Panasonic ideas for life

Compliance with RoHS Directive

HIGH CAPACITY, LONG LIFE SUBMINIATURE SWITCH

FEATURES

- 10.1 Amp. high contact capacity is available
- Long life
- Precise operating position ($\pm 0.25 \mathrm{~mm}$: Pin plunger type)
- Flux-resistant construction with integrally molded terminals
- In-line terminals make soldering works easy
- UL/CSA approved

TYPICAL

APPLICATIONS

- Heaters
- Electric rice cookers
- Copiers
- Printers
- Facsimiles
- Vending machines
- Measuring equipment
- Audio equipment

ORDERING INFORMATION

CONSTRUCTION

CONTACT
ARRANGEMENT: SPDT

DATA
Electrical life curve

Contact	Actuator	Part No.			
		Self-standing solder terminal			Self-standing PC terminal
		Without guard	With guard	With opposite side guard	
Gold-clad	Pin plunger	AVM3205P9	AVM3105P9	AVM3305P9	AVM3405P9
	Short hinge lever	AVM3215P9	AVM3115P9	AVM3315P9	AVM3415P9
	Hinge lever	AVM3225P9	AVM3125P9	AVM3325P9	AVM3425P9
	Long hinge lever	AVM3235P9	AVM3135P9	AVM3335P9	AVM3435P9
	Simulated roller lever	AVM3245P9	AVM3145P9	AVM3345P9	AVM3445P9
	Roller lever	AVM3255P9	AVM3155P9	AVM3355P9	AVM3455P9

SPECIFICATIONS

1. Contact rating

Resistive load $(\cos \phi \fallingdotseq 1)$	$10.1 \mathrm{~A}, 250 \mathrm{~V} \mathrm{AC}$

2. Characteristics

Expected life	Electrical	Min. 5×10^{4} (at 20 cpm) (O.T. max.)
	Mechanical	Min. $3 \times 10^{7}(\mathrm{O} . \mathrm{T} .: ~ S p e c i f i e d ~ v a l u e), ~ a t ~$
60 cpm		
Dielectric strength	Between terminals	$1,000 \mathrm{Vrms}$ for 1 min. (at 10 mA$)$
	Between terminals and other exposed metal parts	$2,000 \mathrm{Vrms}$ for $1 \mathrm{~min} .($ at 10 mA$)$
	Between terminals and ground	$2,000 \mathrm{Vrms}$ for $1 \mathrm{~min} .($ at 10 mA$)$
Insulation resistance	Min. $100 \mathrm{M} \Omega$ (at 500 V DC)	
Contact resistance (initial)	Max. $50 \mathrm{~m} \Omega$ (By voltage drop, 1 A 6 to 8 V DC$)$	
Allowable operating speed (at no load)	0.1 to $1,000 \mathrm{~mm} / \mathrm{sec}$.	
Max. operating cycle rate (at no load)	300 cpm	
Ambient temperature	-25 to $+85^{\circ} \mathrm{C}\left(\right.$ Not freezing below $\left.0^{\circ} \mathrm{C}\right)$	
Unit weight	Approx. 2 g	
Contact material	AgNi alloy	

3. Operating characteristics

Actuator	Operating force, Max.	Release force, Min.	Pretravel, Max. mm	Movement differential, Max. mm	Overtravel, Min. mm	Operating position mm
Pin plunger	1.47 N	0.20 N	0.6 mm	0.1 mm	0.4 mm	$8.4 \pm 0.25 \mathrm{~mm}$
Short hinge lever	0.59 N	0.039 N	2.5 mm	0.5 mm	0.8 mm	$8.8 \pm 0.8 \mathrm{~mm}$
Hinge lever	0.54 N	0.034 N	2.8 mm	0.8 mm	1.2 mm	$8.8 \pm 0.8 \mathrm{~mm}$
Long hinge lever	0.44 N	0.029 N	3.5 mm	1.0 mm	1.6 mm	$8.8 \pm 1.2 \mathrm{~mm}$
Simulated roller lever	0.54 N	0.034 N	2.8 mm	0.8 mm	1.2 mm	$11.65 \pm 0.8 \mathrm{~mm}$
Roller lever	0.59 N	0.039 N	2.5 mm	0.5 mm	0.8 mm	$14.5 \pm 0.8 \mathrm{~mm}$

DIMENSIONS

1. Self-standing PC terminal (Without guard)

Pin plunger

CAD Data

mm General tolerance: ± 0.25

PC board pattern

Pretravel, Max. mm	0.6
Movement differential, Max. mm	0.1
Overtravel, Min mm 0.4 Operating position Distance from mounting hole, mm	8.4 ± 0.25

CAD Data

Pretravel, Max. mm	2.5
Movement differential, Max. mm	0.5
Overtravel, Min mm	0.8
Operating position	Distance from mounting hole, mm

Hinge lever

CAD Data

Pretravel, Max. mm	2.8
Movement differential, Max. mm	0.8
Overtravel, Min mm	1.2
Operating position	Distance from mounting hole, mm

Long hinge lever

CAD Data

Pretravel, Max. mm	3.5
Movement differential, Max. mm	1.0
Overtravel, Min mm	1.6
Operating position	Distance from mounting hole, mm

Pretravel, Max. mm	2.8
Movement differential, Max. mm	0.8
Overtravel, Min mm	1.2
Operating position	Distance from mounting hole, mm

Roller lever
CAD Data

Pretravel, Max. mm	2.5
Movement differential, Max. mm	0.5
Overtravel, Min mm 0.8 Operating position Distance from mounting hole, mm	14.5 ± 0.8

2. Self-standing solder terminal

Pin plunger

CAD Data

With guard
With opposite side guard

*The height from the center of mounting hole to the edge of guard.

NOTES

1. Fastening of the switch body
1) Use flat filister head M2.3 screws to mount switches with less than a $0.29 \mathrm{~N} \cdot \mathrm{~m}$ torque. Use of screws washers or adhesive lock is recommended to prevent loosening of the screws.
2) Check insulation distance between ground and each terminal.
3) When the operation object is in the free position, force should not be applied directly to the actuator or pin plunger from vertical direction to the switch.
4) In setting the movement after operation, the over-travel should be set more than 70% as a standard. Setting the movement at less than 70% of O.T. may cause troubles such as miscontact and welding due to small contact force of the switch.
5) For a lever type, the force from the reverse and side to the operation direction should not be applied.

2. Soldering operations

Manual soldering should be accomplished within 3 seconds with max. $350^{\circ} \mathrm{C}$ iron.
Care should be taken not to apply force to the terminals during soldering.
Terminal portions must not be moved in min. 1 minute after soldering.
Also no tensile strength of lead wires should be applied to terminals.

3. Selection of the switch

When specifying the switch, allow $\pm 20 \%$ to the listed operating characteristics.

4. Environment

Avoid using the switches in the following conditions;

- In corrosive gases, such as silicon gas
- In a dusty environment

5. Cautions regarding use

When switching low-level circuits (6V DC $5 \mathrm{~mA}, 12 \mathrm{~V}$ DC $2 \mathrm{~mA}, 24 \mathrm{~V}$ DC 1 mA), AV, AV3/AVT3, AVL3 Au clad contact type switches are recommended. When used to switch inductive loads (relays, solenoids, buzzers, etc.), it is recommended that a proper spark quench circuit is inserted in the switch to prevent contact faults caused by electric arcs. Care should be taken that occurrence in AC load possibly shorten the expected life.
6. Quality check under actual loading conditions
To assure reliability, check the switch under actual loading conditions. Avoid any situation that may adversely affect switching performance.

