## The updated F3SJ is even easier to use.

- The lineup also includes models with S-mark certification.
- New models for body protection or presence detection.



## 치잉 $C \in$ (S)

## Features

Choose from two new tools for setting parameters and checking the system status. "SD Manager" PC Setting Support Software


The "SD Manager" PC Setting Support Software helps reduce the time required for installing and troubleshooting the Safety Light Curtain.

- Beam alignment is easier.


The incident light level can be displayed in a bar graph for each beam.

- The ambient incident light intensity can be checked.


The incident light level when the light emission of the Safety Light Curtain is stopped is displayed in a bar graph.

- The error log can be displayed.


The cause of the errors and countermeasures are both displayed.

## Setting Console



Note: The range of parameter setting and system status checking capabilities is different for the PC Setting Support Software and the Setting Console.

## New functions respond to a variety of safety needs.

 Two new functions have been added to the muting function.
## Partial muting

Partial muting raises safety by muting only the beams of the Safety Light Curtain in the area where the workpiece passes through, while preventing muting in all other areas.


Only the beams of the Safety Light Curtain that would be interrupted by the workpiece are muted.

## Position detection muting

This is used in applications where the workpiece is set in position each time by an operator, and then a turntable or positioning robot moves the workpiece to the area where the work is done. A limit switch or other means is used to detect when the robot is in a safe position, and muting is then applied.


The blanking function disables specific beams of the Safety Light Curtain.

Fixed blanking

he beam that would otherwise be constanty

Floating blanking


A warning zone can be set to alert people before they enter a danger zone.

Dividing the zone between series-connected sensors


A single sensor can also be divided


## Selecting a device is as easy as 1-2-3.

The F3SJ Safety Light Curtain is a Type 4 safety sensor that can be used to configure a Category 4 safety circuit.
This means that there is no need to worry about the safety of the resulting circuit. Use the following three easy steps to select the best model for your system design.

## Step 1

## Select the required sensor length.

The F3SJ incorporates the "perfect fit" concept that is a feature of OMRON's other Safety Light Curtains. With a line-up of products in 1-beam increments, you can find the sensor that fits your setup perfectly. Refer to the list of sensor models on pages 7,8 and 9 to select the minimum sensor length required to cover the area you want to protect.
Note: We can also manufacture sensors with lengths not included in the list of models. For details, please consult your OMRON sales representative.


## Step ${ }^{2}$ Select the output transistor

Choose the PNP type when installing in safety system configurations that comply with the Machinery Directive or when using with a dedicated controller (F3SP-B1P or F3SX). NPN types are also available as standard products when replacing existing area sensors.

## Step

## Select the application.

In addition to finger protection, hand protection, and hand/arm protection models, new models have been added that detects a leg or the presence of a person.
For areas where there is only a short distance to the source of danger, select a finger protection model. For areas where there is some distance to the hazardous point and where the machinery stops with sufficient time to spare, choose an economical hand/arm/body protection model.


Finger-protection Detection

Capability: 14 mm diameter (Beam gap: 9 mm )


Hand-protection Detection

Capability: 20 mm
diameter
(Beam gap: 15 mm )
Capability: 25 mm
diameter
(Beam gap: 20 mm )


Leg/body-protection and
Presence Detection
Capability: 55 mm diameter
(Beam gap: 50 mm )


## Easier to install, easier to use.

## The thin sensor saves valuable space.

The sensor is 6 mm thinner than our previous models. When you include the newly designed mounting brackets, which also enable beams to be aligned after the sensor is mounted, the total thickness is 26 mm - a reduction of 19 mm compared to previous models. The low profile means the sensor will not get in the way when adding safety applications to existing equipment.


Flexible cable with a 5 mm bending radius makes wiring a snap.
The F3SJ cables ( 0.3 m ) have M12 connectors and can be routed in any direction. Problems with connector compatibility have been eliminated.


## The included standard mounting brackets are easier than ever to use.

The included mounting brackets, which are suitable for general use, have been redesigned with ease of use in mind.
The new design allows easy screwdriver access, even when mounting in tight spaces. Also, after aligning the beams, screws can be tightened while oriented perpendicular to the lens surface, just like the panel mounting screws.
On previous models, the carefully adjusted beam angles would sometimes come out of alignment when tightening the final screws. This problem has been solved with the F3SJ, because the screw-tightening direction is different from the angle adjustment direction. The result is reduced installation time.


The direction of all screws can be oriented perpendicular to the lens surface. Easy screwdriver access.


The sensor can be rotated along its axis. Beam alignment can be finetuned, even when mounted side by side on a surface.

## Side-mounting in tight spaces is simple.

When using standard mounting brackets to mount a sensor on its side, the bracket protrudes outward in front of the lens surface. When this protrusion is of concern, use the F39-LJ2 side-mounting brackets (sold separately).


## Easy to change from previous models.

When replacing your previous standard multiple-beam area sensor, use the F39-LJ4 top / bottom mounting bracket B (sold separately), which features enlarged mounting holes.


## A variety of features are provided for easier use.

## Resistant to mutual interference. No wiring between sensors and no interference for up to three sets.

OMRON has developed a unique interference light prevention algorithm that automatically prevents malfunction, even when light is received from three sets.
This feature is ideal for applications where it is not possible to perform wiring with an interference sensor, such as between an AGV and installed equipment.
Also, the Setting Tool can be used to adjust the emitted light intensity to minimize the effect of light on other devices.


## Maximum protective height of $2,500 \mathrm{~mm}$.

## Series connection is more convenient than ever.

Sensors with protective heights of up to nearly 2.5 meters are available for applications that involve large-sized workpieces. And if you happen to make changes in the future, you can always extend the protective height with series connections. Up to four sets, or 400 beams, can be series-connected, and with series connection cables up to 15 meters in length, applications can cover a wide area.


No bottlenecks in workflow. Free-location brackets make vertical installation easy.
To create "perfect fit" installations with no dead zones or extra space when making series connections in L- or U-shaped configurations, use the F39-LJ3 free-location mounting brackets (sold separately) and F39-JJR06L Side-by-side Series Connection Cable.
In addition to the F39-JJR06L mentioned above, the F39-JJR15L and F39JJR3W etc. can also be used with series connection cables.


Application example U-shaped configuration


Keep a $25-\mathrm{mm}$ beam gap in L-shaped installations. The cable (F39-JJR06L) does not get in the way when used in series connections.

## New functions for extra reliability.

## Combine safety and productivity with a controller-less muting function.

The muting function temporarily disables the light curtain when an object must pass through the detection zone, such as when supplying a workpiece to your equipment. In the past, this function required a dedicated muting controller, but now it is built into the F3SJ.
To use the muting function, purchase the F39-CN6 Key Cap for Muting (sold separately). The muting function is enabled simply by replacing the Unit's cap with this Key Cap. In addition, a muting sensor that determines the muting timing, as well as a muting lamp that communicates the muting status to other operators, should be connected to the F3SJ.

A measure to prevent you from forgetting to connect a series
connection cable.
The connectors for series connection feature an intelligent design. To connect a series connection cable to the F3SJ, remove the Key Cap that is required when the sensor is used by itself.
If you should happen to forget to connect the series connection cable, the sensor will not operate by itself without the Key Cap.
This solves the problem of sensors operating independently when a series connection cable is accidentally left unconnected, such as when equipment is moved.

## Complies with the latest international safety standards and

 regulations.Like previous Type 4 Safety Light Curtains, the F3SJ conforms to the latest required safety standards and regulations. Since the F3SJ also complies with IEC61508, the international standard for functional safety, safety is ensured regardless of where it is used.

Built-in muting function
No controller required. Simply attach the
Key Cap (sold separately) to the sensor.
F39-CN6


| International standards | IEC61496-1, IEC61496-2, IEC61508 1998 (SIL3) |
| :--- | :--- |
| EU legislation EN standards | Machinery Directive, EMC Directive, EN61496-1, prEN61496-2, EN61508 2001 (SIL3) |
| JIS standards | JIS B9704-1, B9704-2 |
| North American standards | UL61496-1, UL61496-2, UL508, UL1998, CAN/CSA22.2 NO.14, <br> CAN/CSA22.2 NO.0.8 |

- Can be used with equipment subject to US OSHA standards (29 CFR 1910.212).
- Satisfies the requirements of the ANSI/RIA R15.06-1999 standards for industrial robots.
- Models are also available which have received S-mark certification from the Korea Occupational Safety and Health Agency (KOSHA). These models have an " $-S$ " at the end of the model number.

JIS
OSHA

## Ordering Information

## Main Units

Safety Light Curtain F3SJ-A (Type 4)

| Application | Detection capability | Beam gap | Appearance | Operating range | Number of beams | Protective height ( mm ) | Model |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  | PNP Output | NPN Output |
| Finger protection | 14-mm-dia. | 9 mm |  |  | 26 to 180 | 245 to 1,631 | F3SJ- <br> A $\square \square \square \mathrm{P} 14$ <br> *1 | F3SJ- <br> A $\square \square \square \square 14$ |
|  |  |  |  | 0.2109 m |  |  | F3SJ- <br> A $\square \square \square \square$ P14 <br> -TS *2 | --- |
| Hand protection | 20-mm-dia. | 15 mm |  | - 0.2 to 9 m | 16 to 100 | 245 to 1,505 | F3SJA $\square \square \square \square \mathbf{P} 20$ *1 | F3SJ- <br> A $\square \square \square \square$ N20 |
|  |  |  |  | 0.2 to 7 m | 110 to 166 | 1,655 to 2,495 |  |  |
|  |  |  |  | 0.2 to 9 m | 16 to 100 | 245 to 1,505 | $\begin{aligned} & \text { F3SJ- } \\ & \text { A } \square \square \square \square \text { P20 } \\ & \text {-TS } * 2 \end{aligned}$ | --- |
|  |  |  |  | 0.2 to 7 m | 110 to 166 | 1,655 to 2,495 |  |  |
|  | 25 mm -dia. | 20 mm |  | $\square 0.2$ to 9 m | 13 to 82 | 260 to 1,640 | F3SJ- <br> A $\square \square \square$ P25 <br> *1 | F3SJ- <br> A $\square \square \square \mathbf{N} 25$ |
|  |  |  |  | 0.2 to 7 m | 83 to 125 | 1,660 to 2,500 |  |  |
|  |  |  |  | 0.2 to 9 m | 13 to 82 | 260 to 1,640 | F3SJ- <br> A $\square \square \square \mathbf{P} 25$ <br> -TS *2 | --- |
|  |  |  |  | 0.2 to 7 m | 83 to 125 | 1,660 to 2,500 |  |  |
| Hand/arm protection | 30-mm-dia. | 25 mm |  | 0.2 to 9 m | 10 to 65 | 245 to 1,620 | F3SJ- <br> A $\square \square \square \square$ P30 <br> *1 | F3SJ- <br> $A \square \square \square \square$ N30 |
|  |  |  |  | 0.2 to 7 m | 70 to 100 | 1,745 to 2,495 |  |  |
| Leg/body protection, | 55 mm-dia. | 50 mm |  | $\square 0.2$ to 9 m | 6 to 33 | 270 to 1,620 | F3SJA $\square \square \square$ P55 <br> *1 | F3SJ- <br> A $\square \square \square$ N55 |
| Presence Detection |  |  |  | $\square 0.2$ to 7 m | 34 to 50 | 1,670 to 2,470 |  |  |

Note: Connection cables are not included with the products and are to be purchased separately, as needed. You must purchase optional connector cable.
*1. Models with S-mark certification have an "-S" at the end of the model number. Example: F3SJ-A0245P14-S
*2. Models with fixed auto reset (-TS). Parameters cannot be set using the F39-MC21 Setting Console or F39-GWUM "SD Manager" Setting Support Software for F3SJ. See the Ratings and Performance data for other differences between this and standard models.

## Safety Light Curtain Model List

Products other than those listed below are also available. Please contact your OMRON sales representative for details.
F3SJ-A14 Series (9-mm gap), F3SJ-A14-TS Series (9-mm gap) $* 1$

| Model |  | No. of Beams | Protective Height (mm) *2 |
| :---: | :---: | :---: | :---: |
| PNP Output *1 | NPN Output |  |  |
| F3SJ-A0245P14 | F3SJ-A0245N14 | 26 | 245 |
| F3SJ-A0263P14 | F3SJ-A0263N14 | 28 | 263 |
| F3SJ-A0281P14 | F3SJ-A0281N14 | 30 | 281 |
| F3SJ-A0299P14 | F3SJ-A0299N14 | 32 | 299 |
| F3SJ-A0317P14 | F3SJ-A0317N14 | 34 | 317 |
| F3SJ-A0335P14 | F3SJ-A0335N14 | 36 | 335 |
| F3SJ-A0353P14 | F3SJ-A0353N14 | 38 | 353 |
| F3SJ-A0371P14 | F3SJ-A0371N14 | 40 | 371 |
| F3SJ-A0389P14 | F3SJ-A0389N14 | 42 | 389 |
| F3SJ-A0407P14 | F3SJ-A0407N14 | 44 | 407 |
| F3SJ-A0425P14 | F3SJ-A0425N14 | 46 | 425 |
| F3SJ-A0443P14 | F3SJ-A0443N14 | 48 | 443 |
| F3SJ-A0461P14 | F3SJ-A0461N14 | 50 | 461 |
| F3SJ-A0479P14 | F3SJ-A0479N14 | 52 | 479 |
| F3SJ-A0497P14 | F3SJ-A0497N14 | 54 | 497 |
| F3SJ-A0515P14 | F3SJ-A0515N14 | 56 | 515 |
| F3SJ-A0533P14 | F3SJ-A0533N14 | 58 | 533 |
| F3SJ-A0551P14 | F3SJ-A0551N14 | 60 | 551 |
| F3SJ-A0569P14 | F3SJ-A0569N14 | 62 | 569 |
| F3SJ-A0587P14 | F3SJ-A0587N14 | 64 | 587 |
| F3SJ-A0605P14 | F3SJ-A0605N14 | 66 | 605 |
| F3SJ-A0623P14 | F3SJ-A0623N14 | 68 | 623 |


| Model |  | No. of <br> Beams | Protective <br> Height (mm) $\boldsymbol{* 2}$ |
| :--- | :--- | :--- | :--- |
| PNP Output *1 | NPN Output | 659 |  |
| F3SJ-A0659P14 | F3SJ-A0659N14 | 72 | 659 |
| F3SJ-A0695P14 | F3SJ-A0695N14 | 76 | 695 |
| F3SJ-A0731P14 | F3SJ-A0731N14 | 80 | 731 |
| F3SJ-A0767P14 | F3SJ-A0767N14 | 84 | 767 |
| F3SJ-A0803P14 | F3SJ-A0803N14 | 88 | 803 |
| F3SJ-A0839P14 | F3SJ-A0839N14 | 92 | 839 |
| F3SJ-A0875P14 | F3SJ-A0875N14 | 96 | 875 |
| F3SJ-A0911P14 | F3SJ-A0911N14 | 100 | 911 |
| F3SJ-A0983P14 | F3SJ-A0983N14 | 108 | 983 |
| F3SJ-A1055P14 | F3SJ-A1055N14 | 116 | 1055 |
| F3SJ-A1127P14 | F3SJ-A1127N14 | 124 | 1127 |
| F3SJ-A1199P14 | F3SJ-A1199N14 | 132 | 1199 |
| F3SJ-A1271P14 | F3SJ-A1271N14 | 140 | 1271 |
| F3SJ-A1343P14 | F3SJ-A1343N14 | 148 | 1343 |
| F3SJ-A1415P14 | F3SJ-A1415N14 | 156 | 1415 |
| F3SJ-A1487P14 | F3SJ-A1487N14 | 164 | 1487 |
| F3SJ-A1559P14 | F3SJ-A1559N14 | 172 | 1559 |
| F3SJ-A1631P14 | F3SJ-A1631N14 | 180 | 1631 |

*1. The suffix "-TS" is attached to the model number of models with fixed auto reset. (Only for PNP output)
*2. Protective Height $(\mathrm{mm})=$ Total sensor length

F3SJ-A20 Series (15-mm gap), F3SJ-A20-TS Series (15-mm gap) $* 1$

| Model |  | No. of Beams | Protective Height (mm) $* 2$ |
| :---: | :---: | :---: | :---: |
| PNP Output *1 | NPN Output |  |  |
| F3SJ-A0245P20 | F3SJ-A0245N20 | 16 | 245 |
| F3SJ-A0275P20 | F3SJ-A0275N20 | 18 | 275 |
| F3SJ-A0305P20 | F3SJ-A0305N20 | 20 | 305 |
| F3SJ-A0335P20 | F3SJ-A0335N20 | 22 | 335 |
| F3SJ-A0365P20 | F3SJ-A0365N20 | 24 | 365 |
| F3SJ-A0395P20 | F3SJ-A0395N20 | 26 | 395 |
| F3SJ-A0425P20 | F3SJ-A0425N20 | 28 | 425 |
| F3SJ-A0455P20 | F3SJ-A0455N20 | 30 | 455 |
| F3SJ-A0485P20 | F3SJ-A0485N20 | 32 | 485 |
| F3SJ-A0515P20 | F3SJ-A0515N20 | 34 | 515 |
| F3SJ-A0545P20 | F3SJ-A0545N20 | 36 | 545 |
| F3SJ-A0575P20 | F3SJ-A0575N20 | 38 | 575 |
| F3SJ-A0605P20 | F3SJ-A0605N20 | 40 | 605 |
| F3SJ-A0635P20 | F3SJ-A0635N20 | 42 | 635 |
| F3SJ-A0665P20 | F3SJ-A0665N20 | 44 | 665 |
| F3SJ-A0695P20 | F3SJ-A0695N20 | 46 | 695 |
| F3SJ-A0725P20 | F3SJ-A0725N20 | 48 | 725 |
| F3SJ-A0755P20 | F3SJ-A0755N20 | 50 | 755 |
| F3SJ-A0785P20 | F3SJ-A0785N20 | 52 | 785 |
| F3SJ-A0815P20 | F3SJ-A0815N20 | 54 | 815 |
| F3SJ-A0845P20 | F3SJ-A0845N20 | 56 | 845 |
| F3SJ-A0875P20 | F3SJ-A0875N20 | 58 | 875 |
| F3SJ-A0905P20 | F3SJ-A0905N20 | 60 | 905 |
| F3SJ-A0935P20 | F3SJ-A0935N20 | 62 | 935 |
| F3SJ-A0965P20 | F3SJ-A0965N20 | 64 | 965 |
| F3SJ-A0995P20 | F3SJ-A0995N20 | 66 | 995 |
| F3SJ-A1025P20 | F3SJ-A1025N20 | 68 | 1025 |
| F3SJ-A1055P20 | F3SJ-A1055N20 | 70 | 1055 |
| F3SJ-A1085P20 | F3SJ-A1085N20 | 72 | 1085 |
| F3SJ-A1115P20 | F3SJ-A1115N20 | 74 | 1115 |
| F3SJ-A1145P20 | F3SJ-A1145N20 | 76 | 1145 |
| F3SJ-A1175P20 | F3SJ-A1175N20 | 78 | 1175 |
| F3SJ-A1205P20 | F3SJ-A1205N20 | 80 | 1205 |
| F3SJ-A1235P20 | F3SJ-A1235N20 | 82 | 1235 |
| F3SJ-A1265P20 | F3SJ-A1265N20 | 84 | 1265 |
| F3SJ-A1325P20 | F3SJ-A1325N20 | 88 | 1325 |
| F3SJ-A1385P20 | F3SJ-A1385N20 | 92 | 1385 |
| F3SJ-A1445P20 | F3SJ-A1445N20 | 96 | 1445 |
| F3SJ-A1505P20 | F3SJ-A1505N20 | 100 | 1505 |
| F3SJ-A1655P20 | F3SJ-A1655N20 | 110 | 1655 |
| F3SJ-A1805P20 | F3SJ-A1805N20 | 120 | 1805 |
| F3SJ-A1955P20 | F3SJ-A1955N20 | 130 | 1955 |
| F3SJ-A2105P20 | F3SJ-A2105N20 | 140 | 2105 |
| F3SJ-A2255P20 | F3SJ-A2255N20 | 150 | 2255 |
| F3SJ-A2405P20 | F3SJ-A2405N20 | 160 | 2405 |
| F3SJ-A2495P20 | F3SJ-A2495N20 | 166 | 2495 |

*1. The suffix "-TS" is attached to the model number of models with fixed auto reset. (Only for PNP output)
*2. Protective Height $(\mathrm{mm})=$ Total sensor length

F3SJ-A25 Series (20-mm gap), F3SJ-A25-TS Series (20-mm gap) $* 1$

| Model |  | No. of Beams | Protective Height (mm) *2 |
| :---: | :---: | :---: | :---: |
| PNP output $* 1$ | NPN Output |  |  |
| F3SJ-A0260P25 | F3SJ-A0260N25 | 13 | 260 |
| F3SJ-A0300P25 | F3SJ-A0300N25 | 15 | 300 |
| F3SJ-A0340P25 | F3SJ-A0340N25 | 17 | 340 |
| F3SJ-A0380P25 | F3SJ-A0380N25 | 19 | 380 |
| F3SJ-A0420P25 | F3SJ-A0420N25 | 21 | 420 |
| F3SJ-A0460P25 | F3SJ-A0460N25 | 23 | 460 |
| F3SJ-A0500P25 | F3SJ-A0500N25 | 25 | 500 |
| F3SJ-A0540P25 | F3SJ-A0540N25 | 27 | 540 |
| F3SJ-A0580P25 | F3SJ-A0580N25 | 29 | 580 |
| F3SJ-A0620P25 | F3SJ-A0620N25 | 31 | 620 |
| F3SJ-A0660P25 | F3SJ-A0660N25 | 33 | 660 |
| F3SJ-A0700P25 | F3SJ-A0700N25 | 35 | 700 |
| F3SJ-A0740P25 | F3SJ-A0740N25 | 37 | 740 |
| F3SJ-A0780P25 | F3SJ-A0780N25 | 39 | 780 |
| F3SJ-A0820P25 | F3SJ-A0820N25 | 41 | 820 |
| F3SJ-A0860P25 | F3SJ-A0860N25 | 43 | 860 |
| F3SJ-A0900P25 | F3SJ-A0900N25 | 45 | 900 |
| F3SJ-A0940P25 | F3SJ-A0940N25 | 47 | 940 |
| F3SJ-A0980P25 | F3SJ-A0980N25 | 49 | 980 |
| F3SJ-A1020P25 | F3SJ-A1020N25 | 51 | 1020 |
| F3SJ-A1060P25 | F3SJ-A1060N25 | 53 | 1060 |
| F3SJ-A1100P25 | F3SJ-A1100N25 | 55 | 1100 |
| F3SJ-A1140P25 | F3SJ-A1140N25 | 57 | 1140 |
| F3SJ-A1180P25 | F3SJ-A1180N25 | 59 | 1180 |
| F3SJ-A1220P25 | F3SJ-A1220N25 | 61 | 1220 |
| F3SJ-A1260P25 | F3SJ-A1260N25 | 63 | 1260 |
| F3SJ-A1300P25 | F3SJ-A1300N25 | 65 | 1300 |
| F3SJ-A1340P25 | F3SJ-A1340N25 | 67 | 1340 |
| F3SJ-A1380P25 | F3SJ-A1380N25 | 69 | 1380 |
| F3SJ-A1420P25 | F3SJ-A1420N25 | 71 | 1420 |
| F3SJ-A1460P25 | F3SJ-A1460N25 | 73 | 1460 |
| F3SJ-A1500P25 | F3SJ-A1500N25 | 75 | 1500 |
| F3SJ-A1540P25 | F3SJ-A1540N25 | 77 | 1540 |
| F3SJ-A1580P25 | F3SJ-A1580N25 | 79 | 1580 |
| F3SJ-A1620P25 | F3SJ-A1620N25 | 81 | 1620 |
| F3SJ-A1660P25 | F3SJ-A1660N25 | 83 | 1660 |
| F3SJ-A1700P25 | F3SJ-A1700N25 | 85 | 1700 |
| F3SJ-A1740P25 | F3SJ-A1740N25 | 87 | 1740 |
| F3SJ-A1780P25 | F3SJ-A1780N25 | 89 | 1780 |
| F3SJ-A1820P25 | F3SJ-A1820N25 | 91 | 1820 |
| F3SJ-A1860P25 | F3SJ-A1860N25 | 93 | 1860 |
| F3SJ-A1900P25 | F3SJ-A1900N25 | 95 | 1900 |
| F3SJ-A1940P25 | F3SJ-A1940N25 | 97 | 1940 |
| F3SJ-A1980P25 | F3SJ-A1980N25 | 99 | 1980 |
| F3SJ-A2020P25 | F3SJ-A2020N25 | 101 | 2020 |
| F3SJ-A2060P25 | F3SJ-A2060N25 | 103 | 2060 |
| F3SJ-A2100P25 | F3SJ-A2100N25 | 105 | 2100 |
| F3SJ-A2140P25 | F3SJ-A2140N25 | 107 | 2140 |
| F3SJ-A2180P25 | F3SJ-A2180N25 | 109 | 2180 |
| F3SJ-A2220P25 | F3SJ-A2220N25 | 111 | 2220 |
| F3SJ-A2260P25 | F3SJ-A2260N25 | 113 | 2260 |
| F3SJ-A2300P25 | F3SJ-A2300N25 | 115 | 2300 |
| F3SJ-A2340P25 | F3SJ-A2340N25 | 117 | 2340 |
| F3SJ-A2380P25 | F3SJ-A2380N25 | 119 | 2380 |
| F3SJ-A2420P25 | F3SJ-A2420N25 | 121 | 2420 |
| F3SJ-A2460P25 | F3SJ-A2460N25 | 123 | 2460 |
| F3SJ-A2500P25 | F3SJ-A2500N25 | 125 | 2500 |

*1. The suffix "-TS" is attached to the model number of models with fixed auto reset. (Only for PNP output)
*2. Protective Height $(\mathrm{mm})=$ Total sensor length

F3SJ-A30 Series (25-mm gap)

| Model |  | No. of Beams | Protective Height (mm) * |
| :---: | :---: | :---: | :---: |
| PNP Output | NPN Output |  |  |
| F3SJ-A0245P30 | F3SJ-A0245N30 | 10 | 245 |
| F3SJ-A0270P30 | F3SJ-A0270N30 | 11 | 270 |
| F3SJ-A0295P30 | F3SJ-A0295N30 | 12 | 295 |
| F3SJ-A0320P30 | F3SJ-A0320N30 | 13 | 320 |
| F3SJ-A0345P30 | F3SJ-A0345N30 | 14 | 345 |
| F3SJ-A0370P30 | F3SJ-A0370N30 | 15 | 370 |
| F3SJ-A0395P30 | F3SJ-A0395N30 | 16 | 395 |
| F3SJ-A0420P30 | F3SJ-A0420N30 | 17 | 420 |
| F3SJ-A0445P30 | F3SJ-A0445N30 | 18 | 445 |
| F3SJ-A0470P30 | F3SJ-A0470N30 | 19 | 470 |
| F3SJ-A0495P30 | F3SJ-A0495N30 | 20 | 495 |
| F3SJ-A0520P30 | F3SJ-A0520N30 | 21 | 520 |
| F3SJ-A0545P30 | F3SJ-A0545N30 | 22 | 545 |
| F3SJ-A0570P30 | F3SJ-A0570N30 | 23 | 570 |
| F3SJ-A0595P30 | F3SJ-A0595N30 | 24 | 595 |
| F3SJ-A0620P30 | F3SJ-A0620N30 | 25 | 620 |
| F3SJ-A0645P30 | F3SJ-A0645N30 | 26 | 645 |
| F3SJ-A0670P30 | F3SJ-A0670N30 | 27 | 670 |
| F3SJ-A0695P30 | F3SJ-A0695N30 | 28 | 695 |
| F3SJ-A0720P30 | F3SJ-A0720N30 | 29 | 720 |
| F3SJ-A0745P30 | F3SJ-A0745N30 | 30 | 745 |
| F3SJ-A0770P30 | F3SJ-A0770N30 | 31 | 770 |
| F3SJ-A0795P30 | F3SJ-A0795N30 | 32 | 795 |
| F3SJ-A0820P30 | F3SJ-A0820N30 | 33 | 820 |
| F3SJ-A0845P30 | F3SJ-A0845N30 | 34 | 845 |
| F3SJ-A0870P30 | F3SJ-A0870N30 | 35 | 870 |
| F3SJ-A0895P30 | F3SJ-A0895N30 | 36 | 895 |
| F3SJ-A0920P30 | F3SJ-A0920N30 | 37 | 920 |
| F3SJ-A0945P30 | F3SJ-A0945N30 | 38 | 945 |
| F3SJ-A0970P30 | F3SJ-A0970N30 | 39 | 970 |
| F3SJ-A0995P30 | F3SJ-A0995N30 | 40 | 995 |
| F3SJ-A1020P30 | F3SJ-A1020N30 | 41 | 1020 |
| F3SJ-A1045P30 | F3SJ-A1045N30 | 42 | 1045 |
| F3SJ-A1070P30 | F3SJ-A1070N30 | 43 | 1070 |
| F3SJ-A1095P30 | F3SJ-A1095N30 | 44 | 1095 |
| F3SJ-A1120P30 | F3SJ-A1120N30 | 45 | 1120 |
| F3SJ-A1145P30 | F3SJ-A1145N30 | 46 | 1145 |
| F3SJ-A1170P30 | F3SJ-A1170N30 | 47 | 1170 |
| F3SJ-A1195P30 | F3SJ-A1195N30 | 48 | 1195 |
| F3SJ-A1220P30 | F3SJ-A1220N30 | 49 | 1220 |
| F3SJ-A1245P30 | F3SJ-A1245N30 | 50 | 1245 |
| F3SJ-A1270P30 | F3SJ-A1270N30 | 51 | 1270 |
| F3SJ-A1295P30 | F3SJ-A1295N30 | 52 | 1295 |
| F3SJ-A1395P30 | F3SJ-A1395N30 | 56 | 1395 |
| F3SJ-A1495P30 | F3SJ-A1495N30 | 60 | 1495 |
| F3SJ-A1620P30 | F3SJ-A1620N30 | 65 | 1620 |
| F3SJ-A1745P30 | F3SJ-A1745N30 | 70 | 1745 |
| F3SJ-A1870P30 | F3SJ-A1870N30 | 75 | 1870 |
| F3SJ-A1995P30 | F3SJ-A1995N30 | 80 | 1995 |
| F3SJ-A2120P30 | F3SJ-A2120N30 | 85 | 2120 |
| F3SJ-A2245P30 | F3SJ-A2245N30 | 90 | 2245 |
| F3SJ-A2370P30 | F3SJ-A2370N30 | 95 | 2370 |
| F3SJ-A2495P30 | F3SJ-A2495N30 | 100 | 2495 |

* Protective Height $(\mathrm{mm})=$ Total sensor length


## F3SJ-A55 Series (50-mm gap)

| Model |  | No. of Beams | Protective Height (mm) * |
| :---: | :---: | :---: | :---: |
| PNP Output | NPN Output |  |  |
| F3SJ-A0270P55 | F3SJ-A0270N55 | 6 | 270 |
| F3SJ-A0320P55 | F3SJ-A0320N55 | 7 | 320 |
| F3SJ-A0370P55 | F3SJ-A0370N55 | 8 | 370 |
| F3SJ-A0420P55 | F3SJ-A0420N55 | 9 | 420 |
| F3SJ-A0470P55 | F3SJ-A0470N55 | 10 | 470 |
| F3SJ-A0520P55 | F3SJ-A0520N55 | 11 | 520 |
| F3SJ-A0570P55 | F3SJ-A0570N55 | 12 | 570 |
| F3SJ-A0620P55 | F3SJ-A0620N55 | 13 | 620 |
| F3SJ-A0670P55 | F3SJ-A0670N55 | 14 | 670 |
| F3SJ-A0720P55 | F3SJ-A0720N55 | 15 | 720 |
| F3SJ-A0770P55 | F3SJ-A0770N55 | 16 | 770 |
| F3SJ-A0820P55 | F3SJ-A0820N55 | 17 | 820 |
| F3SJ-A0870P55 | F3SJ-A0870N55 | 18 | 870 |
| F3SJ-A0920P55 | F3SJ-A0920N55 | 19 | 920 |
| F3SJ-A0970P55 | F3SJ-A0970N55 | 20 | 970 |
| F3SJ-A1020P55 | F3SJ-A1020N55 | 21 | 1020 |
| F3SJ-A1070P55 | F3SJ-A1070N55 | 22 | 1070 |
| F3SJ-A1120P55 | F3SJ-A1120N55 | 23 | 1120 |
| F3SJ-A1170P55 | F3SJ-A1170N55 | 24 | 1170 |
| F3SJ-A1220P55 | F3SJ-A1220N55 | 25 | 1220 |
| F3SJ-A1270P55 | F3SJ-A1270N55 | 26 | 1270 |
| F3SJ-A1320P55 | F3SJ-A1320N55 | 27 | 1320 |
| F3SJ-A1370P55 | F3SJ-A1370N55 | 28 | 1370 |
| F3SJ-A1420P55 | F3SJ-A1420N55 | 29 | 1420 |
| F3SJ-A1470P55 | F3SJ-A1470N55 | 30 | 1470 |
| F3SJ-A1520P55 | F3SJ-A1520N55 | 31 | 1520 |
| F3SJ-A1570P55 | F3SJ-A1570N55 | 32 | 1570 |
| F3SJ-A1620P55 | F3SJ-A1620N55 | 33 | 1620 |
| F3SJ-A1670P55 | F3SJ-A1670N55 | 34 | 1670 |
| F3SJ-A1720P55 | F3SJ-A1720N55 | 35 | 1720 |
| F3SJ-A1770P55 | F3SJ-A1770N55 | 36 | 1770 |
| F3SJ-A1820P55 | F3SJ-A1820N55 | 37 | 1820 |
| F3SJ-A1870P55 | F3SJ-A1870N55 | 38 | 1870 |
| F3SJ-A1920P55 | F3SJ-A1920N55 | 39 | 1920 |
| F3SJ-A1970P55 | F3SJ-A1970N55 | 40 | 1970 |
| F3SJ-A2020P55 | F3SJ-A2020N55 | 41 | 2020 |
| F3SJ-A2070P55 | F3SJ-A2070N55 | 42 | 2070 |
| F3SJ-A2120P55 | F3SJ-A2120N55 | 43 | 2120 |
| F3SJ-A2170P55 | F3SJ-A2170N55 | 44 | 2170 |
| F3SJ-A2220P55 | F3SJ-A2220N55 | 45 | 2220 |
| F3SJ-A2270P55 | F3SJ-A2270N55 | 46 | 2270 |
| F3SJ-A2320P55 | F3SJ-A2320N55 | 47 | 2320 |
| F3SJ-A2370P55 | F3SJ-A2370N55 | 48 | 2370 |
| F3SJ-A2420P55 | F3SJ-A2420N55 | 49 | 2420 |
| F3SJ-A2470P55 | F3SJ-A2470N55 | 50 | 2470 |

[^0]
## Accessories (Optional)

## Single-end Connector Cable (2 cables per set, for emitter and receiver)

For wiring with safety circuit such as single safety relay, safety relay unit, and safety controller

| Appearance | Cable length | Specifications | Model |
| :---: | :---: | :---: | :---: |
|  | 0.5 m | M12 connector (8-pin) | F39-JCR5A |
|  | 3 m |  | F39-JC3A |
|  | 7 m |  | F39-JC7A |
|  | 10 m |  | F39-JC10A |
|  | 15 m |  | F39-JC15A |
|  | 20 m |  | F39-JC20A |

Double-end Connector Cable (2 cables per set, for emitter and receiver)
For connection with F3SP-B1P control unit, and for extension when series-connected *


* To extend the cable length under series connection, use F39-JJR3W and F39-JC $\square$ B in combination. Also, the cable length 20 to 40 m cannot be used.

Power Cable (Included with the main unit) (2 cables per set, for emitter and receiver)

| Appearance | Cable length |  |
| :---: | :---: | :---: |
|  |  |  |

Series Connection Cable (2 cables per set, for emitter and receiver)

| Type | Appearance | Cable length | Model | Application |
| :---: | :---: | :---: | :---: | :---: |
| Series connection cable |  | 0.3 m | F39-JJR3W | For series connection $* 1$ When using the Water-resistant Case. *2 |
| Extension cable |  | 0.5 to 15 m | F39-JC $\square$ B | To change series connection length in combination with F39JJR3W |
| Side-by-side Series connection cable |  | 0.06 m | F39-JJR06L | Dedicated series connection cable with minimum length, used in place of the sensor's cable with connector |
|  |  | 0.15 m | F39-JJR15L |  |

*1. Total cable length of series connection is 0.6 m to connect to connector cable of the main sensor unit.
For series connection with minimum length, use the F39-JJR06L or F39-JJR15L.
*2. When using the F39-EJ $\square \square \square \square$-L/D Water-resistant Case in series connection configurations, use the special series connection cables for the Water-resistant Case. Refer to page 14 for details.

## Relays with Forcibly Guided Contacts

| Type | Appearance | Specifications | Model | Remarks |
| :---: | :---: | :---: | :---: | :---: |
| G7SA Relays with Forcibly Guided Contacts |  | - No. of contacts: 4 <br> - Contact type: 2NO+2NC <br> - Rated switch load: 250 VAC 6 A, 30 VDC 6 A | G7SA-2A2B | For other models and functions, refer to G7SA and Socket models. |
|  |  | - No. of contacts: 4 <br> - Contact type: 3NO+1NC <br> - Rated switch load: 250 VAC 6 A, 30 VDC 6 A | G7SA-3A1B |  |
| G7S $\square$-E Relays with Forcibly Guided Contacts |  | - No. of contacts: 6 <br> - Contact type: 4NO+2NC <br> - Rated switch load: 250 VAC 10 A, 30 VDC 10 A | G7S-4A2B-E | For other models and functions, refer to G7S $\square$-E and Socket models. |
|  |  | - No. of contacts: 6 <br> - Contact type: 3NO+3NC <br> - Rated switch load: 250 VAC 10 A, 30 VDC 10 A | G7S-3A3B-E |  |

Control unit (Can not be used as a muting system)
(Dedicated PNP output type) $*$

| Appearance | Output | Model | Remarks |
| :---: | :---: | :--- | :--- |
| Relay, 3NO+1NC | F3SP-B1P $*$ | For connection with F3SJ-A, use an F39-JC $\square B$ double-end <br> connector cable |  |

* F3SJ for NPN output type cannot be connected.

Wire-saving Devices

| Type | Appearance | Specifications | Model | Remarks |
| :---: | :---: | :---: | :---: | :---: |
| Connector Terminal Box/Muting Terminals *1 |  | Model with PNP Muting Sensor Output | F39-TC5P01 | Significantly reduces amount of wiring between Safety Light Curtains and Muting Sensors IP67 model for mounting at Sensor installation site Refer to F39-TC5 |
|  |  | Model with PNP Override Input | F39-TC5P02 |  |
|  |  | Model with NPN Muting Sensor Output | F39-TC5N01 |  |
|  |  | Model with NPN Override Input | F39-TC5N02 |  |
| Safety Terminal Relays *2 |  | PNP output relay, SPDT-NO | F3SP-T01 | Significantly reduces amount of wiring between Safety Light Curtains and Muting Sensors Refer to F3SP-T01 |

*1. For the F3SJ-A.
*2. For the F3SJ-A $\square \mathrm{P} \square$.

Dedicated External Indicator Set (Can be connected to either an emitter or a receiver)

| Appearance | Color | Model | Remarks |
| :---: | :--- | :--- | :--- |
|  | Red | F39-A01PR-PAC | Indicator (red), mounting bracket (1 set), and dedicated <br> connection cable ( 0.1 m ) |
|  | Green | F39-A01PG-PAC | Indicator (green), mounting bracket (1 set), and dedicated <br> connection cable ( 0.1 m ) |
|  | Yellow | F39-A01PY-PAC | Indicator (yellow), mounting bracket (1 set), and dedicated <br> connection cable ( 0.1 m$)$ |

Note: For indication timing (operation mode) see "Specifications" on page 15.
General External Indicator Cable

| Appearance | Cable length | Specifications | Model |
| :---: | :---: | :--- | :---: |
|  | 3 m | Cable to connect top of the main unit and an off-the shelf external <br> indicator (2-wire) | F39-JJ3N |

Spatter Protection Cover (Includes two pieces for emitter and receiver)
(Each unit reduces the operating range by 10\%)


* The same 4-digit numbers as the protective heights ( $\square \square \square \square$ in the light curtain type names) are substituted by $\square \square \square \square$ in the model names.

Mirrors (12\% Sensing Distance Attenuation)

| Mirror material | Width (mm) | Thickness (mm) | Length (mm) | Model |
| :---: | :---: | :---: | :---: | :---: |
| Glass mirror | 145 | 32 | 406 | F39-MLG0406 |
|  |  |  | 610 | F39-MLG0610 |
|  |  |  | 711 | F39-MLG0711 |
|  |  |  | 914 | F39-MLG0914 |
|  |  |  | 1,067 | F39-MLG1067 |
|  |  |  | 1,219 | F39-MLG1219 |
|  |  |  | 1,422 | F39-MLG1422 |
|  |  |  | 1,626 | F39-MLG1626 |
|  |  |  | 1,830 | F39-MLG1830 |
|  |  |  | 2,134 | F39-MLG2134 |

## Sensor Mounting Bracket (Sold separately)

| Appearance | Specifications | Model | Application | Remarks |
| :---: | :---: | :---: | :---: | :---: |
|  | Standard mounting bracket (for top/bottom) | F39-LJ1 | (provided with the F3SJ) | 2 for emitter, 2 for receiver (total of 4 per set) |
|  | Flat side mounting bracket | F39-LJ2 | Use these small-sized brackets when performing side mounting with standard mounting brackets, so that they do not protrude from the detection surface. | 2 for emitter, 2 for receiver (total of 4 per set) |
| 禺禺 | Free-location mounting bracket (also used as standard intermediate bracket) | F39-LJ3 | Use these brackets for mounting on any place without using standard bracket. | 1 set with 2 pieces (For details about the number of required brackets, refer to page 39.) |
|  | F3SN Intermediate Bracket Replacement Spacers | F39-LJ3-SN | When replacing the F3SN with the F3SJ, the mounting hole pitches in the Intermediate Brackets are not the same. This Spacer is placed between the mounting holes to mount the F3SJ. | 1 set with 2 pieces |
|  | Top/bottom mounting bracket B (mounting hole pitch 19 mm ) | F39-LJ4 | Mounting bracket used when replacing existing area sensors (other than F3SN or F3WN) with the F3SJ. <br> For front mounting. <br> Suitable for mounting hole pitch of 18 to 20 mm . | 2 for emitter, 2 for receiver (total of 4 per set) |
| ${ }^{\circ} \cdot 10$ | Bracket for replacing short-length F3SN | F39-LJ5 | Mounting bracket used when an F3SN with protective height of 300 mm or less is replaced by an F3SJ. | 2 for emitter, 2 for receiver (total of 4 per set) |
|  | Space-saving mounting bracket | F39-LJ8 | Use these brackets to mount facing inward. <br> Length is 12 mm shorter than the standard F39-LJ1 bracket. | 2 for emitter, 2 for receiver (total of 4 per set) |
|  | Mounting bracket used when replacing an F3W-C. | F39-LJ9 | Mounting bracket used when replacing existing F3W-C series area sensors with the F3SJ. <br> For front mounting or side mounting. Mounting hole pitch 16 mm . | 2 for emitter, 2 for receiver (total of 4 per set) |
|  | Top/bottom mounting bracket C (mounting hole pitch 13 mm ) | F39-LJ11 | Mounting bracket used when replacing existing area sensors having a mounting pitch of 13 mm with the F3SJ. | 2 for emitter, 2 for receiver (total of 4 per set) |

Key cap for muting

| Appearance | Model | Remarks |
| :---: | :---: | :--- |
|  | F39-CN6 | Cap attaches to the main unit to enable muting function. <br> Attach it to either an emitter or a receiver. (Case: orange) |

## Setting Tools *1

| Type | Model | Remarks |
| :--- | :--- | :--- | :--- |
| "SD Manager" Setting |  |  |
| Support Software for the |  |  |
| F3SJ |  |  |

*1. The setting tools described above can be connected only to F3SJ-A models with built-in software of Ver. 2 or later.
Note that the setting tools cannot be used with products shipped prior to December 2005. The setting tools cannot be used for setting
parameters on the F3SJ-A $\square$-TS series, but the monitoring function can be used.
*2. This product is for use only with the F3SJ-A. It cannot be connected to conventional models of the F3SN-A series.
Similarly, the F39-MC11 and F39-MT11 Dedicated Consoles for the F3SN-A cannot be connected to the F3SJ-A series.

## Protective Bar (Main unit mounting bracket (1) and a rear mounting bracket set) $\boldsymbol{* 1}$

| Type | Appearance | Model | Remarks |
| :---: | :---: | :---: | :---: |
| Protective Bar Set |  | F39-PJ $\square \square \square \square$-S *2 | Rear Mounting Brackets (2), including intermediate brackets to match protective height (0 to 2). |
| Intermediate brackets for side mounting |  | F39-PJ-MS | For side mounting, order to suit the desired protective height. <br> Protective height of up to $1,000 \mathrm{~mm}: 0$ intermediate brackets <br> Protective height of 1,001 to $2,000 \mathrm{~mm}$ : 1 intermediate bracket <br> Protective height of $2,001 \mathrm{~mm}$ or more: 2 intermediate brackets |

*1. When using for both emitter and receiver, order two sets.
*2. The same four digits indicating protective height that are used in the Sensor model number ( $\square \square \square \square$ ) are used in the $\square \square \square \square$ part of the Protector model number.

Water-resistant Case (Set of 1 tube, packing, and dedicated connector cable) $* 1 * 2$

| Appearance |  |  | Specifications |
| :--- | :--- | :--- | :--- |
|  | For emitter | Model | Remarks |
|  |  | F39-EJ $\square \square \square-L * 3$ | Includes gray cable for emitter. |

*1. When using for both emitter and receiver, order two sets.
*2. There are restrictions to the application conditions depending on the protective height of the Curtain. Refer to the Water-resistant Case on page 22.
*3. The same four digits indicating protective height that are used in the Sensor model number ( $\square \square \square \square$ ) are used in the $\square \square \square \square$ part of the Case model number.
*4. Be sure to purchase brackets with the Case to match the mounting direction (rear or side).

Specifications (For details, refer to the instruction manual or User's manual.)

## Main Units

F3SJ-A $\square \square \square$ P14/P20/P25/P30/P55/N14/N20/N25/N30/N55

| Model | PNP outputs | F3SJ-A $\square \square \square \square \mathbf{P 1 4}$ | F3SJ-A $\square \square \square \square \mathrm{P} 20$ | F3SJ-A $\square \square \square \square \mathbf{P 2 5}$ | F3SJ-A $\square \square \square \square$ P30 | F3SJ-A $\square \square \square \square \mathrm{P} 55$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Item | NPN outputs | F3SJ-A $\square \square \square \square \mathrm{N} 14$ | F3SJ-A $\square \square \square \square \mathrm{N} 20$ | F3SJ-A $\square \square \square \square \mathrm{N} 25$ | F3SJ-A $\square \square \square \square \mathrm{N} 30$ | F3SJ-A $\square \square \square \square \square^{\text {a }}$ |
| Sensor type |  | Type 4 safety light curtain |  |  |  |  |
| Version |  | Ver. 2 |  |  |  |  |
| Setting tool connection |  | Connectable |  |  |  |  |
| Applicable safety category |  | Category 4, 3, 2, 1, or B |  |  |  |  |
| Detection capability |  | Opaque objects 14 mm in diameter | Opaque objects 20 mm in diameter | Opaque objects 25 mm in diameter | Opaque objects 30 mm in diameter | Opaque objects 55 mm in diameter |
| Beam gap (P) |  | 9 mm | 15 mm | 20 mm | 25 mm | 50 mm |
| Number of beams ( n ) |  | 26 to 180 | 16 to 166 | 13 to 125 | 10 to 100 | 6 to 50 |
| Protective height (PH) |  | 245 to $1,631 \mathrm{~mm}$ | 245 to $2,495 \mathrm{~mm}$ | 260 to $2,500 \mathrm{~mm}$ |  | 270 to $2,470 \mathrm{~mm}$ |
| Lens diameter |  | Diameter 5 mm |  |  |  |  |
| Operating range * |  | 0.2 to 9 m (protective height $1,640 \mathrm{~mm}$ max.), <br> 0.2 to 7 m (protective height $1,655 \mathrm{~mm}$ min.) <br> (Depending on the setting tool, the detection distance can be shortened to 0.5 m .) |  |  |  |  |
| Response time (under stable light incident condition) (For details, see "Response Time" on page 20.) | ON to OFF | 1 set, 0245 to 983 : 11 ms to 17.5 ms max. <br> 1,055 or higher: 20 ms to 25 ms max. | 1 set, 0245 to 1,205 : 10 ms to 15 ms max. <br> 1,235 or higher: 17.5 ms to 22.5 ms max. | 1 set, 0260 to $1,600: 10 \mathrm{~ms}$ to 15 ms max. <br> 1,620 or higher: 17.5 ms to 20.0 ms max. | 1 set: 10 ms to 17.5 ms max. | 1 set: 10 ms to 13 ms max. |
|  | OFF to ON | 1 set, 0245 to $983: 44 \mathrm{~ms}$ to 70 ms max. <br> 1,055 or higher: 80 ms to 100 ms max. | 1 set, 0245 to 1,205: 40 ms to 60 ms max. <br> 1,235 or higher: 70 ms to 90 ms max. | 1 set, 0260 to $1,600: 40 \mathrm{~ms}$ to 60 ms max. <br> 1,620 or higher: 70 ms to 80 ms max. | 1 set: 40 ms to 70 ms max. | 1 set: 40 ms to 52 ms max. |
| Startup waiting time |  | $2 \mathrm{~s} \mathrm{max}. \mathrm{(2.2} \mathrm{~s} \mathrm{max} .\mathrm{for} \mathrm{series} \mathrm{connection)}$ |  |  |  |  |
| Power supply voltage (Vs) |  | 24 VDC $\pm 20 \%$ (ripple p-p10\% max.) |  |  |  |  |
| Current consumption (no load) | Emitter | Up to 50 beams: 76 mA max., 51 to 100 beams: 106 mA max., 101 to 150 beams: 130 mA max., 151 to 180 beams: 153 mA max., 201 to 234 beams: 165 mA max. |  |  |  |  |
|  | Receiver | Up to 50 beams: 68 mA max., 51 to 100 beams: 90 mA max., 101 to 150 beams: 111 mA max., 151 to 180 beams: 128 mA max., 201 to 234 beams: 142 mA max. |  |  |  |  |
| Light source (emitted wavelength) |  | Infrared LED (870 nm) |  |  |  |  |
| Effective aperture angle (EAA) |  | Based on IEC61496-2. Within $\pm 2.5^{\circ}$ for both emitter and receiver when the detection distance is 3 m or over |  |  |  |  |
| Control outputs (OSSD) | PNP outputs | Two PNP transistor outputs, load current 300 mA max., residual voltage 2 V max. (except for voltage drop due to cable extension), allowable capacity load $2.2 \mu \mathrm{~F}$, leak current 1 mA max. <br> (This can be different from traditional logic (ON/OFF) because safety circuit is used.) |  |  |  |  |
|  | NPN outputs | Two NPN transistor outputs, load current 300 mA max., residual voltage 2 V max. (except for voltage drop due to cable extension), allowable capacity load $2.2 \mu \mathrm{~F}$, leak current 2 mA max. <br> (This can be different from traditional logic (ON/OFF) because safety circuit is used.) |  |  |  |  |
| Auxiliary output 1 (non-safety output) | PNP output | One PNP transistor output, load current 300 mA max., residual voltage 2 V max. (except for voltage drop due to cable extension), leak current 1 mA max. |  |  |  |  |
|  | NPN output | One NPN transistor output, load current 300 mA max., residual voltage 2 V max. (except for voltage drop due to cable extension), leak current 1 mA max. |  |  |  |  |
| Auxiliary output 2 (non-safety output, basic system functions) | PNP output | One PNP transistor output, load current 50 mA max., residual voltage 2 V max. (except for voltage drop due to cable extension), leak current 1 mA max. |  |  |  |  |
|  | NPN output | One NPN transistor output, load current 50 mA max., residual voltage 2 V max. (except for voltage drop due to cable extension), leak current 1 mA max. |  |  |  |  |
| External indicator output (non-safety output) |  | Available indicators <br> - Incandescent lamp: 24 VDC, 3 to 7 W <br> - LED lamp: Load current 10 mA to 300 mA max., leak current 1 mA max. (To use an external indicator, an F39-JJ3N universal indicator cable or an F39-A01P $\square$-PAC dedicated external indicator kit is required.) |  |  |  |  |
| Output operation mode | Receiver | Control outputs 1, 2:ON when receiving light <br> Auxiliary output 1:Inverse of control output signals (Operating mode can be changed with the setting tool.) <br> External indicator output 1 :Inverse of control output signals for a basic system (Operating mode can be changed with the setting tool.) <br> ON when muting/override for a muting system (Operating mode can be changed with the setting tool.) |  |  |  |  |
|  | Emitter | Auxiliary output 2: Turns ON when the point of 30,000 operating hours is reached (Operating mode can be changed with the setting tool.) <br> External indicator output 2:ON when lock-out for a basic system (Operating mode can be changed with the setting tool.) ON when muting/override for a muting system (Operating mode can be changed with the setting tool.) |  |  |  |  |

* Use of the Spatter Protection Cover causes a $10 \%$ maximum sensing distance attenuation.

| Model | PNP outputs | F3SJ-A $\square \square \square \square \mathbf{P 1 4}$ | F3SJ-A $\square \square \square \square \mathbf{P} 20$ | F3SJ-A $\square \square \square \square \mathrm{P} 25$ | F3SJ-A $\square \square \square \square$ P30 | F3SJ-A $\square \square \square \square \mathrm{P} 55$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | NPN outputs | F3SJ-A $\square \square \square \square \mathrm{N} 14$ | F3SJ-A $\square \square \square \square \mathrm{C}^{\text {20 }}$ | F3SJ-A $\square \square \square \square \mathrm{C} 25$ | F3SJ-A $\square \square \square \square \mathrm{N} 30$ | F3SJ-A $\square \square \square \square \mathrm{N} 55$ |
| Input voltage | PNP output | Test input, interlock selection input, reset input, and muting input are all ON voltage: 9 to 24 V (Vs) (sink current: 3 mA max.) <br> OFF voltage:0 to 1.5 V , or open External device monitoring input <br> ON voltage: 9 to 24 V (Vs) (sink current: 5 mA max.) <br> OFF voltage: 0 to 1.5 V , or open |  |  |  |  |
|  | NPN output | Test input, interlock selection input, reset input, and muting input are all ON voltage: 0 to 1.5 V (short-circuit current 3 mA max.) <br> OFF voltage: 9 to 24 V , or open <br> External device monitoring input <br> ON voltage: 0 to 1.5 V (short-circuit current 5 mA max.) <br> OFF voltage:9 to 24 V , or open |  |  |  | --- |
| Indicators | Emitter | Light intensity level indicators (green LED $\times 2$, orange LED $\times 3$ ): ON based on the light intensity <br> Error mode indicators (red LED $\times 3$ ): Blink to indicate error details <br> Power indicator (green LED $\times 1$ ): ON while power is on <br> Interlock indicator (yellow LED $\times$ 1): ON while under interlock, blinks at lockout. <br> External device monitoring indicator (muting input 1 indicator), Blanking/test indicator (muting input 2 indicator) (green LED $\times 2$ ): ON/flash according to function |  |  |  |  |
|  | Receiver | Light intensity level indicators (green LED $\times 2$, orange LED $\times 3$ ): ON based on the light intensity <br> Error mode indicators (red LED $\times 3$ ): Blink to indicate error details <br> OFF output indicator (red LED $\times$ 1): ON when safety output is OFF, blinks at lockout. <br> ON output indicator (green LED $\times 1$ ): ON while safety output is ON muting error indicator, Blanking /test indicator (green LED $\times 2$ ): ON/flash according to function |  |  |  |  |
| Mutual interference prevention function |  | Interference light prevention algorithm, detection distance change function |  |  |  |  |
| Series connection |  | Time division emission by series connection <br> - Number of connections: up to 4 sets <br> - Total number of beams: up to 400 beams <br> - Maximum cable length for 2 sets: no longer than 15 m <br> - Response time under connection: See page 20 |  |  |  |  |
| Test functions |  | - Self test (when power is turned ON and while power is supplied) <br> - External test (emission stop function by test input) |  |  |  |  |
| Safety functions |  | - Start interlock, restart interlock (Must be set with a setting tool when the muting function is used.) <br> - External device monitor <br> - Muting (Lamp burnout detection, override function included. F39-CN6 key cap for muting is required.) <br> - Fixed blanking (must be set by a setting tool) <br> - Floating blanking (must be set by a setting tool) |  |  |  |  |


| Model | $\begin{array}{\|c\|} \hline \text { PNP } \\ \text { outputs } \end{array}$ | F3SJ-A $\square \square \square \square$ P14 | F3SJ-A $\square \square \square \square \mathbf{P} 20$ | F3SJ-A $\square \square \square \square \mathbf{P} 25$ | F3SJ-A $\square \square \square \square$ P30 | F3SJ-A $\square \square \square \square$ P55 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Item | NPN outputs | F3SJ-A | F3SJ-A $\square \square \square \square \mathrm{N} 20$ | F3SJ-A $\square \square \square \square \mathrm{N} 25$ | F3SJ-A $\square \square \square \square \mathrm{N} 30$ | F3SJ-A $\square \square \square \square \mathrm{C}^{\text {5 }}$ |
| Connection type |  | Connectors (M12, 8-pin) |  |  |  |  |
| Protective circuits |  | Output short-circuit protection, and power supply reverse polarity protection |  |  |  |  |
| Ambient temperature |  | Operating: -10 to $55^{\circ} \mathrm{C}$ (no icing), Storage: -30 to $70^{\circ} \mathrm{C}$ |  |  |  |  |
| Ambient humidity |  | Operating: $35 \%$ to $85 \%$ (no condensation), Storage: $35 \%$ to $95 \%$ |  |  |  |  |
| Ambient operating light intensity |  | Incandescent lamp: 3,000 Ix max. (light intensity on the receiver surface), Sunlight: 10,000 Ix max. (light intensity on the receiver surface) |  |  |  |  |
| Insulation resistance |  | $20 \mathrm{M} \Omega$ min. (at 500 VDC ) |  |  |  |  |
| Dielectric strength |  | 1,000 VAC $50 / 60 \mathrm{~Hz}, 1 \mathrm{~min}$ |  |  |  |  |
| Degree of protection |  | IP65 (IEC60529) |  |  |  |  |
| Vibration resistance |  | Malfunction: 10 to $55 \mathrm{~Hz}, 0.7$-mm double amplitude, 20 sweeps in $\mathrm{X}, \mathrm{Y}$, and Z directions |  |  |  |  |
| Shock resistance |  | Malfunction: $100 \mathrm{~m} / \mathrm{s}^{2}, 1,000$ times each in $\mathrm{X}, \mathrm{Y}$, and Z directions |  |  |  |  |
| Materials |  | Casing (including metal parts on both ends): Aluminum, zinc die-cast Cap: ABS resin <br> Optical cover: PMMA resin (acrylic) <br> Cable: Oil resistant PVC |  |  |  |  |
| Weight (packed state) |  | Calculate using the following equations: <br> (1) For F3SJ-A $\square$ 14 , weight $(\mathrm{g})=($ protective height $) \times 1.7+\alpha$ <br> (2) For F3SJ-A $\square \square \square \square \square 20 / F 3 S J-A \square \square \square \square \square 25 / F 3 S J-A \square \square \square \square \square 30$, weight (g)=(protective height) $\times 1.5+\alpha$ <br> (3) For F3SJ-A $\square \square \square \square 55$, weight $(\mathrm{g})=($ protective height $) \times 1.4+\alpha$ <br> The values for $\alpha$ are as follows: <br> Protected height 245 to $596 \mathrm{~mm}: \alpha=1,100$ protected height 1,660 to $2,180 \mathrm{~mm}: \alpha=2,400$ <br> Protected height 600 to $1,130 \mathrm{~mm}: \alpha=1,500$ protected height 2,195 to $2,500 \mathrm{~mm}: \alpha=2,600$ <br> Protected height 1,136 to $1,658 \mathrm{~mm}: \alpha=2,000$ |  |  |  |  |
| Accessories |  | Test rod (*1), instruction manual, standard mounting bracket (F39-LJ1 bracket for top/bottom mounting), mounting brackets (intermediate) (*2), error mode label, User's Manual (CD-ROM) <br> *1. The F3SJ-A $\square \square \square \square 55$ is not included. <br> *2. Number of intermediate mounting brackets depends on protective height of F3SJ. <br> - For protective height from 600 to $1,130 \mathrm{~mm}: 1$ set for each of the emitter and receiver is included <br> - For protective height from 1,136 to $1,658 \mathrm{~mm}: 2$ sets for each of the emitter and receiver are included <br> - For protective height from 1,660 to $2,180 \mathrm{~mm}: 3$ sets for each of the emitter and receiver are included <br> - For protective height from 2,195 to $2,500 \mathrm{~mm}: 4$ sets for each of the emitter and receiver are included |  |  |  |  |
| Applicable standards |  | IEC61496-1, EN61496-1 UL61496-1, Type 4 ESPE (Electro-Sensitive Protective Equipment) IEC61496-2, prEN61496-2, UL61496-2, Type 4 AOPD (Active Opto-electronic Protective Devices) IEC61508, EN61508 SIL3 |  |  |  |  |

F3SJ-A $\square \square \square \square$ P14-TS/P20-TS/P25-TS

| Item | Model | F3SJ-A $\square \square \square \square$ P14-TS | F3SJ-A $\square \square \square \square \mathbf{P 2 0 - T S}$ | F3SJ-A $\square \square \square \square$ P25-TS |
| :---: | :---: | :---: | :---: | :---: |
| Sensor type |  | Type 4 safety light curtain |  |  |
| Version |  | Ver. 2 |  |  |
| Setting tool connection |  | Parameter setting: Not possible Monitoring: Possible |  |  |
| Applicable safety category |  | Category 4, 3, 2, 1, or B |  |  |
| Detection capability |  | Opaque objects <br> 14 mm in diameter | Opaque objects <br> 20 mm in diameter | Opaque objects 25 mm in diameter |
| Beam gap (P) |  | 9 mm | 15 mm | 20 mm |
| Number of beams ( n ) |  | 26 to 180 | 16 to 166 | 13 to 125 |
| Protective height (PH) |  | 245 to $1,631 \mathrm{~mm}$ | 245 to $2,495 \mathrm{~mm}$ | 260 to $2,500 \mathrm{~mm}$ |
| Lens diameter |  | Diameter 5 mm |  |  |
| Operating range |  | 0.2 to 9 m (protective height 1,640 mm max.), 0.2 to 7 m (protective height 1,655 mm max.) |  |  |
| Response time (under stable light incident condition) (For details, see "Response Time" on page 20.) | ON to OFF | 1 set, 0245 to $983: 11 \mathrm{~ms}$ to 17.5 ms max. 1,055 or higher: 20 ms to 25 ms max. 3 sets ( 240 beams): 45.5 ms | 1 set, 0245 to 1,205 : 10 ms to 15 ms max. 1,220 or higher: 17.5 ms to 22.5 ms max. 3 sets ( 240 beams): 45.5 ms | 1 set, 0260 to 1,600 : 10 ms to 15 ms max. 1,620 or higher: 17.5 ms to 20.0 ms max. 3 sets ( 240 beams): 45.5 ms |
|  | OFF to ON | 1 set, 0245 to 983 : 44 ms to 70 ms max. 1,055 or higher: 80 ms to 100 ms max. 3 sets ( 240 beams): 200 ms | 1 set, 0245 to 1,205: 40 ms to 60 ms max. 1,220 or higher: 70 ms to 90 ms max. 3 sets ( 240 beams): 200 ms | 1 set, 0260 to $1,600: 40 \mathrm{~ms}$ to 60 ms max. 1,620 or higher: 70 ms to 80 ms max. 3 sets ( 240 beams): 200 ms |
| Startup waiting time |  | $2 \mathrm{~s} \mathrm{max}. \mathrm{(2.2} \mathrm{~s} \mathrm{max} .\mathrm{for} \mathrm{series} \mathrm{connection)}$ |  |  |
| Power supply voltage (Vs) |  | 24 VDC $\pm 20 \%$ (ripple p-p10\% max.) |  |  |
| Current consumption (no load) | Emitter | Up to 50 beams: 76 mA max., 51 to 100 beams: 106 mA max., 101 to 150 beams: 130 mA max., 151 to 180 beams: 153 mA max |  |  |
|  | Receiver | Up to 50 beams: 68 mA max., 51 to 100 beams: 90 mA max., 101 to 150 beams: 111 mA max., 151 to 180 beams: 128 mA max. |  |  |
| Light source (emitted wavelength) |  | Infrared LED (870 nm) |  |  |
| Effective aperture angle (EAA) |  | Based on IEC61496-2. Within $\pm 2.5^{\circ}$ for both emitter and receiver when the detection distance is 3 m or over |  |  |
| Control outputs (OSSD) |  | Two PNP transistor outputs, load current 300 mA max., residual voltage 2 V max. (except for voltage drop due to cable extension), allowable capacity load $2.2 \mu \mathrm{~F}$, leak current 1 mA max. <br> (This can be different from traditional logic (ON/OFF) because safety circuit is used.) |  |  |
| Auxiliary output 1 (non-safety output) |  | One PNP transistor output, load current 300 mA max., residual voltage 2 V max. (except for voltage drop due to cable extension), leak current 1 mA max. |  |  |
| External indicator output (non-safety output) |  | Available indicators <br> - Incandescent lamp: 24 VDC, 3 to 7 W <br> - LED lamp: Load current 10 mA to 300 mA max., leak current 1 mA max. (To use an external indicator, an F39-JJ3N universal indicator cable or an F39-A01P $\square$-PAC dedicated external indicator kit is required.) |  |  |
| Output operation mode | Receiver | Control outputs 1, 2: ON when receiving light <br> Auxiliary output 1: Inverse of control output signals <br> External indicator output 1: Inverse of control output signals for a basic system  <br>  ON when muting/override for a muting system |  |  |
|  | Emitter | External indicator output 2: ON when lock-out for a basic system ON when muting/override for a muting system |  |  |
| Input voltage |  | Test input, reset input, and muting input are all ON voltage: 9 to 24 V (Vs) (sink current: 3 mA max.) OFF voltage:0 to 1.5 V , or open External device monitoring input ON voltage:9 to 24 V (Vs) (sink current: 5 mA max.) OFF voltage: 0 to 1.5 V , or open |  |  |
| Indicators | Emitter | Light intensity level indicators (green LED $\times 2$, orange LED $\times 3$ ): ON based on the light intensity <br> Error mode indicators (red LED $\times 3$ ): Blink to indicate error details <br> Power indicator (green LED $\times 1$ ): ON while power is on <br> Lockout indicator (yellow LED $\times 1$ ): Blinks to indicate lockout. <br> External device monitoring indicator (muting input 1 indicator), Test indicator (muting input 2 indicator) (green LED $\times 2$ ): ON/flash according to function |  |  |
|  | Receiver | Light intensity level indicators (green LED $\times 2$, orange LED $\times 3$ ): ON based on the light intensity <br> Error mode indicators (red LED $\times 3$ ): Blink to indicate error details <br> OFF output indicator (red LED $\times 1$ ): ON when safety output is OFF, blinks at lockout. <br> ON output indicator (green LED $\times 1$ ): ON while safety output is ON muting error indicator, Test indicator (green LED $\times 2$ ): ON/flash according to function |  |  |


| Item Model | F3SJ-A | F3SJ-A $\square \square \square \square P 20-T S$ | F3SJ-A |
| :---: | :---: | :---: | :---: |
| Mutual interference prevention function | Interference light prevention algorithm |  |  |
| Series connection | Time division emission by series connection <br> - Number of connections: up to 3 sets <br> - Total number of beams: up to 240 beams <br> - Maximum cable length for 2 sets: no longer than 15 m <br> - Response time under connection: See page 20 |  |  |
| Test functions | - Self test (when power is turned ON and while power is supplied) <br> - External test (emission stop function by test input) |  |  |
| Safety functions | - External device monitor <br> - Muting (Override function included. F39-CN6 Key Cap for muting is required.) Lockout occurs under either of the following conditions: <br> - When more than 3 Units are connected in series. <br> - When the total number of beams connected in series exceeds 240 . <br> - When any model other than a "-TS" model is included in a series connection. |  |  |
| Connection type | Connectors (M12, 8-pin) |  |  |
| Protective circuits | Output short-circuit protection, and power supply reverse polarity protection |  |  |
| Ambient temperature | Operating: -10 to $55^{\circ} \mathrm{C}$ (no icing), Storage: -30 to $70^{\circ} \mathrm{C}$ |  |  |
| Ambient humidity | Operating: 35\% to 85\% (no condensation), Storage: $35 \%$ to $95 \%$ |  |  |
| Ambient operating light intensity | Incandescent lamp: 3,000 Ix max. (light intensity on the receiver surface), Sunlight: 10,000 Ix max. (light intensity on the receiver surface) |  |  |
| Insulation resistance | $20 \mathrm{M} \Omega$ min. (at 500 VDC ) |  |  |
| Dielectric strength | 1,000 VAC $50 / 60 \mathrm{~Hz}, 1 \mathrm{~min}$ |  |  |
| Degree of protection | IP65 (IEC60529) |  |  |
| Vibration resistance | Malfunction: 10 to $55 \mathrm{~Hz}, 0.7$-mm double amplitude, 20 sweeps in $\mathrm{X}, \mathrm{Y}$, and Z directions |  |  |
| Shock resistance | Malfunction: $100 \mathrm{~m} / \mathrm{s}^{2}, 1,000$ times each in $\mathrm{X}, \mathrm{Y}$, and Z directions |  |  |
| Materials | Casing (including metal parts on both ends): Aluminum, zinc die-cast Cap: ABS resin <br> Optical cover: PMMA resin (acrylic) <br> Cable: Oil resistant PVC |  |  |
| Weight (packed state) | Calculate using the following equations: <br> For F3SJ-A $\square \square \square \square \mathrm{P} \square \square-\mathrm{TS}$, weight $(\mathrm{g})=($ protective height) $\times 1.5+\alpha$ <br> The values for $\alpha$ are as follows: <br> Protected height 245 to $590 \mathrm{~mm}: \alpha=1,100 \quad$ protected height 1,660 to $2,180 \mathrm{~mm}: \alpha=2,400$ <br> Protected height 600 to $1,130 \mathrm{~mm}: \alpha=1,500$ protected height 2,195 to $2,500 \mathrm{~mm}: \alpha=2,600$ <br> Protected height 1,140 to $1,655 \mathrm{~mm}: \alpha=2,000$ |  |  |
| Accessories | Test rod, instruction manual, standard mounting bracket (F39-LJ1 bracket for top/bottom mounting), mounting brackets (intermediate) (*), error mode label, User's Manual (CD-ROM) <br> * Number of intermediate mounting brackets depends on protective height of F3SJ. <br> - For protective height from 600 to $1,130 \mathrm{~mm}$ : 1 set for each of the emitter and receiver is included <br> - For protective height from 1,140 to $1,655 \mathrm{~mm}: 2$ sets for each of the emitter and receiver are included <br> - For protective height from 1,660 to $2,180 \mathrm{~mm}: 3$ sets for each of the emitter and receiver are included <br> - For protective height from 2,195 to $2,500 \mathrm{~mm}: 4$ sets for each of the emitter and receiver are included |  |  |
| Applicable standards | IEC61496-1, EN61496-1 UL61496-1, Type 4 ESPE (Electro-Sensitive Protective Equipment) IEC61496-2, prEN61496-2, UL61496-2, Type 4 AOPD (Active Opto-electronic Protective Devices) IEC61508, EN61508 SIL3 |  |  |

Response Time

| Model | Protective Height (mm) | Number of Beams | Response time ms (ON to OFF) | Response time ms (OFF to ON) |
| :---: | :---: | :---: | :---: | :---: |
| ```F3SJ-A}\square1 series F3SJ-A}\squareP14-TS series``` | 245 to 263 | 26 to 28 | 11 | 44 |
|  | 281 to 389 | 30 to 42 | 12 | 48 |
|  | 407 to 497 | 44 to 54 | 13 | 52 |
|  | 515 to 605 | 56 to 66 | 14 | 56 |
|  | 623 to 731 | 68 to 80 | 15 | 60 |
|  | 767 to 983 | 84 to 108 | 17.5 | 70 |
|  | 1,055 to 1,271 | 116 to 140 | 20 | 80 |
|  | 1,343 to 1,559 | 148 to 172 | 22.5 | 90 |
|  | 1,631 | 180 | 25 | 100 |
| F3SJ-A $\square 20$ <br> series <br> F3SJ-A $\square$ P20-TS <br> series | 245 | 16 | 10 | 40 |
|  | 275 to 425 | 18 to 28 | 11 | 44 |
|  | 455 to 635 | 30 to 42 | 12 | 48 |
|  | 665 to 815 | 44 to 54 | 13 | 52 |
|  | 845 to 995 | 56 to 66 | 14 | 56 |
|  | 1,025 to 1,205 | 68 to 80 | 15 | 60 |
|  | 1,235 to 1,655 | 82 to 110 | 17.5 | 70 |
|  | 1,805 to 2,105 | 120 to 140 | 20 | 80 |
|  | 2,255 to 2,495 | 150 to 166 | 22.5 | 90 |
| ```F3SJ-A}\square2 series F3SJ-A}\squareP25-TS series``` | 260 to 320 | 13 to 16 | 10 | 40 |
|  | 340 to 580 | 17 to 29 | 11 | 44 |
|  | 600 to 840 | 30 to 42 | 12 | 48 |
|  | 860 to 1100 | 43 to 55 | 13 | 52 |
|  | 1120 to 1340 | 56 to 67 | 14 | 56 |
|  | 1360 to 1600 | 68 to 80 | 15 | 60 |
|  | 1620 to 2240 | 81 to 112 | 17.5 | 70 |
|  | 2260 to 2500 | 113 to 125 | 20.0 | 80 |
| F3SJ-A $\square 30$ series | 245 to 395 | 10 to 16 | 10 | 40 |
|  | 420 to 720 | 17 to 29 | 11 | 44 |
|  | 745 to 1,045 | 30 to 42 | 12 | 48 |
|  | 1,070 to 1,295 | 43 to 52 | 13 | 52 |
|  | 1,395 to 1,620 | 56 to 65 | 14 | 56 |
|  | 1,745 to 1,995 | 70 to 80 | 15 | 60 |
|  | 2,120 to 2,495 | 85 to 100 | 17.5 | 70 |
| F3SJ-A $\square 55$ series | 270 to 770 | 6 to 16 | 10 | 40 |
|  | 820 to 1420 | 17 to 29 | 11 | 44 |
|  | 1470 to 2070 | 30 to 42 | 12 | 48 |
|  | 2120 to 2470 | 43 to 50 | 13 | 52 |

Note: Use the following expressions for series connection.

For 2-set series connection:
Response time (ON to OFF)
Response time (OFF to ON): For 3-set series connection:
Response time (ON to OFF):
Response time (OFF to ON):

Response time of the 1st unit + Response time of the 2nd unit - 1 (ms)
Response time calculated by the above x 4 (ms)
Response time of the 1st unit + Response time of the 2nd unit + Response time of 3rd unit - 5 (ms)
Response time calculated by the above $\times 5$ (ms)
(For models with the "-TS" suffix, multiply the response time obtained by the above $\times 5$ (ms),
or use 200 ms , whichever is less.)
For 4-set series connection:
Response time (ON to OFF):
Response time of the 1st unit + Response time of the 2nd unit + Response time of the 3rd unit + Response time of the 4th unit - 8 (ms)
Response time (OFF to ON): Response time calculated by the above $\times 5$ (ms)

## Cable Extension Length

Total cable extension length must be no greater than the lengths described below.
When the F3SJ and an external power supply are directly connected, or when the F3SJ is connected to a G9SA-300-SC.

| Condition | 1 set | 2 sets | 3 sets | 4 sets |
| :--- | :--- | :--- | :--- | :--- |
| Using incandescent lamp for auxiliary output <br> and external indicator output | 45 m | 40 m | 30 m | 20 m |
| Not using incandescent lamp | 100 m | 60 m | 45 m | 30 m |

When connected to the F3SP-B1P.

| Condition | 1 set | 2 sets | 3 sets | 4 sets |
| :--- | :--- | :--- | :--- | :---: |
| Using incandescent lamp for external indicator <br> output 2 | 40 m | 30 m | 25 m | 20 m |
| Using incandescent lamp for external indicator <br> output 1 | 60 m | 45 m | 30 m | 20 m |
| Using incandescent lamp for auxiliary output 1 |  | 100 m | 60 m | 45 m |
| Not using incandescent lamp |  | 30 m |  |  |

Note: Keep the cable length within the rated length. Failure to do so is dangerous as it may prevent safety functions from operating normally.

## Accessories

## Control Unit

| Item $\quad$ Model |  |  |
| :--- | :--- | :--- |
| Applicable sensor | F3SJ-A (Only for PNP output type) $*$ |  |
| Power supply voltage | $24 \mathrm{VDC} \pm 10 \%$ |  |
| Power consumption | DC1.7 W max. (not including sensor's current consumption) |  |
| Operation time | 100 ms max. (not including sensor's response time) |  |
| Response time | 10 ms max. (not including sensor's response time) |  |
| Relay <br> output | Number of <br> contacts | Rated load |
|  | Rated current | 25 VAC 5 A (cos $\phi=1$ ), <br> $30 ~ V D C ~ 5 ~ A ~ L / R ~=0 ~ m s ~$ |
|  | Between sensors | 5 M |
|  | Others | Terminal block |
| Weight (packed state) | Approx. 280 g |  |
| Accessories | Instruction manual |  |

* NPN output type cannot be connected. Also, the system cannot be used as a muting system.


## Dedicated External Indicator Set

| Item | Model | F39-A01PR-PAC | F39-A01PG-PAC | F39-A01PY-PAC |
| :---: | :---: | :---: | :---: | :---: |
| Applicable sensor |  | F3SJ-A (Common for PNP/NPN output type. Can be attached to emitters and/or receivers) |  |  |
| Light source |  | Red LED | Green LED | Yellow LED |
| Power supply voltage |  | $24 \mathrm{VDC} \pm 10 \%$ (supplied by sensor) |  |  |
| Consumption current |  | 50 mA max. (supplied by sensor) |  |  |
| Connection type |  | Dedicated accessory connector cable <br> (Sensor side: Dedicated 10-pin connector, Indicator side: M12 8-pin connector) |  |  |
| Set contents |  | Indicator (red), Dedicated connector cable ( 0.1 m ), Dedicated mounting brackets (1 for each) | Indicator (green), Dedicated connector cable ( 0.1 m ), Dedicated mounting brackets (1 for each) | Indicator (yellow), Dedicated connector cable ( 0.1 m ), Dedicated mounting brackets (1 for each) |

## Water-resistant Case

| Item Model | F39-EJ $\square \square \square \square-L, ~ F 39-E J \square \square \square \square-D$ |
| :---: | :---: |
| Applicable sensor | $\begin{array}{l}\text { F3SJ-series Curtains with a protective height of } 600 \\ \mathrm{~mm} \text { max. }\end{array}$ $\begin{array}{l}\text { F3SJ-series Curtains with a protective height of } 605 \\ \mathrm{~mm} \text { min. }\end{array}$ |
| Ambient temperature | -10 to $55^{\circ} \mathrm{C}$ (operation and storage) ${ }^{\text {a }}$ (3 to $33^{\circ} \mathrm{C}$ (operation and storage) |
| Mounting direction | No restrictions $\quad$ Vertical direction only (see following diagram) |
| Operating range | 0.2 to 7 m (for a protective height of 1,631 mm max.), 0.2 to 5 m (for a protective height of 1,655 mm min.) |
| Degree of protection | IP67 (IEC60529) (When assembled according to the application precautions) |
| Materials | Case: Acrylic resin, Rubber: Nitrile rubber, M5 bolt: SUSXM7, M4 bolt: SUS316L, Cable: Oil-resistant PVC, Plate: SUS304, Mounting Bracket (optional): SUS304 |
| Weight (packed state) | Calculation formula: Weight $(\mathrm{g})=1.5 \times \square \square \square \square+300$ ( $\square \square \square \square$ stands for the four digits of the model number (protective height)) <br> (The optional Mounting Brackets come in a set of two, and weigh 120 g . This weight is not included in the above formula.) |

Note: 1. Vibration
When using Curtains with a protective height of 605 mm or more, the vibration performance of the applicable sensor is reduced.
Do not use these Curtains in locations that are subject to vibration.
2. Protective height

When using these cases, the protective height of the applicable sensor is reduced.
Check the rating and performance prior to use.
3. Mounting direction

When using Curtains with a protective height of 605 mm or more, some slackness occurs due to the weight of the Curtain.

Mounting direction For this reason, mount these Curtains only in the vertical direction.
(the cable end and terminating end can be positioned in either direction)

| Horizontal direction | Vertical direction |
| :--- | :--- |
| Terminating end | Cable end |
| Corminating end |  |

## Connections

## Basic Connection for Basic System

"Basic system" refers to the F3SJ with its default factory settings. The basic system provides basic safety light curtain functions. Most functions can be used without performing additional configuration.
For PNP output (See page 24 for NPN output wiring.)
Wiring when using manual reset mode, external device monitoring


## Wiring for auto reset mode

- The auto reset mode will be enabled when the emitter is wired as shown below.


S1: External test switch (connect to 0 V if the switch is not necessary.)

S3: Lockout reset switch (connect to 24 V if the switch is not necessary)
K4: Load or PLC, etc. (for monitoring)
*1. Use a switch for micro loads (Input specifications: 24 V , 1.8 mA )
*2. F3SJ operates even when K4 is not connected.

Wiring when the external device monitoring function will not be used

- Use a setting tool to set the external device monitoring function to "Disabled."
- When using an auxiliary output 1 that has not been changed (output operation mode is "control output data," and inverse of control output signals is "Enabled), the external device monitoring function will be disabled when auxiliary output 1 and the external device monitoring input are connected as shown below.


K1, K2: Relay or other device that controls hazardous parts of the machine
K3: Load or PLC, etc. (for monitoring)

* The F3SJ operates even when K3 is not connected. When K3 is not necessary, connect auxiliary output 1 only to the external device monitoring input.

For NPN output (See page 23 for PNP output wiring.)
Wiring when using manual reset mode, external device monitoring


## Wiring for auto reset mode

- The auto reset mode will be enabled when the emitter is wired as shown below.


Wiring when the external device monitoring function will not be used

- Use a setting tool to set the external device monitoring function to "Disabled."
- When using an auxiliary output 1 that has not been changed (output operation mode is "control output data," and inverse of control output signals is "Enabled), the external device monitoring function will be disabled when auxiliary output 1 and the external device monitoring input are connected as shown below.


K1, K2: Relay or other device that controls hazardous parts of the machine
K3: Load or PLC, etc. (for monitoring)

* The F3SJ operates even when K3 is not connected. When K3 is not necessary, connect auxiliary output 1 only to the external device monitoring input.


## Basic Connection for Muting System

## For PNP output (See page 26 for NPN output wiring.)

Wiring when using muting and external device monitoring functions


#### Abstract

 *1. Use a switch for small loads (input specifications: $24 \mathrm{~V}, 1.8 \mathrm{~mA}$ ) *2. When using the interlock function, this also functions as an interlock reset switch. (Must be set with a setting tool.) *3. The F3SJ will operate even if K3 is not connected. *4. Connect the muting lamp to either the external indicator output or auxiliary output 1 for the emitter or the receiver. When connecting the muting lamp to auxiliary output 1, the parameter must be changed with a setting tool. *5. Two-wire sensors cannot be used.


Wiring when the external device monitoring function will not be used

- Use a setting tool to set the external device monitoring function to "Disabled."
- When using an auxiliary output 1 that has not been changed (output operation mode is "control output data," and inverse of control output signals is "Enabled), the external device monitoring function will be disabled when auxiliary output 1 and the external device monitoring input are connected as shown below.



## For NPN output (See page 25 for PNP output wiring.) <br> Wiring when using muting and external device monitoring functions



S1: External test switch (connect to 24 V if the switch is not necessary.
S2: Lockout reset switch (connect to 0 V if the switch is not necessary.)
A1: Contact by muting sensor A1
B1: Contact by muting sensor B1
K1, K2: Relay or other device that controls hazardous parts of the machine
K3: Load or PLC, etc. (for monitoring)
M1: Muting lamp
*1. Use a switch for small loads (input specifications: $5 \mathrm{~V}, 1 \mathrm{~mA}$ ).
*2. When using the interlock function, this also functions as an interlock reset switch. (Must be set with a setting tool.)
$* 3$. The F3SJ operates even when K3 is not connected.
*4. Connect the muting lamp to either the external indicator output or auxiliary output 1 for the emitter or the receiver. When connecting the muting lamp to auxiliary output 1 , the parameter must be changed with a setting tool.
*5. Two-wire sensors cannot be used.

## Wiring when the external device monitoring function will not be used

- Use a setting tool to set the external device monitoring function to "Disabled."
- When using an auxiliary output 1 that has not been changed (output operation mode is "control output data," and inverse of control output signals is "Enabled), the external device monitoring function will be disabled when auxiliary output 1 and the external device monitoring input are connected as shown below.



## I/O Circuit Diagrams

## PNP Output Type

The numbers in white circles indicate the connector's pin numbers.
The black circles indicate connectors for series connection.
The words in brackets ([ ]) indicate the signal name for muting system.

*1. Open or muting input 1 for models with the "-TS" suffix. *2. Open or muting input 2 for models with the "-TS" suffix.

## NPN Output Type

The numbers in white circles indicate the connector's pin numbers.
The black circles indicate connectors for series connection.
The words in brackets ([ ]) indicate the signal name for muting system.


## Single-end Connector Cable

| Model | Internal wiring |  |  | Pin <br> No. | Wire color | Signal Name |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Basic system *1 |  | Muting system $* 1$ |  |
|  |  |  |  | Receiver |  | Emitter | Receiver | Emitter |
| F39- <br> JCR5A ( 0.5 m ) |  |  |  |  | (1) | White | Safety output 2 | Interlock selection input *2 | Safety output 2 | Muting input 1 |
|  |  |  |  | (2) | Brown | +24 VDC | +24 VDC | +24 VDC | +24 VDC |
| $\begin{aligned} & \text { F39- } \\ & \text { JC3A (3 m) } \end{aligned}$ |  |  |  | (3) | Green | Control output 1 | Test Input | Control output 1 | Test Input |
|  |  |  |  | (4) | Yellow | Auxiliary output 1 | Reset input | Auxiliary output 1 | Reset input |
| $\begin{aligned} & \text { F39- } \\ & \text { JC7A (7 m) } \end{aligned}$ |  |  |  | (5) | Gray | Communication line (+) | Communication line (+) | Communication line (+) | Communication line (+) |
| F39-JC10A (10 m) |  |  |  | (6) | Pink | Communication line (-) | Communication line (-) | Communication line (-) | Communication line (-) |
|  |  |  |  | (7) | Blue | 0 V | 0 V | 0 V | 0 V |
| F39- JC15A (15 m) |  |  |  | (8) | Red | External device monitoring input | Auxiliary output2 *2 | External device monitoring input | Muting input 2 |

*1. Basic system indicates a system with default factory settings.
Muting system indicates a system attached with a muting keycap (F39-CN6) to enable muting function.
*2. N.C. for models with the "-TS" suffix.

Nomenclature

## Main Unit and Cables

Extension

## Internal Indicators

## Total View


*1. Lockout indicator (LOCKOUT) for models with the "-TS" suffix.
*2. In the TS model, this is a test indicator labeled TEST.
*3. This label is included with the F39-CN6 key cap for muting. Affix the label when the muting function is used.

## Indication Patterns and Intensity Levels of the Light Intensity Level Indicators（LEVEL－1 to 5）

| $\begin{array}{lllll}1 & 2 & 3 & 4 & 5\end{array}$ | Light intensity level |
| :---: | :---: |
|  | 170\％or higher of control output ON level |
| 乐乐禹禹 | From 130 to $170 \%$ of control output ON level |
|  | From 100 to $130 \%$ of control output ON level |
| ¢ $¢$ | From 75 to 100\％of control output ON level |
|  | From 50 to $75 \%$ of control output ON level |
|  | Less than $50 \%$ of control output ON level |

Note：Operation is possible with light intensity level of $100 \%$ or more，but to ensure stability，operate when at least 5 of the indication lamps are ON．

## Error Mode Indication Patterns and Cause of Errors（ERROR－A to C）



| Cause of error |
| :--- | :--- |

## Safety-related Functions

## Interlock Function

The F3SJ turns the safety outputs OFF when the power is turned ON or when a beam is interrupted, and maintains this state until a reset signal is applied. This state is called "interlock".
You can reset this interlock by 2 methods; "auto reset that automatically turns safety output ON when an interrupting object is removed" and "manual reset mode that keeps safety output OFF until a reset signal is provided if the interrupting object is removed".

## Auto Reset Mode

When an interrupting object is removed, safety output automatically turns ON. Auto reset is used on machines where a worker is not able to enter the area between the detection zone and the hazardous part of the machine.

Note: Auto reset is always used in the F3SJ-A $\square$-TS series.
Auto reset wiring procedure:

| For PNP output | For NPN output |
| :--- | :--- |
| 1. Open the interlock selection | 1. Open the interlock selection |
| input line, or short-circuit it to |  |
| 0 to 1.5 V (pin 1/white). | input line, or short-circuit it to <br> 9 to 24 V (pin $1 /$ white). |
| 2. Short-circuit the reset input <br> line to 9 to 24 V (pin 4/yellow). <br> 2. Short-circuit the reset input <br> line to 0 to 1.5 V (pin 4/yellow). <br> 3. Turn ON the power of F3SJ. | 3. Turn ON the power of F3SJ. |

## Manual Reset Mode

When a reset input is given while no interrupting object exists in a detection zone, the safety outputs turn ON. This allows the machine to be manually reset using a reset switch after ensuring safety, preventing unexpected startup.


A sensor enters interlock state when:

- The power is turned ON (start interlock). This is useful if you want to keep the machine stopped until start inspection is completed after the power is turned ON.
- F3SJ is interrupted (restart interlock). After F3SJ is interrupted and the machine stops, the machine can be restarted after safety is ensured.


## Manual Reset Wiring Procedure:

| For PNP output | For NPN output |
| :--- | :---: |
| 1. Connect the interlock | 1. Connect the interlock |
| selection input line to 9 to 24 V |  |
| selection input line to 0 to 1.5 |  |
| (pin $1 /$ white). | V (pin 1/white). |
| 2. Connect the reset input line to | 2. Connect the reset input line to |
| 9 to 24 V via the reset switch | 0 to 1.5 V via the reset switch |
| (NO-contact) (pin 4/yellow). | (NO-contact) (pin 4/yellow). |
| 3. Keep the reset switch contact | 3. Keep the reset switch contact |
| open, and turn the power of | open, and turn the power of |
| F3SJ ON. | F3SJ ON. |

To reset:

| For PNP output | For NPN output |
| :--- | :--- |
| Apply voltage of 9 to 24 V for | Apply voltage of 0 to 1.5 V for |
| 250 ms or longer to the reset | 250 ms or longer to the reset |
| input line, and set it open or to | input line, and set it open or to |
| 0 to 1.5 V. | 9 to 24 V . |

Note: Install the reset switch outside the hazardous area, where the operator can clearly see the hazardous area.

## Interlock Function in a Muting System

Because the interlock selection input line is used as muting input 1 when using the muting function, the default setting is auto reset. Use a setting tool for manual reset.

## Diagnostic Functions

## Self-test

A self-test is performed to check for errors when the power is turned ON (within 2 seconds / within 2.2 seconds when series connected). Also, the self-test is regularly performed (within the response time) while operating.

## Waveform of Control Outputs

When the F3SJ is receiving light, the control outputs cyclically turn OFF as shown below to test the output circuit. When this OFF signal is fed back, the output circuit is diagnosed as normal. If the output signal does not include an OFF pulse signal, the receiver determines that a failure has occurred with the output circuit or wiring, and enters lockout state. (Refer to the following illustration.)


## External Test

This function performs a test to ensure that the safety system stops properly when the F3SJ is interrupted, by using an external signal to forcibly stop emission.
To stop emission, apply 9 to 24 V for PNP output types or 0 to 1.5 V for NPN output types to the test input line of the emitter. Apply the voltage for a minimum of 4 x the safety output response time.

## Lockout

If an error is found in the self-test, the sensor enters lockout state, keeps the safety output in the OFF state, and indicates the error at the same time.

## Resetting Lockout

When a cause of lockout is removed, you can release the lockout by using either of the following methods.

- Cycle the power back ON
- Reset input


## [For PNP output]

After manual reset, apply voltage of 9 to 24 V for 100 ms or longer to the reset input line, and set it open or apply 0 to 1.5 V .
After auto reset, apply voltage of 0 to 1.5 V for 100 ms or longer to the reset input line, and set it open or apply 9 to 24 V .

## [For NPN output]

After manual reset, apply voltage of 0 to 1.5 V for 100 ms or longer to the reset input line, and set it open or apply 9 to 24 V .
After auto reset, apply voltage of 9 to 24 V for 100 ms or longer to the reset input line, and set it open or apply 0 to 1.5 V .

## External Device Monitoring Function

This function detects malfunctions, such as welded contacts in external relays (or contactors) that control the hazardous area of a machine.
This function constantly monitors that a specified voltage is applied to the receiver's external device monitoring input line, and enters lockout state when an error occurs. The relay's operational delay can be up to 300 ms without being evaluated as an error.
For example, if a specified voltage is not applied to the external device monitoring line because the normally closed (NC) contact is not closed within 300 ms after the control outputs turn from ON to OFF, it is evaluated as an error and enters a lockout state.
To utilize this function properly, use safety relays and contactors that have forcibly guided or mechanically linked contact structure.

## Other Functions

## Auxiliary Output (Non-safety output)

The auxiliary output is used to monitor the status of the F3SJ. This output can be connected to a device such as a relay, indication lamp, programmable controller, etc.
There are two auxiliary outputs: Auxiliary output 1 and auxiliary output 2.

- Auxiliary output 1: Control output inversion signal
- Auxiliary output 2: Turns ON when the point of 30,000 operating hours is reached
The auxiliary output modes can be changed with a setting tool. See the User's Manual for details on the modes that can be set.


## 1. WARNING

Do not use the auxiliary output or external indicator output for safety applications.
Failure of these outputs may prevent detection of people and result in serious injury.

Note: 1. Auxiliary output 1 has a load current of 300 mA max., and auxiliary output 2 has a load current of 50 mA .
2. The timing when auxiliary output 1 is set as a control output inversion signal is shown in the diagram below.


Toff:Response time of control output's ON to OFF, Ton: Response time of control output's OFF to ON

* When auxiliary output 2 is set as a control output inversion signal, the response delay for control output becomes Toff x 3 max.


## Selecting the System Configuration

## Selection Flowchart

The necessary system configuration varies depending on the functions to be used.
Use the following flowchart to decide what kind of system is required.


Note: Refer to the User's Manual to determine whether the functions can be used in combination or not.

## Main Units

## When Using Standard Mounting Brackets

Backside mounting


## Side mounting



C (protective height): 4-digit number in the table

$A=C+74, B=C+46.5$
$D=C-20, E=$ See table below.

| Protective <br> height | Number of intermediate <br> brackets | $\mathrm{E} *$ |
| :---: | :--- | :---: |
| 0245 to 0596 | 0 | --- |
| 0600 to 1130 | 1 | $\mathrm{E}=\mathrm{B} / 2$ |
| 1136 to 1658 | 2 | $\mathrm{E}=\mathrm{B} / 3$ |
| 1660 to 2180 | 3 | $\mathrm{E}=\mathrm{B} / 4$ |
| 2195 to 2500 | 4 | $\mathrm{~B} / 5$ |

* Use $\mathrm{E}=530$ or less when none of the E values shown above are used.

F39-LJ1 Detailed Dimensions of Bracket


## Using Side Flat Mounting Bracket (F39-LJ2)



Mounting screw holes


Dimensions A to C


| $A$ | $C+74$ |
| :---: | :--- |
| $B$ | $C+39.5$ |
| $C$ | 4-digit number of the model <br> name (protective height) |

## Using Free Location Mounting Bracket (F39-LJ3)

## Backside mounting

## F39-LJ3 <br> Material: Zinc die-cast <br> $\sqrt{8}$



## Side mounting

F39-LJ3
Material: Zinc die-cast/stainless


Dimensions B, C, and F

| B | C - 90 |
| :---: | :--- |
| C | 4-digit number of the model name (protective height) |
| F | Depends on the protective height. See the table on the <br> right. |

Dimension F

| Protective height | Number of intermediate <br> mounting brackets | F * |
| :--- | :--- | :--- |
| 245 to 440 | 2 | $\mathrm{~B} / 2$ |
| 443 to 785 | 3 | $\mathrm{~B} / 3$ |
| 794 to 1140 | 4 | $\mathrm{~B} / 4$ |
| 1145 to 1490 | 5 | $\mathrm{~B} / 5$ |
| 1495 to 1840 | 6 | $\mathrm{~B} / 6$ |
| 1845 to 2180 | 7 | $\mathrm{~B} / 7$ |
| 2195 to 2500 | 8 |  |

* Use $\mathrm{F}=350$ or less when none of the F values shown above are used.

When only F39-LJ3 free-location mounting brackets are used without standard brackets, allow a space of at least 350 mm between the brackets. The number of brackets required varies according to the protective height. For details about the number of required brackets, refer to the table below.
The standard included intermediate mounting brackets are the same as the F39-LJ3 free-location mounting brackets. Purchase brackets as necessary if there are fewer intermediate mounting brackets than required. When intermediate mounting brackets are included, they can be used as free-location mounting brackets.

Required number of F39-LJ3 free-location mounting brackets for 1 F3SJ set (emitter/receiver) (2 pieces are included with F39-LJ3)

| Protective height | Number of included free location <br> brackets as intermediate brackets | Number of free location <br> brackets to mount F3S $\boldsymbol{J}$ | Number of free location <br> brackets to be purchased |
| :--- | :--- | :--- | :--- |
| 0245 to 0440 | 0 | 4 | 2 sets |
| 0443 to 0596 | 0 | 6 | 3 sets |
| 0600 to 0785 | 2 | 6 | 2 sets |
| 0794 to 1130 | 2 | 8 | 3 sets |
| 1136 to 1140 | 4 | 8 | 2 sets |
| 1145 to 1490 | 4 | 10 | 3 sets |
| 1495 to 1658 | 4 | 12 | 4 sets |
| 1660 to 1840 | 6 | 12 | 3 sets |
| 1845 to 2180 | 6 | 14 | 4 sets |
| 2195 to 2500 | 8 | 16 | 4 sets |

## Guide to Replacing F3SN Models with F3SJ Models

F3SN replacement correspondence table (F3SN mounting holes can be used without modification) When replacing F3SN- $\square \square \square \mathbf{P}(\mathbf{N}) 14$ with F3SJ-A $\square \square \square \mathbf{P}(\mathbf{N}) 14$
(1) For F3SN models with a protective height of 225 mm max.

| F3SN |  | Replacement F3SJ |  | Replacement method using <br> F39-LJ5 |
| :--- | :--- | :--- | :--- | :--- |
| Model | Protective height | Model | Protective height |  |
| F3SN- $\square 0153 P(N) 14$ | 153 | --- | -- | --- |
| F3SN- $\square 0180 P(N) 14$ | 180 | F3SJ-A0245P(N)14 | 245 | Inward-facing mounting |
| F3SN- $\square 0189 P(N) 14$ | 189 | F3SJ-A0245P(N)14 | 245 | Inward-facing mounting |
| F3SN- $\square 0198 P(N) 14$ | 198 | F3SJ-A0245P(N)14 | 245 | Inward + outward-facing mounting |
| F3SN- $\square 0207 P(N) 14$ | 207 | F3SJ-A0245P(N)14 | 245 | Inward + outward-facing mounting |
| F3SN- $\square 0216 P(N) 14$ | 216 | F3SJ-A0245P(N)14 | 245 | Outward-facing mounting |
| F3SN- $\square 0225 P(N) 14$ | 225 | F3SJ-A0245P(N)14 | 245 | Outward-facing mounting |

(2) For F3SN models with a protective height of 234 mm min.

Add 11 to the F3SN's 4-digit number and apply it as the F3SJ's 4-digit number, and then replace with the standard brackets included with the product. [Selection example] F3SN-A0315P(N)14 becomes F3SJ-A0326P(N)14 (replace with standard brackets)

Note: 1. The protective height becomes 11 mm longer.
2. Replace with outward-facing mounting of F39-LJ5 when you want to set the detection surface height to be same as the F3SN.

However, the F39-LJ5 and intermediate mounting brackets cannot be mounted simultaneously, so set the protective height to 600 mm or less.

When replacing F3SN- $\square \square \square \square \mathbf{P}(\mathbf{N}) 25$ with F3SJ-A $\square \square \square \square \mathbf{P}(\mathbf{N}) 20$
(1) For F3SN models with a protective height of 247 mm max.

| F3SN |  | Replacement F3SJ |  | Replacement method using |
| :--- | :--- | :--- | :--- | :--- |
| F39-LJ5 |  |  |  |  |

(2) For F3SN models with a protective height of 262 mm min.

Subtract 17 from the F3SN's 4-digit number and apply it as the F3SJ's 4-digit number, and then replace with the standard brackets included with the product.
[Selection example] F3SN-A0322P(N)25 becomes F3SJ-A0305P(N)20 (replace with standard brackets)
Note: 1. The protective height gets 17 mm shorter
2. Replace with outward-facing mounting of F39-LJ5 when you want to set the detection surface height to be same as the F3SN.

However, the F39-LJ5 and intermediate mounting brackets cannot be mounted simultaneously, so set the protective height to 600 mm or less.

## When using intermediate mounting brackets to replace a rear mounted F3SN with an F3SJ

Because the pitch of the mounting holes for the intermediate mounting brackets are different (F3SN: 15 mm , F3SJ: 42 mm ), use F39-LJ3-SN Spacers for F3SN intermediate mounting bracket replacement.


## Using Top/Bottom Mounting Bracket B (F39-LJ4)



Note: Refer to the User's Manual (Cat. No. SCHG-718 and SCHG-719) for the dimensions for side mounting.

## Using Mounting Bracket for Short-length F3SN (F39-LJ5)

Inward-facing mounting


## Outward-facing mounting



F3SN replacement correspondence table (F3SN mounting holes can be used without modification) When replacing F3SN- $\square \square \square \square \mathbf{P}(\mathbf{N}) 14$ with F3SJ-A $\square \square \square \square \mathbf{P}(\mathbf{N}) 14$

| F3SN |  | Replacement F3SJ |  | Replacement method using F39-LJ5 |
| :---: | :---: | :---: | :---: | :---: |
| Model | Protective height | Model | Protective height |  |
| F3SN- $\square 0153 \mathrm{P}(\mathrm{N}) 14$ | 153 | --- | --- | --- |
| F3SN- $\square 0180 \mathrm{P}(\mathrm{N}) 14$ | 180 | F3SJ-A0245P(N)14 | 245 | Inward-facing mounting |
| F3SN- $\square 0189 \mathrm{P}$ (N)14 | 189 | F3SJ-A0245P(N)14 | 245 | Inward-facing mounting |
| F3SN- $\square 0198 \mathrm{P}$ (N)14 | 198 | F3SJ-A0245P(N)14 | 245 | Inward + Outwardfacing mounting |
| F3SN- $\square 0207 \mathrm{P}$ (N)14 | 207 | F3SJ-A0245P(N)14 | 245 | Inward + Outwardfacing mounting |
| F3SN- $\square 0216 \mathrm{P}(\mathrm{N}) 14$ | 216 | F3SJ-A0245P(N)14 | 245 | Outward-facing mounting |
| F3SN- $\square 0225 \mathrm{P}$ (N)14 | 225 | F3SJ-A0245P(N)14 | 245 | Outward-facing mounting |

When replacing F3SN- $\square \square \square \square \mathbf{P}(\mathbf{N}) 25$ with F3SJ-A $\square \square \square \square \mathbf{P}(\mathbf{N}) 20$

| F3SN |  | Replacement F3SJ |  | Replacement method |
| :--- | :--- | :--- | :--- | :--- |
| Model | Protective <br> height | Model | Protective <br> height |  |
| F3SN- $\square 0187 \mathrm{P}(\mathrm{N}) 25$ | 187 | --- | --- |  |
| F3SN- $\square 0217 \mathrm{P}(\mathrm{N}) 25$ | 217 | F3SJ-A0260P(N)20 | 260 | Inward-facing <br> mounting |
| F3SN- $\square 0232 P(N) 25$ | 232 | F3SJ-A0260P(N)20 | 260 | Inward + Outward- <br> facing mounting |
| F3SN- $\square 0247 \mathrm{P}(\mathrm{N}) 25$ | 247 | F3SJ-A0245P(N)20 | 245 | Outward-facing <br> mounting |

For F3SN models with a protective height of 234 mm min.
Add 11 to the F3SN's 4-digit number and apply it as the F3SJ's 4-digit number, and then replace with the standard brackets included with the product.
[Selection example] F3SN-A0315P(N)14 becomes F3SJ-A0326P(N) 14 (replace with standard brackets)
Note: 1. The protective height becomes 11 mm longer.
2. Replace with outward-facing mounting of F39-LJ5 when you want to set the detection surface height to be same as the F3SN. However, the F39-LJ5 and intermediate mounting brackets cannot be mounted simultaneously, so set the protective height to 600 mm or less.

For F3SN models with a protective height of $\mathbf{2 6 2 ~ m m ~ m i n . ~}$
Subtract 17 from the F3SN's 4-digit number and apply it as the F3SJ's 4-digit number, and then replace with the standard brackets included with the product.
[Selection example] F3SN-A0322P(N)25 becomes F3SJ-A0305P(N)20 (replace with standard brackets)
Note: 1. The protective height becomes 17 mm shorter.
2. Replace with outward-facing mounting of F39-LJ5 when you want to set the detection surface height to be same as the F3SN. However, the F39-LJ5 and intermediate mounting brackets cannot be mounted simultaneously, so set the protective height to 600 mm or less.

## Using Space-saving Mounting Bracket (F39-LJ8)

## Backside mounting



Note: Because the F39-LJ8 cannot be mounted together with an intermediate bracket, keep the protective height at 600 mm max.

Mounting Bracket (F39-LJ9) Used when Replacing an F3W-C.

## Backside mounting

F39-LJ9
Material: Stainless steel


| Dimensions A to C |  |
| :--- | :--- |
| A | C +102.3 |
| B | C +77.3 |
| C | 4-digit number of the model <br> name (protective height) |



Note: Refer to the User's Manual (Cat. No. SCHG-718 and SCHG719) for the dimensions for side mounting.

F3W-C replacement correspondence table (F3W-C mounting holes can be used without modification)
When replacing F3W-C $\square \square$ with F3SJ-A $\square \square \square \square$

| F3W-C |  | Replacement F3SJ |  |
| :--- | :--- | :--- | :--- |
| Model | Protective height | Model | Protective height |
| F3W-C044 | 120 | --- | -- |
| F3W-C084 | 280 | F3SJ-A0320 $\square 30$ | 320 |
| F3W-C124 | 440 | F3SJ-A0470 $\square 30$ | 470 |
| F3W-C164 | 600 | F3SJ-A0620 $\square 30 *$ | 620 |
| F3W-C204 | 760 | F3SJ-A0795 $\square 30 *$ | 795 |
| F3W-C244 | 920 | F3SJ-A0945 $\square 30 *$ | 945 |

* New holes must be drilled for the intermediate bracket.


## Using Top/Bottom Mounting Bracket C (F39-LJ11)


Dimensions A to C

| A | $\mathrm{C}+109$ |
| :--- | :--- |
| B | $\mathrm{C}+69$ |
| C | 4-digit number of the model <br> name (protective height) |


Mounting screw holes
방

## Accessories

## Single-end Connector Cable



Color: Emitter (gray) Receiver (black)

F39-JC10A (L = 10 m )
F39-JC15A (L = 15 m )
F39-JC20A ( $\mathrm{L}=20 \mathrm{~m}$ )


* Cables with $\mathrm{L}=3,7,10,15$, and 20 m are available.


## Cables with Connectors on Both Ends

F39-JCR5B ( $\mathrm{L}=0.5 \mathrm{~m}$ )
F39-JC1B ( $\mathrm{L}=1 \mathrm{~m}$ )
F39-JC3B ( $\mathrm{L}=3 \mathrm{~m}$ )
F39-JC5B ( $\mathrm{L}=5 \mathrm{~m}$ )
F39-JC7B (L = 7 m )

F39-JC10B ( $L=10 \mathrm{~m}$ )
F39-JC15B ( $\mathrm{L}=15 \mathrm{~m}$ )
F39-JC20B ( $\mathrm{L}=20 \mathrm{~m}$ )
F39-JC30B ( $\mathrm{L}=30 \mathrm{~m}$ )
F39-JC40B ( $\mathrm{L}=40 \mathrm{~m}$ )


Color: Emitter (gray)
Receiver (black)


## Control Unit

 F3SP-B1P

Dedicated External Indicator Set

## F39-A01■-PAC



Material: Stainless steel

## Spatter Protection Cover

F39-HJ $\square \square \square \square$


## Assembled dimensions



Material: polycarbonate (for the protective cover)

## Setting Support Software for the F3SJ

## F39-GWUM


$\xrightarrow{\rightarrow+\underbrace{-3.6}}$


Setting Console
F39-MC21



Protective Bar
F39-PJ $\square \square \square \square$-S Backside mounting


Mounting screw holes


C (protective height): 4-digit number in the table
A $=\mathrm{C}+74, \mathrm{~B}=\mathrm{C}+46.5$

| Protective height | Number of intermediate <br> brackets used (3) | D |
| :--- | :--- | :--- |
| 0245 to 0995 | 0 | --- |
| 1001 to 2000 | 1 | $\mathrm{~B} / 2$ |
| 2009 to 2500 | 2 | $\mathrm{~B} / 3$ |

Note: For reference, D is the dimension that will not interfere with the intermediate bracket on the Safety Light Curtain body.

## Side mounting



C (protective height): 4-digit number in the table $A=C+74, B=C+46.5$

| Protective height | Number of protective <br> brackets used (4) | D |
| :--- | :--- | :--- |
| 0245 to 0995 | 0 | --- |
| 1001 to 2000 | 1 | $\mathrm{~B} / 2$ |
| 2009 to 2500 | 2 | $\mathrm{~B} / 3$ |

Note: For reference, D is the dimension that will not interfere with the intermediate bracket on the Safety Light Curtain body.

## Water-resistant Case

F39-EJ $\square \square \square \square$-L(D)
Backside mounting


Dimensions $A$ to $D$

| A | C + 108 |
| :--- | :--- |
| B | C +76 |
| C | 4-digit number of the model name <br> (protective height) |
| D | C + 44 |


Mounting screw holes

Side mounting


## Connection Circuit Examples

## Examples of Safety Circuits

## For PNP output (See page 56 for NPN output wiring.)

Wiring for single F3SJ application (category 4)

- Use of welded relay contact detection and interlock is possible without a controller or relay unit.


Wiring for connection with a controller F3SP-B1P (category 4) (PNP models only)

- Reduced wiring due to connector connection
- Safety relay included



## Wiring for connection with a controller F3SX-E-L2R (category 4) (PNP models only)

- Emergency stop switch can be connected.
- Door switch, two hand control, single beam, or relay unit can be used in combination with F3SX.
- Various settings can be changed and input/output terminals can be monitored using the setting support software for F3SX


Wiring for connection with a controller G9SA-301 (category 4) (PNP models only)


Wiring for connection with a controller G9SX-AD322-T15 (category 4) (PNP models only)

- Can be configured for partial control and total control.
- Can be extended to connect a door switch or a relay unit.


For NPN output (See page 51 for PNP output wiring.)
Wiring for single F3SJ application (category 4)

- Use of relay welded relay contact detection and interlock is possible without a controller or relay unit.


Timing Chart


* The output operation mode for auxiliary output 1 is control output data/inverse of control output signals enabled (default setting).

S1: External test switch (connect to 24 V if the switch is not necessary.)

KM1, KM2: Safety relay with forcibly-guided contacts (G7SA) or magnetic contactor
KM3: Load, PLC (for monitor)
KM4: Solid state contactor (G3J)
M: $\quad 3$-phase motor
E1: $\quad 24$ VDC power supply (S82K)
PLC: Programmable controller (Used for monitoring -- not related to safety system)

Wiring for connection with a controller G9SA-301-P (category 4) (NPN models only)

*1. If an emergency stop switch is not used, connect control output 1 to T12 terminal and control output 2 to T23 directly.
S1: External test switch (connect to 24 V if the switch is not necessary.)
Interlock reset switch
Emergency stop switch (direct opening
contacts) (A165E, A22E)
S4: Lockout reset switch (connect to 0 V if the switch is not necessary.)

Timing Chart

*2. The output operation mode for auxiliary output 1 is control output data/inverse of control output signals enabled (default setting).
*2. The output operation mode for auxiliary output 1 is

KM1, KM2: Magnetic contactor
KM3: $\quad$ Solid state contactor (G3
M: $\quad 3$-phase motor
E1: $\quad 24 \mathrm{VDC}$ power supply (S82K)
PLC: Programmable controller
(Used for monitoring -- not related to safety system)

## System Configuration and Connection (Muting system)

## Muting System

The muting function temporarily disables the safety function of the F3SJ, keeping the control outputs ON even if beams are interrupted. This makes it possible to install safety light curtains for AGV passage, enabling both safety and productivity.
When muting, the muting lamp (external indicator) blinks to notify people in the surrounding area that the safety functions are disabled For each operation modes, refer to page 73.


## $\triangle$ WARNING

The muting and override functions disable the safety functions of the device. Additional safety measures must be taken to ensure safety while these functions are working.

Install muting sensors so that they can distinguish between the object that is being allowed to be pass through the detection zone and a person.
If the muting function is activated by the detection of a person, it may result in serious injury.

Muting lamps (external indicators) that indicate the state of the muting and override functions must be installed where they are clearly visible to workers from all the operating positions.

## Upgrading F3SJ for Muting System

1. Remove the caps of the emitter and receiver.
(A screwdriver is included with the key cap for muting.)
2. Install a muting lamp (external indicator) on either the emitter or receiver.
3. Attach the key cap for muting to the emitter/receiver on which the muting lamp (external indicator) was not installed.


## Muting Sensor

A muting sensor is the sensor that is the trigger for temporarily disabling the safety functions of F3SJ. You can use a through-beam or retro-reflective photoelectric switch, a proximity sensor, or a limit switch as the muting sensor. (OMRON's E3Z-series, E2E-series
(3-wire), E2VX-series, and D4N-series Sensors are recommended.) For an F3SJ model with PNP output, use a sensor with a 3-wire PNP transistor output or a NO contact output. For an F3SJ model with NPN output, use a sensor with a 3-wire NPN transistor output or a NO contact output.
Two-wire sensors cannot be used.

## Muting Lamp (External indicator)

To notify workers that the muting function is working, external lamp(s) must be installed. Use the F39-A01P $\square$-PAC external indicator set or an F39-JJ3N universal indicator cable with a commercially available external indicator.

## F3SJ Internal Indicators

- The muting input 1 indicator turns ON when input is applied to muting input 1.
- The muting input 2 indicator turns ON when input is applied to muting input 2.
- The muting input 1 indicator and muting input 2 indicator blink under muting override.
- The muting error indicator on the receiver side turns ON when there is a muting error.


## Attachment Positions for Included Labels

Internal indicator labels are included with the F39-CN6 Key Cap for Muting. When using a muting system, attach the internal indicator labels so the arrows will be in line with the positions of the indicators, as shown by the shading below.


## Standard Muting Mode

The F3SJ is set to this operation mode when it is shipped from the factory. The muting function is enabled by providing a time lag between muting inputs 1 and 2 . Use a separately purchased setting tool to change parameters related to muting time, or to select other muting operation modes.

## Start Conditions

If both of the following 2 conditions are present, muting is activated.

1. No interrupting object is found in the F3SJ's detection zone, and control output is ON.
2. After muting input 1 is turned ON (connected to 9 to 24 V for PNP types, or to 0 to 1.5 V for NPN types), muting input 2 is turned ON (connected to 9 to 24 V for PNP types, or to 0 to 1.5 V for NPN types) within the muting input time limit T1 min. to T1 max. (0.03 to 3 s ).
Once the conditions in item 2 above are met, the muting function will be enabled in 0.15 s max.
When condition 1 is satisfied but time condition of 2 is not, a muting sequence error occurs and receiver's muting error indicator turns ON. However, the F3SJ safety functions will continue operating and the F3SJ will operate normally even during a muting error.
A muting error is released when either of the following occurs:

- When muting is started using a proper procedure
- When power is turned on while muting inputs 1 and 2 are OFF


## End Conditions

If either of the following conditions are satisfied, the muting state is released.

1. Muting input 1 or 2 turns OFF for $\mathrm{T} 3(0.1 \mathrm{~s})$ or longer.
2. When the muting continuation time exceeds the muting time limit of T2 (60 s) (a setting tool can be used to change the limit in the range of 1 to 600 s , or to eliminate the time limit)


* This value is the time when the F3SJ is used singly. When used in a series, this time is as shown in the table below.

| Number of Connected Units | * Time (s) |  |
| :--- | :--- | :--- |
| 1 | 0.15 |  |
| Series of 2 | 0.26 |  |
| Series of 3 | 0.29 |  |
| Series of 4 | 0.32 |  |

- T1 min: Muting input time limit (min.)

This is the minimum input time lag between muting inputs 1 and 2, and is set to 0.03 s . If the time lag between muting inputs 1 and 2 are shorter than this value, a muting error is generated.

- T1 max: Muting input time limit (max.)

This is the maximum input time lag between muting inputs 1 and 2, and is set to 3 s . The minimum value must be less than the maximum value (min. < max.).

- T2: Muting time limit

This is the continuous time of the muting function, and is set to 60 s . If the muting status exceeds this time, muting is cancelled.

- T3: Allowable pulse-change time for muting input signals This is the maximum time allowed for a change in the waveform pulse of muting inputs 1 and 2 while in the muting status.
Note: The muting status can be released even when the system enters lockout.

The following values can be changed using the Setting Support Software for the F3SJ:

- T1 min: Muting input time limit (min.)
- T1 max: Muting input time limit (max.)
- T2: Muting time limit

The following values can be changed using the Setting Console:

- T2: Muting time limit


## Installation Standard for Muting Sensors

- Set the muting sensors so that they can detect all of the passing detection objects (palettes, automobiles, etc.). Do not install in a position so that only the front or rear end of the detection object is detected.
- Set the muting sensors so that they detect the objects even when they are loaded on palettes or other transport devices
- Install the F3SJ and muting sensors so that each object passes through all muting sensors before the next object arrives at the first muting sensor. Also, install all F3SJ and muting sensors so that no person is able to accidentally enter the hazardous area while the muting function is enabled.
- When objects pass through the muting area at different speeds, consider limiting the muting time.
- For a muting sensor installation example, see the instruction manual.
- For details about the override function, see the instruction manual.


## Example of a Safety Circuit with the Muting System

## For PNP output

Wiring for muting function with single F3SJ application (category 4)
When two muting sensors are connected

- Attaching a keycap for muting (F39-CN6) enables the muting function to be used.

* The output operation mode for auxiliary output 1 is control output data/inverse of control output signals enabled (default setting).

Note: Start interlock and restart interlock can be used with a setting tool.

## When four muting sensors are connected

- The muting function can be used by attaching the F39-CN6 Key Cap.

* The output operation mode for auxiliary output 1 is control output data/inverse of control output signals enabled (default setting).

Note: Start interlock and restart interlock can be used with a setting tool.

## For NPN output

Wiring for muting function with single F3SJ application (category 4)

## When two muting sensors are connected

- Attaching a keycap for muting (F39-CN6) enables the muting function to be used.


Timing Chart


* The output operation mode for auxiliary output 1 is control output data/ inverse of control output signals enabled (default setting).
Note: Start interlock and restart interlock can be used with a setting tool.


## When four muting sensors are connected

- The muting function can be used by attaching the F39-CN6 Key Cap.

* The output operation mode for auxiliary output 1 is control output data/inverse of control output signals enabled (default setting).

Note: Start interlock and restart interlock can be used with a setting tool.

## Setting Bi-directional Muting

- Connect the outer muting sensors A1 and A2 to muting input 1 and the inner muting sensors B1 and B2 to muting input 2.
- When muting sensors A1 and then B1 (or A2 and then B2) turn ON in that order, the F3SJ will enter the muting state.

Connected to muting input 1
A1, A2, B1, B2: Retro-reflective Photoelectric Sensors

## Connected to muting input 2



- Muting from the opposite direction is also possible.


Note: 1. This example arrangement uses E3Z-R $\square \square$ Retro-reflective Photoelectric Sensors as the muting sensors. Mutual interference must be taken into account when installing these Sensors.
2. The muting sensors must be installed so that distance $D$ between muting sensors $A 1$ and $A 2$ is smaller than workpiece length $L$.
3. Through-beam or Retro-reflective Photoelectric Sensors, Proximity Sensors, or Limit Switches can be used as the muting sensors. Two-wire sensors cannot be used.

## Safety Precautions

This catalog is intended as a guide for product selection. Be sure to use the instruction manual provided with the product for actual operation.

## Regulations and Standards

1. Application of an F3SJ-A sensor alone cannot receive type certification provided by Article 44-2 of the Labour Safety and Health Law of Japan. It is necessary to apply it in a system. Therefore, when using the F3SJ-A in Japan as a "safety system for pressing or shearing machines" prescribed in Article 42 of that law, the system must receive type certification.
2. The F3SJ-A is electro-sensitive protective equipment (ESPE) in accordance with European Union (EU) Machinery Directive Index Annex IV, B, Safety Components, Item 1.
3. The F3SJ-A complies with the following legislation and standards:
4. EU Regulations

Machinery Directive: Directive 98/37/EC
EMC Directive: Directive 2004/108/EC
2. European standards:

EN61496-1 (TYPE 4 ESPE),
prEN61496-2 (TYPE 4 AOPD),
EN61508-1 to -7 (SIL3)
3. International standards:

IEC61496-1 (TYPE 4 ESPE),
IEC61496-2 (TYPE 4 AOPD),
EN61508-1 to -7 (SIL3)
4. JIS standards:

JIS B9704-1 (TYPE 4 ESPE),
JIS B9704-2 (TYPE 4 AOPD)
4. The F3SJ-A received the following certification from the EUaccredited body, TÜV SÜD:

- EC type test based on machinery directive

Type 4 ESPE (EN61496-1),
Type 4 AOPD(prEN61496-2)

- TÜV SÜD Type Certification

Type 4 ESPE (EN61496-1),
Type 4 AOPD (prEN61496-2),

- SIL1, 2, 3 (EN61508-1 to -7)

Application: EN954-1 categories B, 1, 2, 3, 4
5. The F3SJ-A has received certificates of UL listing for US and Canadian safety standards from the Third Party Assessment Body UL.

- Type 4 ESPE (UL61496-1),

Type 4 AOPD (UL61496-2)
6. The F3SJ-A is designed according to the standards listed below. To make sure that the final system complies with the following standards and regulations, you are asked to design and use it in accordance with all other related standards, laws, and regulations. If you have any questions, consult with specialized organizations such as the body responsible for prescribing and/or enforcing machinery safety regulations in the location where the equipment is to be used.

- European Standards: EN415-4, EN692, EN693
- US Occupational Safety and Health Administration: OSHA 29 CFR 1910.212
- US Occupational Safety and Health Administration: OSHA 29 CFR 1910.217
- American National Standard Institute: ANSI B11.1 to B11.19
- American National Standard Institute ANSI/RIA 15.06
- Canadian Standards Association CSA Z142, Z432, Z434
- SEMI standard SEMI S2


## Precautions for Safe Use

Indication and meaning for safe use
Meanings of Signal Words
To ensure safe use of the F3SJ-A, signal words and an alert symbol are used in this catalog to indicate safety-related instructions. Because these instructions describe details very important to your safety, it is extremely important that you understand and follow the instructions. The signal words and alert symbol used in this catalog are shown below.

## © WARNING

Indicates a potentially hazardous situation which, if not avoided, will result in minor or moderate injury, or may result in serious injury or death. Additionally, there may by significant property damage.

## A CAUTION

Indicates a potentially hazardous situation which, if not avoided, may result in minor or moderate injury or in property damage.

## Definition of Symbol

Prohibited
Indicates a prohibited action.

## Warning Labels <br> For users

## A. WARNING

The FS3J must be installed, set, and integrated into the mechanical control system by a qualified technician who has received the appropriate training. Failure to make correct settings may prevent detection of people and result in serious injury.

When changing parameters with a setting tool (F39-GWUM or F39MC21), the change must be made and the contents of the change must be managed by the person in charge of the system. Unintentional or mistaken parameter changes may prevent detection of people and result in serious injury.

## For machines

$\triangle$ WARNING
Do not use this sensor for machines that cannot possibly be stopped by electrical control. For example, do not use it for a pressing machine that uses full-rotation clutch. Otherwise, the machine may not stop before a person reaches the hazardous part, resulting in serious injury.

Do not use the auxiliary output or external indicator output for safety applications. Failure of the F3SJ may cause a person to go undetected, resulting in serious injury.

## For mounting

## A WARNING

Make sure to test the operation of the F3SJ after installation to verify that the F3SJ operates as intended. Do not operate the machine until the test has been completed and F3SJ operation has been verified. Unintended function settings may cause a person to go undetected, resulting in serious injury.

Make sure to secure the safety distance between the F3SJ and the hazardous parts. Otherwise, the machine may not stop before a person reaches the hazardous part, resulting in serious injury.
Install a protective structure so that the hazardous part of a machine can only be reached by passing through the sensor's detection zone. Install the sensors so that part of the person is always present in the detection zone when working in a machine's hazardous areas. If a person is able to step into the hazardous area of a machine and remain behind the F3SJ's detection zone, configure the system with an interlock function that prevents the machine from being restarted. Otherwise it may result in heavy injury.
Install the interlock reset switch in a location that provides a clear view of the entire hazardous area and where it cannot be activated from within the hazardous area.

The F3SJ cannot protect a person from an object flying from a hazardous area. Install protective cover(s) or fence(s).

When detection of an area has been disabled by the fixed blanking function, provide a protective structure around the entire area that will prevent a person from passing through it and reaching the hazardous part of the machinery. Failure to do so may prevent detection of people and result in serious injury.
After setting the fixed blanking function, be sure to confirm that a test rod is detected within all areas that require detection. Failure to do so may prevent detection of people and result in serious injury.

When the fixed blanking function or the floating blanking function is used, the diameter for the smallest detectable object becomes larger. Be sure to use the diameter for the smallest detectable object for the fixed blanking function or the floating blanking function when calculating the safety distance. Failure to do so may prevent the machinery from stopping before a person reaches the hazardous part of the machinery, and result in serious injury.
The muting and override functions disable the safety functions of the device. Additional safety measures must be taken to ensure safety while these functions are working.

Install muting sensors so that they can distinguish between the object that is being allowed to be pass through the detection zone and a person. If the muting function is activated by the detection of a person, it may result in serious injury.

Muting lamps (external indicators) that indicate the state of the muting and override functions must be installed where they are clearly visible to workers from all the operating positions

Muting times must be precisely set according to the application by qualified personnel who have received appropriate training. In particular, if the muting time limit is to be set to infinity, the person who makes the setting must bear responsibility.

Use two independent input devices for the muting inputs.
Install the F3SJ, Muting Sensors, or a protective wall so that workers cannot enter hazardous areas while muting is in effect, and set muting times.

Position the switch that is used to activate the override function in a location where the entire hazardous area can be seen, and where the switch cannot be operated from inside the hazardous area. Make sure that nobody is in the hazardous area before activating the override function.

Install the sensor system so that it is not affected by reflective surfaces. Failure to do so may hinder detection, resulting in serious injury.

When using more than 1 set of F3SJ, install them so that mutual interference does not occur, such as by configuring series connections or using physical barriers between adjacent sets.

Make sure that the F3SJ is securely mounted and its cables and connectors are properly connected.

Make sure that no foreign material, such as water, oil or dust, enters the inside of the F3SJ while the cap is removed.

Do not use the sensor system with mirrors in as retro-reflective configuration. Doing so may hinder detection. It is possible to use mirrors to "bend" the detection zone to a 90 -degree angle.


When using series connections, perform inspection of all connected F3SJs as instructed in the User's Manual.

## For wiring

## $\triangle$ WARNING

For PNP output, connect the load between the output and 0 V line. For NPN output, connect the load between the output and +24 V line. Connecting the load between the +24 V and 0 V lines results in a dangerous condition because the operation mode is reversed to "ON when light is interrupted".
[For PNP output]
Do not short-circuit an output line to +24 V line. Otherwise, the output is always ON , creating a dangerous situation. Also, 0 V of the power supply must be grounded so that output should not turn ON due to grounding of the output line.
[For NPN output]
Do not short-circuit an output line to 0 V line. Otherwise, the output is always ON, creating a dangerous situation. Also, the +24 V line of the power supply must be grounded so that output does not turn ON due to grounding of the output line.

Configure the system by using the optimal number of control outputs that satisfy the requirements of the necessary safety category.

Do not connect each line of F3SJ to a DC power supply higher than $24 \mathrm{~V}+20 \%$. Also, do not connect to an AC power supply.
Failure to do so may result in electric shock.
For F3SJ to comply with IEC 61496-1 and UL 508, the DC power supply unit must satisfy all of the following conditions:

- Must be within rated power voltage ( $24 \mathrm{VDC} \pm 20 \%$ ).
- Must have tolerance against the total rated current of devices if it is connected to multiple devices.
- Must comply with EMC directives (industrial environment)
- Double or enhanced insulation must be applied between the primary and secondary circuits.
- Automatic recovery of overcurrent protection characteristics (reversed L sagging)
- Output holding time must be 20 ms or longer.
- Must satisfy output characteristic requirements for class 2 circuit or limited voltage current circuit defined by UL508.
- Must comply with EMC, laws, and regulations of a country or a region where F3SJ is used. (Ex: In EU, the power supply must comply with EMC Low Voltage Directive.)

Double or enhanced insulation from hazardous voltage must be applied to all input and output lines. Failure to do so may result in electric shock.

The cable extension length must be no greater than the specified length. Otherwise, the safety functions may fail to work properly, resulting in danger.

## Installation Conditions

Refer to "Precautions for All Safety Sensors" for installation conditions.

## A. WARNING

Make sure to secure the safety distance (S) between the F3SJ and the hazardous part. Otherwise, the machine may not stop before a person reaches the hazardous part, resulting in serious injury.

Note: The response time of a machine is the time period from when the machine receives a stop signal to when the machine's hazardous part stops.
Measure the response time on the actual system. Also, periodically check that the response time of the machine has not changed.

Refer to the "Precautions for All Safety Sensors" for calculating the Safety distance.

## Prevention of Mutual Interference

Do not use a sensor system in a reflective configuration. Doing so may hinder detection. Mirrors can be used change the optical route.

When using more than 1 set of F3SJ, install them so that mutual interference does not occur, such as by configuring series connections or using physical barriers between adjacent sets.
Mutual interference from other F3SJ is prevented in up to 3 sets without series connection.

## For series connection

Series connections can prevent mutual interference when multiple sensors are used. Up to 4 sets, 400 beams, can be connected (except for the F3SJ-A $\square$-TS Series, for which up to 3 sets, 240 beams, can be connected). The emission of series-connected F3SJ is time-divided, so mutual interference does not occur and safety is ensured.


## No Series Connections

Refer to "Precautions for All Safety Sensors" for information on preventing mutual interference of Safety Light Curtains that are not connected in series.

## Using Setting Tools

The following setting tools (sold separately) can be purchased in order to change or confirm various F3SJ-series parameters.

- F39-MC21 Setting Console
- F39-GWUM SD Manager Setting Support Software for the F3SJ The Setting Console cannot be used with the F3SJ-A $\square$-TS Series.


## $\triangle$ WARNING

The FS3J must be installed, set, and integrated into the mechanical control system by a qualified technician who has received the appropriate training. Failure to make correct settings may prevent detection of people and result in serious injury.

## F3SJ Versions

Setting tools can be used with Version 2 and later versions of the F3SJ. The setting tools cannot be used with Version 1.
The setting tools cannot be used even if a Version 1 F3SJ is combined in series with compatible F3SJ Units. (A communications error lockout will occur.)
Unfortunately, the F3SJ's version cannot be upgraded.
The F3SJ's version number appears on its label, as shown in the following diagram.

Location of the F3SJ's Version Number (Within Dashed-line Box)


Close-up View of Dashed-line Box


## Functions Editable with Setting Tools

O: Can be used.
$x$ : Cannot be used.

| Function or monitored item |  | F39-MC21 Setting Console | F39-GWUM SD Manager Setting Support Software for the F3SJ |
| :---: | :---: | :---: | :---: |
| Settings for individual applications | Fixed blanking function *1 | $\bigcirc$ | $\bigcirc$ |
|  | Floating braking function $* 1$ | $\bigcirc$ | $\bigcirc$ |
|  | Warning zone function $* 1$ | $\bigcirc$ | $\bigcirc$ |
|  | Muting function $* 2$ (when using the muting system) | $\bigcirc$ | $\bigcirc$ |
|  | Override function $* 2$ (when using the muting system) | $\bigcirc$ | $\bigcirc$ |
| Indicator and I/O settings | Auxiliary output *2 | $\bigcirc$ | $\bigcirc$ |
|  | Specified light beam output function $* 1$ | $\times$ | $\bigcirc$ |
|  | External indicator output $* 2$ | $\bigcirc$ | $\bigcirc$ |
|  | Interlock function $* 2$ | $\bigcirc$ | $\bigcirc$ |
|  | External device monitoring function $* 2$ | $\bigcirc$ | $\bigcirc$ |
| Changing detection distance | Change detection distance function $* 1$ | $\bigcirc$ | $\bigcirc$ |
| Monitoring operation | Light intensity indicators *1 | $\bigcirc$ | $\bigcirc$ |
|  | Ambient light intensity indicators $* 1$ | $\bigcirc$ | $\bigcirc$ |
|  | Status indicators $* 1$ | $\times$ | $\bigcirc$ |
| Maintenance information | Error log $* 1$ | $\bigcirc$ | $\bigcirc$ |
|  | Power ON time $* 1$ | $\bigcirc$ | $\bigcirc$ |
|  | Number of load switching operations $* 1$ | $\bigcirc$ | $\bigcirc$ |
| Recovering settings | Recover settings function $* 1$ | $\bigcirc$ | $\bigcirc$ |
| Other functions | Safety distance calculation function $* 1$ | $\times$ | $\bigcirc$ |
|  | Power cable length calculation Function $* 1$ | $\times$ | $\bigcirc$ |
|  | Rated response time check $* 1$ | $\bigcirc$ | $\bigcirc$ |

*1. These functions were newly added in Version 2. A setting tool can be used to enable these functions or read the function settings.
*2. These functions can be used even without a setting tool. A setting tool can be used to make more detailed settings.

## Two Kinds of Setting Tools

The following accessories (sold separately) can be purchased in order to use various F3SJ-series functions and change settings.

- F39-MC21 Setting Console

A Setting Console can easily make settings onsite.

- F39-GWUM SD Manager Setting Support Software for the F3SJ With this software, a personal computer can be connected to make settings. The SD Manager Setting Support Software for the F3SJ can make more detailed settings than the Setting Console.


## Setting Console

The following items are included with the F39-MC21 Setting Console.

- Setting Console
- Branch Connector (with Connector Cap)
- Special Cable
- Special Cable with Plug
- Error Mode Label
- Instruction Manual


## Connecting the Setting Console

Connect the F3SJ to the Setting Console as shown in the following diagram. The Branch Connector can be used on either the emitter side or receiver side. After the F3SJ has been wired, turn ON the power and change parameters as required. If it is not possible to connect a branch connector because the connector is concealed by equipment or otherwise inaccessible, use the Special Cable with Plug to connect to the + and - communications lines. For details, refer to the F39-MC21 Instruction Manual.


## SD Manager Setting Support Software for the F3SJ

The following items are included with the F39-GWUM SD Manager Setting Support Software for the F3SJ.

- CD-ROM (SD Manager Setting Support Software for the F3SJ, Communications Unit Driver)
- Communications Unit
- Branch Connector (with Connector Cap)
- Special Cable
- Instruction Manual (Installation Guide)
- Special Cable with Plug

The F3SJ's operating status can be checked and its parameters can be changed in the SD Manager Setting Support Software for the F3SJ.
Connecting the SD Manager Setting Support Software Connect the F3SJ, Communications Unit, and personal computer as shown in the following diagram. The branch connector can be used on either the emitter side or receiver side. After the F3SJ has been wired, turn ON the power and start the Setting Support Software. If it is not possible to connect a branch connector because the connector is concealed by equipment or otherwise inaccessible, use the Special Cable with Plug to connect to the + and - communications lines. For details, refer to the SD Manager's Help function.


## Applications Supported by the Setting Tools

## Fixed Blanking Function <br> Summary <br> Disables specific F3SJ light beams.

## 1. WARNING

When the fixed blanking function is used to disable detection in an area, install blocking structures or shielding to prevent passage into the entire hazardous area where detection has been disabled. Failure to do so may prevent detection of people and result in serious injury.

When an allowable range of light beams has been set for fixed blanking, the size of the smallest detectable object will be larger in the vicinity of interrupting objects. Calculate the safety distance to match the settings.

After setting the fixed blanking function, you must verify that the F3SJ detects a test rod at any position in the entire area where intrusion must be detected. Failure to do so may prevent detection of people and result in serious injury.

## Example Application

In this example, there is always an object such as a conveyor belt in the detection area, and we want to ignore the conveyor belt.

## Description of Functions

## Fixed Blanking Function

This function disables part of the F3SJ's detection area and maintains the control output's ON status even if there is an object in the disabled area.
The light beams set for fixed blanking must be one area of consecutive light beams and up to five areas can be set (areas 1 to
5). Fixed blanking cannot be set for all of the light beams.

## Setting the Fixed Blanking Area

Set the area that will be subject to fixed blanking.
An interrupting object can be placed in the detection area to perform teaching and specify light beams for manual settings.


Note: 1. When the Setting Console is being used, only one area can be set as a fixed blanking area.
2. When the SD Manager Setting Support Software is being used, up to five areas can be set as fixed blanking areas.

## Floating Blanking Function

Summary
Increases the diameter of the F3SJ's smallest detectable object and turns OFF the control output when multiple objects are detected.

## $\triangle$ WARNING

When the floating blanking function is used, it increases the diameter of the F3SJ's smallest detectable object. Always use the larger diameter when calculating the safety distance. If the incorrect diameter is used in the calculation, the machinery may fail to stop before an operator reaches the hazardous area, resulting in serious injury.

After setting the floating blanking function, always verify that the F3SJ system operates as expected. Serious injury may result if an individual is not detected.

## Example Application

When there is a moving object with a fixed width in the detection area that we do not want to detect, the detection function can be disabled.

## Description of Functions

## Floating Blanking Function

This function increases the diameter of the smallest detectable object to allow passage of objects of a certain size or allow interrupting objects in multiple locations.

## Setting the Floating Blanking Area

When the Setting Console is being used, all of the light beams are set as the floating blanking area. When the SD Manager Setting Support Software is being used, just one area can be set but the range of the area can be specified. In the following example, the floating blanking area is set from the 5th light beam to the 10th light beam (counting from the bottom). An interrupting object can be placed in the detection area to perform teaching and specify light beams for manual settings.


## Floating Light Beams

The following charts show the relationship between the number of floating light beams and the safety output operation (safety output not going OFF). Measure the size of the interrupting object (maximum diameter) and set the number of floating light beams so that the object's size is less than the corresponding dimension shown in the chart.

## Example Setting

When an F3SJ-A $\square 14$ is being used with an interrupting object that is 20 mm in diameter, set three light beams as floating light beams. With this setting, the F3SJ's safety output will not turn OFF even if there is an interrupting object up to 22-mm wide in the floating blanking area

## Effective Range vs. Number of Floating Light Beams

F3SJ-A $\square 14$ Series


F3SJ-A $\square 20$ Series


F3SJ-A $\square 25$ Series


F3SJ-A $\square 30$ Series

F3SJ-A $\square 55$ series



## Floating Blanking Mode

The floating blanking function has two operation modes.

1. Continuous Light Beam Mode

The safety output will not go OFF if the interrupting object is smaller than the set size, although the safety output will go OFF if objects pass through several areas in the detection area.
The floating blanking monitor function can be set in this mode.
Refer to the User's Manual for details.
2. Discontinuous Light Beam Mode

A light blockage is detected when the number of light beams blocked in the area is equal to or greater than the preset number of light beams.

## Warning Zone Function <br> Summary

The detection zone can be divided into the detection zone and a warning zone.

## 1. WARNING

The warning zone output is not a safety output. Do not include this area in the safety distance calculation. Shortening the safety distance may result in serious injury.

The warning zone cannot be used for safety purposes. Always install the system so that the hazard is reached by passing through the detection zone.

The warning zone function can be used only when the F3SJ is installed horizontally. This function cannot be used when the F3SJ is installed vertically.


## Example Application

When an individual enters, a warning lamp lights or buzzer sounds without stopping the equipment.

## Description of Function

Warning Zone Function
Use teaching to set the light beams that you want to set as the warning zone or manually specify the light beams from the lowest or highest beam. (See figures 1 and 2.)
To indicate that the warning zone is blocked, allocate the auxiliary output or external indicator output as the warning zone information. The following settings cannot be made:

- Setting all light beams as the warning zone (figure 4)
- Setting a warning zone that does not include one of the outer light beams (figure 5)
If Safety Light Curtains are connected in series, and at least one of an F3SJ's light beams is a normal light beam, all of a Light Curtain's light beams can be set as a warning zone (figure 3 ).


## Example Warning Zone Settings (Figures 1 to 3 )




Examples of Unacceptable Warning Zone Settings (Figures 4 and 5)


## Warning Zone Display Label

When the warning zone is set, affix this label to indicate which areas belong to the normal detection zone and the warning zone.


## Muting Function

## Summary

Makes settings related to the muting function.

## 1. WARNING

The muting function disables the safety functions of the device. Additional safety measures must be taken to ensure safety while this function is working.

Install muting sensors so that they can distinguish between the object that is being allowed to be pass through the detection zone and a person.

Muting lamps (external indicators) that indicate the status of the muting function must be installed where they are clearly visible to workers from all the operating positions.

Muting times must be precisely set according to the application by qualified personnel who have received appropriate training. In particular, if the muting time limit is to be set to infinity, the person who makes the setting must bear responsibility.

Use two independent input devices for the muting inputs. (For the PNP output-type F3SJ, use a sensor with a PNP transistor output or N.O. contact. For the NPN output-type F3SJ, use a sensor with an NPN transistor output or N.O. type contact.)

To prevent a worker from entering the hazardous area while the muting function is engaged, install the F3SJ, muting sensor, and then a protective barrier and set a limited muting time.

## Example Applications

- Allowing only work pieces to pass into the conveyor entrance
- Operating the muting function in a specific area only
- Setting a different muting mode when standard muting is not appropriate for the application


## Description of Functions (See User's Manual for details.) Operation Modes

When the SD Manager Setting Support Software is being used, any one of the following three operation modes can be selected for the muting function.

1. Standard Muting Mode

This is the default operation mode, which is set when the F3SJ is shipped from the factory.
The muting function is enabled by turning ON muting inputs 1 and 2 with a time lag.
Note: Settings such as the muting time limit value can be changed.
2. Specialized Exit Muting Mode (Can be set with the SD Manager Setting Support Software only.)
The muting function is enabled by turning ON muting inputs 1 and 2 with a time lag.
Installation of the muting input sensors is simpler than standard mode because the Safety Light Curtain's blocked light status is used to end muting.
3. Position Detection Muting Mode (Can be set with the SD Manager Setting Support Software only.)
Sensors such as limit switches are used for the muting inputs and the muting function is enabled by turning muting input from OFF to ON and then turning muting input 2 from ON to OFF within time difference T1 max. Use hybrid redundant inputs such as a combination of an N.O. contact input and an N.C. contact input. (When using a PNP-output photoelectric switch, use L/ON operation on one side and D/ON operation on the other side.) This mode is useful when you want to disable the F3SJ temporarily, such as when a person is placing an object at the conveyor entrance.

## Partial Muting (Muting area) Settings

The light beams controlled by the muting function can be specified with a setting tool. (When the F3SJ is shipped, all light beams are set.) The light beams can be specified by teaching/recording the blocked light beams as muting light beams or manually specifying the desired light beams.

## Indicator and I/O Settings

## Auxiliary Output (Non-safety) and External Indicator Output (Non-safety)

## Summary

A setting tool can be used to change the allocation of auxiliary outputs 1 and 2 , and external indicator outputs 1 and 2.

## A. WARNING

Do not use the auxiliary outputs or external indicator outputs for safety purposes. Serious injury may result if an output fails and a person is not detected.

## Example Applications

- Allocating a lockout output or warning zone output to an auxiliary output
- Connecting an external indicator to an auxiliary output and making it flash
An auxiliary output or external indicator output can be connected to an incandescent light to function as a broken-wire or short-circuit detector. Refer to the User's Manual for details.

Output Operation Modes (when allocated to an auxiliary output or external indicator output)

| Output operation mode | Description of operation (Output will go ON in the following situation.) | Setting Console | SD Manager Setting Support Software |
| :---: | :---: | :---: | :---: |
| Control output | The control output is ON | $\bigcirc$ | $\bigcirc$ |
| Light intensity diagnosis *1 | The F3SJ is ON and the received light intensity is $100 \%$ to $130 \%$ of the threshold value for more than 10 seconds. | $\bigcirc$ | $\bigcirc$ |
| Error/Lockout | The F3SJ is in error or lockout status. | $\bigcirc$ | $\bigcirc$ |
| Muting/Override | The F3SJ is in muting or override status. | $\bigcirc$ | $\bigcirc$ |
| Blanking/Warning Zone *2 | The fixed blanking, floating blanking, or warning zone function is enabled. | $\bigcirc$ | $\bigcirc$ |
| Specified light beam output $* 3$ | A specified light beam is blocked. | $\times$ | $\bigcirc$ |
| Power ON time | The power ON time has exceeded the threshold value. | $\bigcirc$ | $\bigcirc$ |
| Warning zone *4 | Light is blocked in the warning zone. | $\bigcirc$ | $\bigcirc$ |
| Test input ON | The test input went ON. | $\bigcirc$ | $\bigcirc$ |
| Blanking light beam incident light | A fixed or floating light beam is receiving incident light. | $\bigcirc$ | $\bigcirc$ |
| Interlock | The F3SJ is in interlock status. | $\bigcirc$ | $\bigcirc$ |
| Muting error | The F3SJ is in muting error status. | $\bigcirc$ | $\bigcirc$ |
| Number of load switching operations exceeded | The number of load switching operations exceeded the threshold value. | $\bigcirc$ | $\bigcirc$ |
| Information trigger | An interlock, lockout, or muting error has occurred. | $\times$ | $\bigcirc$ |
| Individual linked sensor output (channel 1) | Channel 1 control output is ON when Units are linked in series. | O (Auxiliary output 1 only) | O (Auxiliary output 1 only) |
| Individual linked sensor output (channel 2) | Channel 2 control output is ON when Units are linked in series. | O (Auxiliary output 1 only) | O (Auxiliary output 1 only) |
| Individual linked sensor output (channel 3) | Channel 3 control output is ON when Units are linked in series. | O (Auxiliary output 1 only) | O (Auxiliary output 1 only) |
| Individual linked sensor output (channel 4) | Channel 4 control output is ON when Units are linked in series. | O (Auxiliary output 1 only) | O (Auxiliary output 1 only) |

Note: When "specified light beam output" is allocated as the output operation mode for auxiliary output 1 or 2 or external indicator output 1 or 2 , that mode cannot be allocated to the other output operations.
*1. A light blockage was detected even though the output is not turned OFF because the blockage occurred at a light beam subject to fixed blanking, floating blanking, or muting. Blockages are also not processed during overrides.
*2. The fixed blanking light beams or floating blanking light beams must be set.
*3. The specified light beam must be set.
*4. The warning zone light beams must be set.

## Changing the Detection Distance

## Change detection distance function

Summary
The F3SJ's detection distance can be shortened.

## Example Application

The F3SJ's detection distance can be shortened to avoid affecting other photoelectric sensors.
When devices are installed close together, shortening the detection distance can reduce mutual interference.

## Description of Function

The detection distance can be set to $0.5 \mathrm{~m}, 1 \mathrm{~m}, 2 \mathrm{~m}, 3 \mathrm{~m}, 5 \mathrm{~m}$, or
MAX (either 7 m or 9 m ).
The most suitable detection distance can be set to match the installation distance.

Note: MAX represents the rated detection distance.

## Monitoring Operation

## Received Light Intensity Indicator

## Summary

It is possible to read the F3SJ's received light intensity.

## Example Application

Adjust the light beams while checking the F3SJ's received light intensity.

## Description of Function

Indicates the F3SJ's received light intensity
The F3SJ's received light intensity level can be checked with a setting tool.

## Ambient Light Intensity Indicator Summary

It is possible to read the intensity of the light received by the F3SJ from ambient sources, such as other photoelectric sensors.

## Example Application

Display the ambient light level while taking steps to reduce light interference form sources such as photoelectric switches in the area and neighboring F3SJ Units.

## Description of Function

Indicates the ambient light level at the F3SJ from other light sources such as photoelectric sensors.
This function can help identify the photoelectric sensors that are the source of the light interference and identify the light beams being affected by the ambient light.

## Other Functions

The F3SJ is also equipped with the following functions.
Refer to the User's Manual for details on using these functions.

- Status indicators
- Error log
- Power ON time
- Number of load switching operations
- Safety distance calculation function
- Power cable length calculation function
- Rated response time check function


## Read and Understand This Catalog

Please read and understand this catalog before purchasing the products. Please consult your OMRON representative if you have any questions or comments.

## Warranty and Limitations of Liability

## WARRANTY

OMRON's exclusive warranty is that the products are free from defects in materials and workmanship for a period of one year (or other period if specified) from date of sale by OMRON.

OMRON MAKES NO WARRANTY OR REPRESENTATION, EXPRESS OR IMPLIED, REGARDING NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR PARTICULAR PURPOSE OF THE PRODUCTS. ANY BUYER OR USER ACKNOWLEDGES THAT THE BUYER OR USER ALONE HAS DETERMINED THAT THE PRODUCTS WILL SUITABLY MEET THE REQUIREMENTS OF THEIR INTENDED USE. OMRON DISCLAIMS ALL OTHER WARRANTIES, EXPRESS OR IMPLIED.

## LIMITATIONS OF LIABILITY

OMRON SHALL NOT BE RESPONSIBLE FOR SPECIAL, INDIRECT, OR CONSEQUENTIAL DAMAGES, LOSS OF PROFITS OR COMMERCIAL LOSS IN ANY WAY CONNECTED WITH THE PRODUCTS, WHETHER SUCH CLAIM IS BASED ON CONTRACT, WARRANTY, NEGLIGENCE, OR STRICT LIABILITY.

In no event shall the responsibility of OMRON for any act exceed the individual price of the product on which liability is asserted.
IN NO EVENT SHALL OMRON BE RESPONSIBLE FOR WARRANTY, REPAIR, OR OTHER CLAIMS REGARDING THE PRODUCTS UNLESS OMRON'S ANALYSIS CONFIRMS THAT THE PRODUCTS WERE PROPERLY HANDLED, STORED, INSTALLED, AND MAINTAINED AND NOT SUBJECT TO CONTAMINATION, ABUSE, MISUSE, OR INAPPROPRIATE MODIFICATION OR REPAIR.

## Application Considerations

## SUITABILITY FOR USE

OMRON shall not be responsible for conformity with any standards, codes, or regulations that apply to the combination of products in the customer's application or use of the products.

At the customer's request, OMRON will provide applicable third party certification documents identifying ratings and limitations of use that apply to the products. This information by itself is not sufficient for a complete determination of the suitability of the products in combination with the end product, machine, system, or other application or use.

The following are some examples of applications for which particular attention must be given. This is not intended to be an exhaustive list of all possible uses of the products, nor is it intended to imply that the uses listed may be suitable for the products:

- Outdoor use, uses involving potential chemical contamination or electrical interference, or conditions or uses not described in this catalog.
- Nuclear energy control systems, combustion systems, railroad systems, aviation systems, medical equipment, amusement machines, vehicles, safety equipment, and installations subject to separate industry or government regulations.
- Systems, machines, and equipment that could present a risk to life or property.

Please know and observe all prohibitions of use applicable to the products.
NEVER USE THE PRODUCTS FOR AN APPLICATION INVOLVING SERIOUS RISK TO LIFE OR PROPERTY WITHOUT ENSURING THAT THE SYSTEM AS A WHOLE HAS BEEN DESIGNED TO ADDRESS THE RISKS, AND THAT THE OMRON PRODUCTS ARE PROPERLY RATED AND INSTALLED FOR THE INTENDED USE WITHIN THE OVERALL EQUIPMENT OR SYSTEM.

PROGRAMMABLE PRODUCTS
OMRON shall not be responsible for the user's programming of a programmable product, or any consequence thereof.

## Disclaimers

## CHANGE IN SPECIFICATIONS

Product specifications and accessories may be changed at any time based on improvements and other reasons.
It is our practice to change model numbers when published ratings or features are changed, or when significant construction changes are made. However, some specifications of the products may be changed without any notice. When in doubt, special model numbers may be assigned to fix or establish key specifications for your application on your request. Please consult with your OMRON representative at any time to confirm actual specifications of purchased products.

## DIMENSIONS AND WEIGHTS

Dimensions and weights are nominal and are not to be used for manufacturing purposes, even when tolerances are shown.

## PERFORMANCE DATA

Performance data given in this catalog is provided as a guide for the user in determining suitability and does not constitute a warranty. It may represent the result of OMRON's test conditions, and the users must correlate it to actual application requirements. Actual performance is subject to the OMRON Warranty and Limitations of Liability.

ERRORS AND OMISSIONS
The information in this document has been carefully checked and is believed to be accurate; however, no responsibility is assumed for clerical, typographical, or proofreading errors, or omissions.


[^0]:    * Protective Height (mm)= Total sensor length

