tyCロ
Electronics

AXICOM

The Best Relaytion

IM Relay

www．DataSheet．in

Slim line AND low profile
2 pole telecom/signal relay, polarized
Through Hole Types (THT), standard version
with 5.08 mm , narrow version with 3.2 mm between the terminal rows
or
Surface Mount Type (SMT)
Relay types: non-latching with 1 coil latching with 1 coil

Features

- Telecom/signal relay (dry circuit, test access, ringing)
- Slim line $10 \times 6 \mathrm{~mm}, 0.39 \times 0.24$ inch
- Low profile $5.65 \mathrm{~mm}, 0.222$ inch
- Minimum board-space $60 \mathrm{~mm}^{2}$
- Switching current 2 A
- 2 changeover contacts (2 form C / DPDT)
- Bifurcated contacts, gold plated
- High sensitivity results in low nominal power consumption 140 mW for non latching 100 mW for latching version
- High surge capability ($1.2 / 50 \mu \mathrm{~s}$ and $10 / 700 \mu \mathrm{~s}$) meets Bellcore GR 1089, FCC Part 68 and ITU-T K20
$\geq 1500 \mathrm{~V}$ between open contacts
$\geq 2500 \mathrm{~V}$ between coil and contacts
- High mechanical shock resistance up to 300 G functional up to 500 G survival

Typical applications:

- Communications equipment

Linecard application - analog, ISDN, xDSL, PABX
Voice over IP

- Office and business equipment
- Measurement and control equipment
- Consumer electronics

Set top boxes, HiFi

- Medical equipment

Options:
Surge capability $\geq 2500 \mathrm{~V}$ between open contacts

Insulation category:
Supplementary insulation according IEC/EN 60950 and UL 1950

Working voltage
Mains supply voltage
Repetitive peak voltage
Pollution degree:
Flammability classification:
Maximum operating temperature:
$\leq 300 \mathrm{Vrms}$
SMT: 250 Vrms
THT: 200 Vrms 2500 V
External: 2
Internal: 1
V-0

UL 508 File No. E111441
UL 1950 3rd ed.

CECC 16501-003

CECD
QC 160501-CH0001

IEC/EN60950 IEC Ref. Cert. No. 1176

Dimensions

	IM THT Standard		IM THT Narrow		IM SMT Gull Wings		IM SMT J-Legs	
	mm	inch	mm	inch	mm	inch		
L	10 ± 0.08	0.393 ± 0.003						
W	6 ± 0.08	0.236 ± 0.003	5.7 ± 0.3	0.224 ± 0.012	6 ± 0.08	0.236 ± 0.003	6 ± 0.08	0.236 ± 0.003
H	5.65-0.2	0.222-0.008	5.85-0.15	0.230-0.006	5.65-0.2	0.222-0.008	5.65-0.2	0.222-0.008
T	3.2	0.125	3.2	0.125	N/A	N/A	N/A	N/A
T1	N/A	N/A	N/A	N/A	7.5 ± 0.3	0.295 ± 0.011	2.8 ± 0.2	0.110 ± 0.007
T2	5.08 ± 0.1	0.200 ± 0.004	3.2 ± 0.1	0.126 ± 0.006	5.08 ± 0.1	0.200 ± 0.004	5.08 ± 0.1	0.200 ± 0.004
D1	3.2 ± 0.15	0.126 ± 0.006						
D2	2.2 ± 0.15	0.087 ± 0.006						
Tw	0.4	0.015	0.4	0.015	0.4	0.015	0.4	0.015
S	0.3 ± 0.05	0.011 ± 0.002	0.3 ± 0.05	0.011 ± 0.002	N/A	N/A	N/A	N/A

THT Version

SMT Version

Solder pad layout

View onto the component side of the PCB (top view)
View onto the component side of the PCB
(top view)

Terminal assignment

Relay - top view

Non-latching type, not energized condition

Latching type, 1 coil reset condition

Coil Data (values at $23^{\circ} \mathrm{C}$)						
Nominal voltage Unom Vdc	Operate Minimum voltage $U_{\text {I }}$ Vdc	ge range Maximum voltage $U_{\text {II }}$ Vdc	Release/ reset voltage Minimum Vdc	Nominal power consumption mW	Resistance $\Omega / \pm 10 \%$	Relay code
non-latching 1 coil						
1.5	1.13	3.4	0.15	140	16	IM00
3	2.1	6.8	0.30	140	64	IM01
4.5	3.15	10.3	0.45	140	145	IM02
5	3.5	11.4	0.50	140	178	IM03
6	4.2	13.7	0.60	140	257	IM04
9	6.3	20.4	0.90	140	574	IM05
12	8.4	27.3	1.20	140	1028	IM06
24	16.8	45.6	2.40	200	2880	IM07
latching 1 coil						
1.5	1.13	4.1	-1.13	100	23	IM40
3	2.25	8.1	-2.25	100	90	IM41
4.5	3.38	12.1	-3.38	100	203	IM42
5	3.75	13.5	-3.75	100	250	IM43
6	4.5	16.2	-4.50	100	360	IM44
9	6.75	24.2	-6.75	100	810	IM45
12	9.00	32.3	-9.00	100	1440	IM46
24	18.00	41.9	- 18.00	200	2880	IM47

Further coil versions are available on request.
$U_{1}=\quad$ Minimum voltage at $23^{\circ} \mathrm{C}$ after pre-energizing with nominal voltage without contact current
$U_{\text {II }}=\quad$ Maximum continous voltage at 23°
The operating voltage limits U_{1} and $U_{\text {II }}$ depend on
the temperature according to the formula:

$U_{\text {Itamb }}=$	$\begin{aligned} & \mathrm{K}_{1} \cdot \mathrm{U}_{1} 23^{\circ} \mathrm{C} \\ & \text { and } \end{aligned}$	
$U_{\text {II tamb }}=$	$\mathrm{K}_{11} \cdot \mathrm{U}_{11} 23^{\circ} \mathrm{C}$	
$t_{\text {amb }}$	= Ambient temperature	
$U_{\text {I tamb }}$	$=$ Minimum voltage at ambient temperature, $\mathrm{t}_{\mathrm{amb}}$	
$U_{\text {II tamb }}$	$=$ Maximum voltage at ambient temperature, $\mathrm{t}_{\text {amb }}$	
$k_{1}, k_{\text {\\| }}$	= Factors (dependent on temperature), see diagram	

Contact Data

Number of contacts and type	2 changeover contacts
Contact assembly	Bifurcated contacts
Contact material	Palladium-ruthenium, gold-covered
Limiting continuous current at max. ambient temperature	2 A
Maximum switching current	2 A
Maximum swichting voltage	220 Vdc
	250 Vac
Maximum switching capacity	$60 \mathrm{~W}, 62.5 \mathrm{VA}$
Thermoelectric potential	< $10 \mu \mathrm{~V}$
Initial contact resistance / measuring condition: $10 \mathrm{~mA} / 20 \mathrm{mV}$	$<50 \mathrm{~m} \Omega$
Electrical endurance at contact application 0	
($\leq 30 \mathrm{mV} / \leq 10 \mathrm{~mA}$)	min. 2.5×10^{6} operations
cable load open end	min. 2.0×10^{6} operations
Resistive load at $125 \mathrm{Vdc} / 0.24 \mathrm{~A}-30 \mathrm{~W}$	min. 5×10^{5} operations
at $220 \mathrm{Vdc} / 0.27 \mathrm{~A}-60 \mathrm{~W}$	min. 1×10^{5} operations
at $250 \mathrm{Vac} / 0.25 \mathrm{~A}-62.5 \mathrm{VA}$	min. 1×10^{5} operations
at $30 \mathrm{Vdc} / 1 \mathrm{~A}-30 \mathrm{~W}$	min. 5×10^{5} operations
at $30 \mathrm{Vdc} / 2 \mathrm{~A}-60 \mathrm{~W}$	min. 1×10^{5} operations
Mechanical endurance	typ. 10^{8} operations
UL/CSA ratings	$30 \mathrm{Vdc} / 2 \mathrm{~A}$
	$220 \mathrm{Vdc} / 0.27 \mathrm{~A}$
	$120 \mathrm{Vdc} / 0.5 \mathrm{~A}$
	$250 \mathrm{Vac} / 0.25 \mathrm{~A}$

Insulation	Standard Version	High Dielectric Version
Insulation resistance at 500 VDC	$>10^{9} \Omega$	$>10^{9} \Omega$
Dielectric test voltage (1 min) between coil and contacts between adjacent contact sets between open contacts	$\begin{aligned} & 1800 \text { Vrms } \\ & 1000 \text { Vrms } \\ & 1000 \text { Vrms } \end{aligned}$	$\begin{aligned} & 1800 \text { Vrms } \\ & 1800 \text { Vrms } \\ & 1500 \text { Vrms } \end{aligned}$
Surge voltage resistance according to Bellcore TR-NWT-001089 (2 / $10 \mu \mathrm{~s}$) between coil and contacts between adjacent contact sets between open contacts according to FCC 68 ($10 / 160 \mu \mathrm{~s}$) between coil and contacts between adjacent contact sets between open contacts	$\begin{aligned} & 2500 \mathrm{~V} \\ & 1500 \mathrm{~V} \\ & 1500 \mathrm{~V} \\ & 2500 \mathrm{~V} \\ & 1500 \mathrm{~V} \\ & 1500 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 2500 \mathrm{~V} \\ & 2500 \mathrm{~V} \end{aligned}$

High Frequency Data

Capacitance between coil and contacts between adjacent contact sets between open contacts	max. 2 pF
max. 2 pF	
max. 1 pF	
RF Characteristics	$-37.0 \mathrm{~dB} /-18.8 \mathrm{~dB}$
Isolation at $100 / 900 \mathrm{MHz}$	$-0.03 \mathrm{~dB} /-0.33 \mathrm{~dB}$
Insertion loss at $100 / 900 \mathrm{MHz}$	$1.06 / 1.49$
V.S.W.R. at $100 / 900 \mathrm{MHz}$	

[^0]General data

Operate time at $U_{\text {nom }}$ typ. / max.	$1 \mathrm{~ms} / 3 \mathrm{~ms}$
Reset time (latching) at $U_{\text {nom }}$, typ. / max.	$1 \mathrm{~ms} / 3 \mathrm{~ms}$
Release time without diode in parallel (non-latching), typ. / max.	$1 \mathrm{~ms} / 3 \mathrm{~ms}$
Release time with diode in parallel (non-latching), typ. / max.	$3 \mathrm{~ms} / 5 \mathrm{~ms}$
Bounce time at closing contact, typ. / max.	$1 \mathrm{~ms} / 5 \mathrm{~ms}$
Maximum switching rate without load	50 operations/s
Ambient temperature	$-40^{\circ} \mathrm{C} . . .85^{\circ} \mathrm{C}$
Thermal resistance	$<150 \mathrm{~K} / \mathrm{W}$
Maximum permissible coil temperature	$125^{\circ} \mathrm{C}$
Vibration resistance (function)	20 G
Shock resistance, half sinus, 11 ms	10 to 1000 Hz
half sinus, 0.5 ms	50 G (function)
Degree of protection	500 G (damage)
Needle flame test	immersion cleanable, IP 67
Mounting position	application time $20 \mathrm{~s}, \mathrm{no} \mathrm{burning} \mathrm{and} \mathrm{glowing}$
Processing information	any
Weight (mass)	Ultrasonic cleaning is not recommended
Resistance to soldering heat	max. 0.75 g

All data refers to $23^{\circ} \mathrm{C}$ unless otherwise specified.

Recommended soldering conditions

Soldering conditions according CECC 00802

Packing

Tube for THT version-50 relays per tube, 1000 relays per box

Tape and reel for SMT version-1'000 relays / reel, 1'000 or 5'000 relays / box

Reel dimension

Ordering Information

Relay Code	Tyco Part Number	Relay Code	Tyco Part Number
IMOOGR	3-1462037-7	IM07TS	3-1462037-0
IMOOJR	3-1462037-9	IM07NS	1-1462038-7
IMOOTS	3-1462037-5	IM40GR	5-1462037-1
IMOONS	1-1462038-0	IM40JR	5-1462037-2
IM01GR	0-1462037-1	IM40TS	5-1462037-0
IM01CGR	0-1462038-4	IM40NS	1-1462038-8
IM01JR	4-1462037-0	IM41GR	5-1462037-4
IM01TS	0-1462037-4	IM41JR	5-1462037-5
IM01NS	1-1462038-1	IM41TS	5-1462037-3
IM02GR	0-1462037-9	IM41NS	1-1462038-9
IM02CGR	0-1462038-1	IM42GR	3-1462037-1
IM02JR	1-1462037-1	IM42JR	5-1462037-7
IM02TS	1-1462037-3	IM42TS	5-1462037-6
IMO2NS	1-1462038-2	IM42NS	2-1462038-0
IM03GR	1-1462037-4	IM43GR	5-1462037-9
IM03CGR	0-1462038-2	IM43JR	6-1462037-0
IM03JR	1-1462037-6	IM43TS	5-1462037-8
IM03TS	1-1462037-8	IM43NS	2-1462038-1
IM03NS	1-1462038-3	IM44GR	6-1462037-2
IM04GR	4-1462037-2	IM44JR	6-1462037-3
IM04JR	4-1462037-4	IM44TS	6-1462037-1
IM04TS	4-1462037-1	IM44NS	2-1462038-2
IMO4NS	1-1462038-4	IM45GR	6-1462037-4
IM05GR	3-1462037-4	IM45JR	6-1462037-5
IM05CGR	0-1462038-3	IM45TS	3-1462037-2
IM05JR	4-1462037-5	IM45NS	2-1462038-3
IM05TS	2-1462037-2	IM46GR	6-1462037-7
IM05NS	1-1462038-5	IM46JR	6-1462037-8
IM06GR	2-1462037-3	IM46TS	6-1462037-6
IM06CGR	9-1462037-9	IM46NS	2-1462038-4
IM06JR	4-1462037-6	IM47GR	7-1462037-0
IM06TS	2-1462037-7	IM47JR	7-1462037-1
IM06NS	1-1462038-6	IM47TS	6-1462037-9
IM07GR	4-1462037-7	IM47NS	2-1462038-5
IM07JR	4-1462037-8		

[^1]
IM Relays

$4^{\text {th }}$ generation slim line - low profile polarized 2 c/o telecom relay with bifurcated contacts, available as non latching or latching relay with 1 coil. Nominal voltage range from 1.5 ... 24 V , coil power consumption of 140 ... 200 mW , latching relays with 1 coil 100 mW . The IM relay is available as through hole and surface mount type (J-Legs and Gull Wings) and capable to switch loads up to $60 \mathrm{~W} / 62,5 \mathrm{VA}$. Dielectric strength fulfills the Bellcore requirements according GR 1089 ($2,5 \mathrm{kV}-$ $2 / 10 \mu \mathrm{~s})$ and FCC part $68(1,5 \mathrm{kV}-10 / 160 \mu \mathrm{~s})$. The IM is CECC/ IECQ approved and certified in accordance with IEC/EN 60950 and UL1950. Dimensions approx. $10 \times 6 \mathrm{~mm}$ board space and 5.65 mm height.

P2 Relays

$3^{\text {rd }}$ generation polarized 2 c/o telecom relay with bifurcated contacts, available as non latching or latching relay with 1 or 2 coils. Nominal voltage range from $3 \ldots 24 \mathrm{~V}$, coil power consumption 140 mW , latching relays with 1 coil 70 mW . The P 2 relay is available as through hole or surface mount type and capable to switch currents up to 5 A . Dielectric strength fulfills the Bellcore requirements according GR $1089(2,5 \mathrm{kV}-2 / 10 \mu \mathrm{~s})$ and FCC part $68(1,5 \mathrm{kV}-10 / 160 \mu \mathrm{~s})$. Dimensions approx. $15 \times 7,5 \mathrm{~mm}$ board space and 10 mm height.

FX Relays

$3^{\text {rd }}$ generation polarized $2 \mathrm{c} / \mathrm{o}$ telecom relay with bifurcated contacts, available as non latching or latching relay with 1 coil. Nominal voltage range from $3 \ldots 48 \mathrm{~V}$, coil power consumption of 80 ... 260 mW for the high sensitive version, 140... 300 mW for the standard version, latching relays with 1 coil 100 mW . The FX2 relay is available as through hole type and capable to switch loads up to $60 \mathrm{~W} / 62,5 \mathrm{VA}$. Dielectric strength fulfills the Bellcore requirements according GR $1089(2,5 \mathrm{kV}-2 / 10 \mu \mathrm{~s})$ and FCC part $68(1,5 \mathrm{kV}-10 / 160 \mu \mathrm{~s})$. The FX2 is CECC/IECQ approved and certified in accordance with IEC/EN 60950 and UL1950. Dimensions approx. $15 \times 7,5 \mathrm{~mm}$ board space and $10,7 \mathrm{~mm}$ height.

FT2 / FU2 Relays

$3^{\text {rd }}$ generation non polarized, non latching $2 \mathrm{c} / \mathrm{o}$ telecom relay with bifurcated contacts. Nominal voltage range from 3 ... 48 V , coil power consumption 200 ... 300 mW . Most sensitive 48 V relay. Available as through hole and surface mount type. Dielectric strength fulfills the Bellcore requirements according GR 1089 ($2,5 \mathrm{kV}-2 / 10 \mu \mathrm{~s}$) and FCC part $68(1,5 \mathrm{kV}-10 / 160 \mu \mathrm{~s})$. The FT2/FU2 is CECC/IECQ approved and certified in accordance with IEC/EN 60950 and UL1950. Dimensions approx. $15 \times 7,5 \mathrm{~mm}$ board space and 10 mm height.

FP2 Relays

$3^{\text {rd }}$ generation polarized $2 \mathrm{c} / \mathrm{o}$ telecom relay with bifurcated contacts, available as non latching or latching relay with 1 or 2 coils. Nominal voltage range from 3 ... 48 V , coil power consumption of 80 ... 260 mW for the high sensitive version, $140 \ldots 300 \mathrm{~mW}$ for the standard version, latching relays with 1 coil 100 mW .. The FP2 relay is available as through hole type and capable to switch loads up to 30 W/62,5 VA. Dielectric strength fulfills FCC part 68 (1,5 kV - 10 / $160 \mu \mathrm{~s}$). The FP2 is CECC/IECQ approved. Dimensions approx. $14 \times 9 \mathrm{~mm}$ board space and 5 mm height.

MT2 / MT4

$2^{\text {nd }}$ generation non polarized, non latching $2 \mathrm{c} / \mathrm{o}$ and $4 \mathrm{c} / \mathrm{o}$ telecom and signal relay with bifurcated contacts. Nominal voltage range from 4.5 ... 48 V , coil power consumption 150/200/300/400 and 550 mW , and 300 mW (MT4). Dielectric strength fulfills the
requirements according FCC part $68(1,5 \mathrm{kV}-10 / 160 \mu \mathrm{~s})$ for both and the Bellcore requirements according GR $1089(2,5 \mathrm{kV}-2 / 10 \mu \mathrm{~s})$ the MT4 only.
Dimensions MT2 approx. $20 \times 10 \mathrm{~mm}$ board space and 11 mm height,
MT4 approx. $20 \times 15 \mathrm{~mm}$ board space and 11 mm height.

D2n Relays

$2^{\text {nd }}$ generation non polarized $2 \mathrm{c} / \mathrm{o}$ relay for telecom and various other applications. Nominal voltage range from $3 \ldots 48 \mathrm{~V}$, coil power consumption from $150 \ldots 500 \mathrm{~mW}$. The D2n relay is capable to switch currents up to 3 A . Dielectric strength fulfills the requirements according FCC part $68(1,5 \mathrm{kV}-10 / 160 \mu \mathrm{~s})$. Dimensions approx. $20 \times 10 \mathrm{~mm}$ board space and $11,5 \mathrm{~mm}$ height.

P1 Relays

Extremely sensitive, polarized $1 \mathrm{c} / \mathrm{o}$ relay with bifurcated contacts for a wide range of applications, available as non latching or latching relay with 1 or 2 coils. Nominal voltage range from 3 ... 24 V , coil power consumption 65 mW , latching relays with 1 coil 30 mW . The P1 relay is available as through hole or surface mount type and capable to switch currents up to 1 A . Dielectric strength fulfills the requirements according FCC part $68(1,5 \mathrm{kV}-10 / 160 \mu \mathrm{~s})$. Dimensions approx. $13 \times 7,6 \mathrm{~mm}$ board space and 7 mm height for THT or 8 mm height for SMT version.

W11 Relays

Low cost, non polarized $1 \mathrm{c} / \mathrm{o}$ relay for various applications. Nominal voltage range from 3 ... 24 V , coil power consumption 450 mW , sensitive versions 200 mW . The W11 relay is capable to switch currents up to 3 A. Dielectric strength 1000 Vrms. Dimensions approx. $15,6 \times 10,6 \mathrm{~mm}$ board space and $11,5 \mathrm{~mm}$ height.

Reed Relays

High sensitive, non polarized relay for telecom and various other applications, available with $1 \mathrm{n} / \mathrm{o}, 2 \mathrm{n} / \mathrm{o}$ or 1c/o contacts. Nominal voltage range from 5 ... 24 V , coil power consumption $50 . .280 \mathrm{~mW}$ for $1 \mathrm{n} / \mathrm{o}$ and $125 \ldots 280 \mathrm{~mW}$ for $2 \mathrm{n} / \mathrm{o}$ or $1 \mathrm{c} / \mathrm{o}$ versions. Reedrelays are available in DIP or SIL housing and capable to switch currents up to 0,5 A. Integrated diode and/or electrostatic shield optional. Dielectric strength 1500 Vdc. Dimensions approx. 19,3 $\times 7 \mathrm{~mm}$ board space and 5 ... $7,5 \mathrm{~mm}$ height for DIP or $19,8 \times 5 \mathrm{~mm}$ board space and $7,8 \mathrm{~mm}$ height for SIL version.

Cradle Relays

Extremely reliable and mature relay family of $1^{\text {st }}$ generation for various signal switching applications. Available as non polarized, polarized / latching and relay with AC coil. The benefit is the possibility of combining various contact sets from 1 up to 6 poles, single and bifurcated contacts, different contact materials with a coil voltage range from $1,5 \mathrm{Vdc}$ to 220 Vac . Cradle relays are available as dust protected and hermetically sealed versions, with plug in or solder terminals and are capable to switch currents up to 5 A . Forcibly guided (linked) contact sets optional. Dielectric strength 500 Vrms. Dimensions from approx. 19×24 to $19 \times 35 \mathrm{~mm}$ board space and 30 mm height.

Other Relays

We offer a variety of different relay families for maintenance and replacement purposes. These relays are up to 60 years old now, such as Card Relay SN (V23030 / V23031 series), Small General Purpose Relay (V23006 series), Small Polarized Relay (V23063 ... V23067 and V23163 ... V23167 series). Accessories like sockets, hold down springs, etc. optional.

AXICOM

Tyco Electronics AXICOM Ltd.
Seestrasse 295 -P.O. Box 220
CH-8804 Au-Wädenswil / Switzerland
Phone +4117829111
Fax+4117829080
E-mail: axicom@tycoelectronics.com

Tyco Electronics AMP GmbH
Paulsternstrasse 26
D-13629 Berlin / Germany
Phone +49 3038638260
Fax +49 3038638569
E-mail: axicom@tycoelectronics.com

Tyco Electronics EC Trutnov s.r.o.
Komenského 821
CZ-541 01 Trutnov / Czech Republic
E-mail: axicom@tycoelectronics.com

Tyco Electronics Corporation POB 3608,
Harrisburg, PA 17105, USA
Phone +1 800-522-6752

Copyright © Each Manufacturing Company .
A ll Datasheets cannot be modified without permission.

This datasheet has been dow nload from :
www.A IIDataSheet.com

100\% Free DataSheet Search Site.
Free Dow nload.
No Register.
Fast Search Sy stem.
www.A IIDataSheet.com

[^0]: * High Dielectric Version „C"

[^1]:

