the heatsink with the next lower value.

It is recommended to protect the solid state relay against overheating. Therefore the chart also states the maximum switching temperature (70, 80 or 90 °C) for the optional temperature limit switch.

CARLO GAVAZZI

Housing Specifications

Weight RSO10,25,50 RSO90,110	Approx. 275 g Approx. 385 g	Relay Mounting screws Mounting torque	M5 ≤ 1.5 Nm
Housing material Colour Base plate	Noryl, glass-reinforced Black	Control terminal Mounting screws Mounting torque	M3 ≤ 0.5 Nm
@ ≤ 50 A @ ≥ 90 A Potting compound	Aluminium, nickel-plated Copper, nickel-plated Polyurethane, black	Power terminal Mounting screws Mounting torque	M5 x 6 ≤ 1.5 Nm

Applications

The output module RSO ..110 is recommended for motors up to 22 kW @ 400 V. The RSO ..110 is designed for use in applications with high surge current conditions. Care must be taken to ensure proper heatsinking when the relays are to be used at high nominal currents. Adequate electrical connection between relay terminals and cable must be ensured.

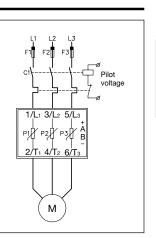
Example 1: Power dissipation -RSO 40110: $I_{load} = 40 \text{ Arms} = 111 \text{ W}$ See previous page.

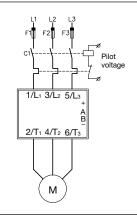
Example 2:

Motor: 3 kW. 4 HP 3 x 400 VAC, 4-pole T_A: 50°C Starting time: $\leq 5 \text{ s}$

For this application RSC-AAM60 must be used. The output module RSO4025 is selected according to the Selection Guide.

The smallest heatsink required is 1 K/W. and the power dissipation is 25 W.

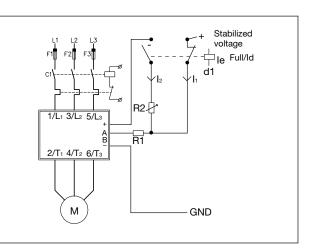

This gives: Control module: RSC-AAM60 Output module: RSO 4025 Heatsink:1K/W


Connection to the mains Since no motor protective circuitry is included in the RSC/RSO, the motor must be protected in the usual way, i.e. either by a thermal relay, a PTC-resistor or a Klixon bimetal temperature switch near the motor windings.

If short circuit protection is reauired, fuses F1 to F3 should be ultrafast and selected according to the load integral (l²t) of the RSO output module and the motor load.

Transient voltage protection With an unfiltered main supply, voltage transient may occur. Since these transients could have a high energy content, it is advisable to use varistors to protect the output module.

The varistors are already mounted in the RSO output module and they are selected according to the rated operational voltage.



Overload protection by thermal relay

Energy saving for motors in idle mode

it not necessary to maintain a full magnetic field, as is the case when the motor has to adjusted to a value at which produce full torque. By lowering the motor voltage, power losses inside the motor are also reduced.

When motors are running idle, When the motor is idle, d1 will switch the control current from I_1 > 20 mA to $I_2,$ which is the motor is still running at full speed, but at a lower voltage. Please remark that this type of phase-angle controlled voltage reduction, demands additional filtering to fulfill EMC regulations.

Applications (cont.)

In order to achieve a 4 to 20 mA signal from a 12 or 24 VDC source, a resistor and a potentiometer should be con- nected in series with the volt-	We define the I_{max} to be e.g. 24 mA, which means that the series resistors must be: $R_1(12 \text{ V}) = U/I - \text{Rint} =$	If the minimum current is defined to be e.g. 2.4 mA and the 250 Ω Rint input resistance of the RSC is also calculated in:	
age source and the RSC con-	12 V/24 mA - 250 Ω = 250 Ω		
troller.		R ₂ (12 V) = U/I - R ₁ - Rint =	
	R_1 (24 V) = U/I - Rint = 24 V/24 mA - 250 Ω = 750 Ω	12/2.4 - 250 - 250 = 4500 Ω	
		R_2 (24 V) = U/I - R_1 - Rint = 24/2.4 - 750 - 250 = 9000 Ω	

Selection Guide

400 VACrms and 480 VACrms motors

Output module	RSO10	RSO25	RSO50	RSO90	RSO110
Max. motor size	3 HP/2.2 kW	5 HP/4 kW	15 HP/11 kW	20 HP/15 kW	30 HP/22 kW

600 VACrms motors

Output module		RSO 6050	RSO 6090	RSO 60110
Max. motor size		15 HP	30 HP	40 HP