Panasonic ideas for life

1.0GHz 2 Form C RELAY

FEATURES

mm inch (Impedance $50 \Omega, \sim 1.0 \mathrm{GHz}$)

- Insertion loss; Max. 0.3dB
- Isolation; Min. 20dB

Min. 30dB

- V.S.W.R.; Max. 1.2

RoHS Directive compatibility information http://www.nais-e.com/

1. High frequency characteristics
(Between open contacts)
(Between contact sets)
2. Surface mount terminal

This relay is a surface-mounted model with excellent high-frequency properties. In addition, it can use a microstrip line in the base circuit design which spares the labor of machining the base.
3. Low profile small type
$9.7(\mathrm{~W}) \times 14.7(\mathrm{~L}) \times 5.9(\mathrm{H}) \mathrm{mm}$
$.382(\mathrm{~W}) \times .579(\mathrm{~L}) \times .232(\mathrm{H})$ inch
4. High sensitivity: $\mathbf{1 4 0} \mathbf{~ m W}$ nominal operating power
5. High contact reliability Electrical life: Min. 10^{7} (10mA 10V DC)

TYPICAL APPLICATIONS

- Measurement instruments

Oscilloscope attenuator circuit

SPECIFICATIONS

Contact

Arrangement			2 Form C
Contact material			Gold-clad silver alloy
Initial contact resistance (By voltage 6V DC 1A)			Max. $75 \mathrm{~m} \Omega$
Rating	Contact rating (resistive)		10 mA 10 V DC 1 A 30 V DC
	Contact carrying power		Max. 3W (at 1.0GHz, impedance 50Ω, V.S.W.R. max.1.2)
	Max. switching voltage		30 V DC
	Max. switching current		1A
High frequency characteristics (~1GHz, Impedance 50Ω) (Initial)	Isolation	Between open contacts	Min. 20dB
		Between contact sets	Min. 30dB
	Insertion loss		Max. 0.3dB
	V.S.W.R.		Max. 1.2
	Input power		$\begin{gathered} \text { Max. 3W (at 1.0GHz, } \\ \text { impedance } 50 \Omega, \\ \text { V.S.W.R. max.1.2) } \\ \hline \end{gathered}$
Nominal operating power	Single side stable		$\begin{gathered} 140 \mathrm{~mW}(1.5 \text { to } 12 \mathrm{~V}) \\ 200 \mathrm{~mW}(24 \mathrm{~V}) \\ 300 \mathrm{~mW}(48 \mathrm{~V}) \end{gathered}$
	1 coil latching		$\begin{gathered} 70 \mathrm{~mW}(1.5 \text { to } 12 \mathrm{~V}) \\ 100 \mathrm{~mW}(24 \mathrm{~V}) \end{gathered}$
	2 coil latching		$\begin{gathered} 140 \mathrm{~mW}(1.5 \text { to } 12 \mathrm{~V}) \\ 200 \mathrm{~mW}(24 \mathrm{~V}) \\ \hline \end{gathered}$
Expected life (min. operation)	Mechanical (at 180 cpm)		10^{8}
	Electrical	10 mA 10 V DC (resistive load)	10^{7}
	(at 20 cpm)	1A 30 V DC (resistive load)	10^{5}

Characteristics

Initial insulation resistance *1			Min. $100 \mathrm{M} \Omega$ (at 500 V DC)
Initial breakdown voltage *2	Between open contacts		750 Vrms for 1 min.
	Between contact sets		1,000 Vrms for 1 min .
	Between contact and coil		1,000 Vrms for 1 min .
	Between contact and earth terminal		1,000 Vrms for 1 min .
Operate time [Set time] ${ }^{* 3}$ (at $20^{\circ} \mathrm{C}$)			Max. 4ms (Approx. 2ms) [Max. 4ms (Approx. 2ms)]
Release time (without diode) [Reset time] *3 (at $20^{\circ} \mathrm{C}$)			Max. 4ms (Approx. 1ms) [Max. 4ms (Approx. 2ms)]
Temperature rise (at $20^{\circ} \mathrm{C}$) *4			Max. $60^{\circ} \mathrm{C}$
Shock resistance		Functional *5	Min. $500 \mathrm{~m} / \mathrm{s}^{2}$
		Destructive *6	Min. $1,000 \mathrm{~m} / \mathrm{s}^{2}$
Vibration resistance		Functional *7	10 to 55 Hz at double amplitude of 3 mm
		Destructive	10 to 55 Hz at double amplitude of 5 mm
Conditions for operation, transport and storage *8 (Not freezing and condensing at low temperature)		Ambient temp	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ & -40^{\circ} \mathrm{F} \text { to }+185^{\circ} \mathrm{F} \end{aligned}$
		Humidity	5 to 85\% R.H.
Unit weight			Approx. 2g.07oz

Remarks

* Specifications will vary with foreign standards certification ratings.
*1 Measurement at same location as "Initial breakdown voltage" section.
${ }^{*}$ Detection current: 10 mA
${ }^{*} 3$ Nominal operating voltage applied to the coil, excluding contact bounce time
${ }^{* 4}$ By resistive method, nominal voltage applied to the coil: 3W contact carrying
power: at 1.0 GHz , Impedance 50Ω, V.S.W.R. Max.1.2
${ }^{*} 5$ Half-wave pulse of sine wave: 11 ms , detection time: $10 \mu \mathrm{~s}$.
${ }^{*} 6$ Half-wave pulse of sine wave: 6 ms
*7 Detection time: $10 \mu \mathrm{~s}$
*8 Refer to 6. Conditions for operation, transport and storage conditions in NOTES
(Page 27).

ORDERING INFORMATION

Note: Packing style; Nil: Tube packing 40 pcs. in an inner package, 1,000 pcs. in an outer package Z: Tape and reel packing 500 pcs. in an inner package, 1,000 pcs. in an outer package

TYPES ANE COIL DATA (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)

- Single side stable type

Part No.	Nominal voltage, V DC	Pick-up voltage, V DC (max.) (initial)	Drop-out voltage, V DC (min.)(initial)	Coil resistance, Ω ($\pm 10 \%$)	Nominal operating current, mA $\text { (} \pm 10 \%)$	Nominal operating power, mW	Max. allowable voltage, V DC
ARA200A1H(Z)	1.5	1.125	0.15	16	93.8	140	2.25
ARA200A03(Z)	3	2.25	0.3	64.3	46.7	140	4.5
ARA200A4H(Z)	4.5	3.375	0.45	145	31	140	6.75
ARA200A05(Z)	5	3.75	0.5	178	28.1	140	7.5
ARA200A06(Z)	6	4.5	0.6	257	23.3	140	9
ARA200A09(Z)	9	6.75	0.9	579	15.5	140	13.5
ARA200A12(Z)	12	9	1.2	1,028	11.7	140	18
ARA200A24(Z)	24	18	2.4	2,880	8.3	200	36
ARA200A48(Z)	48	36	4.8	7,680	6.3	300	57.6

- 1 coil latching type

Part No.	Nominal voltage, V DC	Set voltage, V DC (max.) (initial)	Reset voltage, V DC (max.) (initial)	Coil resistance, $\Omega(\pm 10 \%)$	Nominal operating current, mA $(\pm 10 \%)$	Nominal operating power, mW	Max. allowable voltage, V DC
ARA210A1H(Z)	1.5	1.125	1.125	32	46.9	70	2.25
ARA210A03(Z)	3	2.25	2.25	128.6	23.3	70	4.5
ARA210A4H(Z)	4.5	3.375	3.375	289.3	15.6	70	6.75
ARA210A05(Z)	5	3.75	3.75	357	14	70	7.5
ARA210A06(Z)	6	4.5	4.5	514	11.7	70	9
ARA210A09(Z)	9	6.75	6.75	1,157	7.8	70	13.5
ARA210A12(Z)	12	9	9	2,057	5.8	70	18
ARA210A24(Z)	24	18	18	5,760	4.2	100	36

- 2 coil latching type

Part No.	Nominal voltage, V DC	Set voltage, V DC (max.) (initial)	Reset voltage V DC (max.) (initial)	Coil resistance, $\Omega(\pm 10 \%)$	Nominal operating current, mA $\text { (} \pm 10 \%)$	Nominal operating power, mW	Max. allowable voltage, V DC
ARA220A1H(Z)	1.5	1.125	1.125	16	93.8	140	2.25
ARA220A03(Z)	3	2.25	2.25	64.3	46.7	140	4.5
ARA220A4H(Z)	4.5	3.375	3.375	145	31	140	6.75
ARA220A05(Z)	5	3.75	3.75	178	28.1	140	7.5
ARA220A06(Z)	6	4.5	4.5	257	23.3	140	9
ARA220A09(Z)	9	6.75	6.75	579	15.5	140	13.5
ARA220A12(Z)	12	9	9	1,028	11.7	140	18
ARA220A24(Z)	24	18	18	2,880	8.3	200	36

Schematic (Top view) 1 coil latching

(Reset condition)

Tolerance: $\pm 0.3 \pm .012$

Suggested Mounting Pads (Top view) Single side stable

$$
2 \text { coil latching }
$$

Tolerance: $\pm 0.1 \pm .004$

REFERENCE DATA

1-(1). High frequency characteristics (Impedance 50 Ω)
Sample: ARA200A12
Measuring method: Measured with HP network analyzer (HP8753C).

1-(2). High frequency characteristics (Impedance 75 ${ }^{\text {) }}$
Sample: ARA200A12
Measuring method: Measured with HP network analyzer (HP8753C).

- V.S.W.R.

- Insertion loss

- Isolation

NOTES

1. Coil operating power

Pure DC current should be applied to the coil. The wave form should be rectangular. If it includes ripple, the ripple factor should be less than 5%. However, check it with the actual circuit since the characteristics may be slightly different. The nominal operating voltage should be applied to the coil for more than 10 ms to set/reset the latching type relay.

2. Coil connection

When connecting coils, refer to the wiring diagram to prevent mis-operation or malfunction.

3. External magnetic field

Since RA relays are highly sensitive polarized relays, their characteristics will be affected by a strong external magnetic field. Avoid using the relay under that condition.

4. Cleaning

For automatic cleaning, the boiling method is recommended. Avoid ultrasonic cleaning which subjects the relays to high frequency vibrations, which may cause the contacts to stick.
It is recommended that alcoholic solvents be used.

5. Soldering

Manual soldering shall be performed under following condition.
Tip temperature: $280^{\circ} \mathrm{C}$ to $300^{\circ} \mathrm{C} 536^{\circ} \mathrm{F}$ to $572^{\circ} \mathrm{F}$.
Wattage: 30 to 60W
Soldering time: within 5s
In case of automatic soldering, the following conditions should be observed

1) Position of measuring temperature Surface of PC board where relay is mounted.

2) IR (infrared reflow) soldering method

$$
\begin{array}{ll}
\mathrm{T}_{1}=150 \text { to } 180^{\circ} \mathrm{C} 302 \text { to } 356^{\circ} \mathrm{F} & \mathrm{t}_{1}=60 \text { to } 120 \mathrm{sec} . \\
\mathrm{T}_{2}=230^{\circ} \mathrm{C} 446^{\circ} \mathrm{F} \text { and higher } & \mathrm{t}_{2}=\text { Within } 30 \mathrm{sec} . \\
\mathrm{T}_{3}=\text { Within } 250^{\circ} \mathrm{C} 482^{\circ} \mathrm{F} &
\end{array}
$$

$$
\mathrm{T}_{3}=\text { Within } 250^{\circ} \mathrm{C} 482^{\circ} \mathrm{F}
$$

Temperature rise of relay itself may vary according to the mounting level or the heating method of reflow equipment.
Therefore, please set the temperature of soldering portion of relay terminal and the top surface of the relay case not to exceed the above mentioned soldering condition.
It is recommended to check the temperature rise of each portion under actual mounting condition before use. The soldering earth shall be performed by manual soldering.

6. Conditions for operation, transport

 and storage conditions1) Ambient temperature, humidity, and atmospheric pressure during usage, transport, and storage of the relay:
(1) Temperature:
-40 to $+70^{\circ} \mathrm{C}-40$ to $+158^{\circ} \mathrm{F}$
(2) Humidity: 5 to 85% RH
(Avoid freezing and condensation.) The humidity range varies with the temperature. Use within the range indicated in the graph below.
(3) Atmospheric pressure: 86 to 106 kPa Temperature and humidity range for usage, transport, and storage:

2) Condensation

Condensation forms when there is a sudden change in temperature under high temperature and high humidity conditions. Condensation will cause deterioration of the relay insulation.

3) Freezing

Condensation or other moisture may freeze on the relay when the temperature is lower than $0^{\circ} \mathrm{C} 32^{\circ}$. This causes problems such as sticking of movable parts or operational time lags.
4) Low temperature, low humidity environments
The plastic becomes brittle if the relay is exposed to a low temperature, low humidity environment for long periods of time.

