ATV71HD55M3X
 variable speed drive ATV71-55kW 75HP 240V -graphic keypad

	Main	
	Range of product	Altivar 71
	Product or component type	Variable speed drive
	Product specific application	Complex, high-power machines
	Component name	ATV71
	Motor power kW	55 kW at 200... 240 V 3 phases
-	Motor power hp	75 hp at 200... 240 V 3 phases
	Motor cable length	$\begin{aligned} & <=100 \mathrm{~m} \text { shielded cable } \\ & <=200 \mathrm{~m} \text { unshielded cable } \end{aligned}$
	Power supply voltage	200... 240 V (-15... 10 \%)
	Network number of phases	3 phases
	Line current	173 A for 240 V 3 phases $55 \mathrm{~kW} / 75 \mathrm{hp}$ 200 A for 200 V 3 phases 55 kW / 75 hp
	Assembly style	With heat sink
	Variant	Reinforced version
	Apparent power	71.9 kVA at 240 V 3 phases $55 \mathrm{~kW} / 75 \mathrm{hp}$
	Prospective line Isc	<= $35 \mathrm{kA}, 3$ phases
	Nominal output current	221 A at 2.5 kHz 230 V 3 phases $55 \mathrm{~kW} / 75 \mathrm{hp}$
	Maximum transient current	332 A for 60 s 3 phases $55 \mathrm{~kW} / 75 \mathrm{hp}$ 365 A for 2 s 3 phases 55 kW / 75 hp
	Speed drive output frequency	0.1.. 500 Hz
	Nominal switching frequency	2.5 kHz
	Switching frequency	$2.5 . . .8 \mathrm{kHz}$ adjustable $2.5 \ldots 8 \mathrm{kHz}$ with derating factor
	Asynchronous motor control profile	ENA (Energy adaptation) system for unbalanced loads Flux vector control (FVC) with sensor (current vector) Sensorless flux vector control (SFVC) (voltage or current vector) Voltage/Frequency ratio (2 or 5 points)
	Type of polarization	No impedance for Modbus
Complementary		
Product destination	Asynchronous motors Synchronous motors	
Power supply voltage limits	170... 264 V	
Power supply frequency	$50 . . .60 \mathrm{~Hz}(-5 . . .5$ \%)	
Power supply frequency limits	$47.5 . .63 \mathrm{~Hz}$	
Speed range	1... 100 for asynchronous 1... 1000 for asynchronou 1... 50 for synchronous m	otor in open-loop mode, without speed feedback motor in closed-loop mode with encoder feedback r in open-loop mode, without speed feedback
Speed accuracy	+/- 0.01 \% of nominal sp with encoder feedback +/- 10% of nominal slip f	for 0.2 Tn to Tn torque variation in closed-loop mode 0.2 Tn to Tn torque variation without speed feedback
Torque accuracy	+/- 15% in open-loop mo +/-5 \% in closed-loop mod	without speed feedback with encoder feedback
Transient overtorque	170 \% of nominal motor 220 \% of nominal motor	que +/- 10% for 60 s every 10 minutes que +/- 10% for 2 s

Braking torque	< 150% with braking or hoist resistor 30 \% without braking resistor
Synchronous motor control profile	Vector control without speed feedback
Regulation loop	Adjustable PI regulator
Motor slip compensation	Adjustable Automatic whatever the load Not available in voltage/frequency ratio (2 or 5 points) Suppressable
Diagnostic	1 LED red presence of drive voltage
Output voltage	<= power supply voltage
Insulation	Electrical between power and control
Type of cable for mounting in an enclosure	With a NEMA Type1 kit: 3-strand UL 508 cable at $40^{\circ} \mathrm{C}$, copper $75^{\circ} \mathrm{C}$ PVC With an IP21 or an IP31 kit: 3-strand IEC cable at $40^{\circ} \mathrm{C}$, copper $70^{\circ} \mathrm{C}$ PVC Without mounting kit: 1 -strand IEC cable at $45^{\circ} \mathrm{C}$, copper $70^{\circ} \mathrm{C}$ PVC Without mounting kit: 1 -strand IEC cable at $45^{\circ} \mathrm{C}$, copper $90^{\circ} \mathrm{C}$ XLPE/EPR
Electrical connection	Al1-/AI1+, Al2, AO1, R1A, R1B, R1C, R2A, R2B, LI1...LI6, PWR terminal 2.5 mm^{2} / AWG 14 L1/R, L2/S, L3/T, U/T1, V/T2, W/T3 terminal $2 \times 100 \mathrm{~mm}^{2}$ PA, PB terminal $60 \mathrm{~mm}^{2}$ PC/-, PO, PA/+ terminal $2 \times 100 \mathrm{~mm}^{2}$
Tightening torque	Al1-/AI1+, Al2, AO1, R1A, R1B, R1C, R2A, R2B, LI1...LI6, PWR 0.6 N.m L1/R, L2/S, L3/T, U/T1, V/T2, W/T3 24 N.m / 212 lb.in PA, PB 12 N.m / $106 \mathrm{lb} . i n$ PC/-, PO, PA/+ 41 N.m / 360 lb.in
Supply	Internal supply for reference potentiometer (1 to 10 kOhm), $10.5 \mathrm{~V} \mathrm{DC}+/-5 \%$, <= 10 mA for overload and short-circuit protection Internal supply, 24 V DC , voltage limits $21 \ldots 27 \mathrm{~V}$, <= 200 mA for overload and short-circuit protection
Analogue input number	2
Analogue input type	Al1-/AI1+ bipolar differential voltage +/- 10 V DC, input voltage 24 V max, resolution 11 bits + sign Al2 software-configurable current $0 . . .20 \mathrm{~mA}$, impedance 242 Ohm, resolution 11 bits AI2 software-configurable voltage $0 . .10 \mathrm{~V}$ DC, input voltage 24 V max, impedance 30000 Ohm, resolution 11 bits
Input sampling time	Al1-/Al1+ $2 \mathrm{~ms},+/-0.5 \mathrm{~ms}$ for analog input(s) Al2 $2 \mathrm{~ms},+/-0.5 \mathrm{~ms}$ for analog input(s) LI1...LI5 $2 \mathrm{~ms},+/-0.5 \mathrm{~ms}$ for discrete input(s) LI6 (if configured as logic input) $2 \mathrm{~ms},+/-0.5 \mathrm{~ms}$ for discrete input(s)
Response time	$<=100 \mathrm{~ms}$ in STO (Safe Torque Off) AO1 2 ms , tolerance $+/-0.5 \mathrm{~ms}$ for analog output(s) R1A, R1B, R1C 7 ms , tolerance $+/-0.5 \mathrm{~ms}$ for discrete output(s) R2A, R2B 7 ms , tolerance $+/-0.5 \mathrm{~ms}$ for discrete output(s)
Absolute accuracy precision	$\mathrm{Al1-/Al1++/-0.6} \%$ for a temperature variation $60^{\circ} \mathrm{C}$ AI2 +/- 0.6% for a temperature variation $60^{\circ} \mathrm{C}$ $\mathrm{AO} 1+/-1 \%$ for a temperature variation $60^{\circ} \mathrm{C}$
Linearity error	Al1-/Al1+, Al2 +/- 0.15% of maximum value AO1 +/- 0.2 \%
Analogue output number	1
Analogue output type	AO1 software-configurable logic output $10 \mathrm{~V}<=20 \mathrm{~mA}$ AO1 software-configurable current $0 \ldots 20 \mathrm{~mA}$, impedance 500 Ohm, resolution 10 bits AO1 software-configurable voltage $0 . . .10 \mathrm{~V}$ DC, impedance 470 Ohm, resolution 10 bits
Discrete output number	2
Discrete output type	R1A, R1B, R1C configurable relay logic NO/NC, electrical durability 100000 cycles R2A, R2B configurable relay logic NO, electrical durability 100000 cycles
Minimum switching current	Configurable relay logic 3 mA at 24 V DC
Maximum switching current	R1, R2 on inductive load, 2 A at $250 \mathrm{~V} \mathrm{AC}, \cos$ phi $=0.4$, $R 1, R 2$ on inductive load, 2 A at $30 \mathrm{~V} \mathrm{DC}, \cos \mathrm{phi}=0.4$, R1, R2 on resistive load, 5 A at $250 \mathrm{VAC}, \cos p h i=1$, $\mathrm{R} 1, \mathrm{R} 2$ on resistive load, 5 A at $30 \mathrm{~V} \mathrm{DC}, \cos \mathrm{phi}=1$,
Discrete input number	7
Discrete input type	LI1...LI5: programmable 24 V DC with level 1 PLC, impedance: 3500 Ohm LI6: switch-configurable 24 V DC with level 1 PLC, impedance: 3500 Ohm LI6: switch-configurable PTC probe $0 . . .6$, impedance: 1500 Ohm PWR: safety input 24 V DC, impedance: 1500 Ohm conforming to[pace]ISO 13849-1 level d

Discrete input logic	LI1...LI5 negative logic (sink), > 16 V (state 0), < 10 V (state 0) LI1...LI5 positive logic (source), < 5 V (state 0), > 11 V (state 0) LI6 (if configured as logic input) negative logic (sink), > 16 V (state 0), < 10 V (state 0) LI6 (if configured as logic input) positive logic (source), < 5 V (state 0), > 11 V (state 0)
Acceleration and deceleration ramps	Automatic adaptation of ramp if braking capacity exceeded, by using resistor Linear adjustable separately from 0.01 to 9000 s S, U or customized
Braking to standstill	By DC injection
Protection type	Drive against exceeding limit speed Drive against input phase loss Drive break on the control circuit Drive input phase breaks Drive line supply overvoltage Drive line supply undervoltage Drive overcurrent between output phases and earth Drive overheating protection Drive overvoltages on the DC bus Drive short-circuit between motor phases Drive thermal protection Motor motor phase break Motor power removal Motor thermal protection
Insulation resistance	> 1 MOhm at 500 V DC for 1 minute to earth
Frequency resolution	Analog input $0.024 / 50 \mathrm{~Hz}$ Display unit 0.1 Hz
Communication port protocol	CANopen Modbus
Type of connector	1 RJ45 for Modbus on front face 1 RJ45 for Modbus on terminal Male SUB-D 9 on RJ45 for CANopen
Physical interface	2-wire RS 485 for Modbus
Transmission frame	RTU for Modbus
Transmission rate	$20 \mathrm{kbps}, 50 \mathrm{kbps}, 125 \mathrm{kbps}, 250 \mathrm{kbps}, 500 \mathrm{kbps}, 1 \mathrm{Mbps}$ for CANopen 4800 bps, 9600 bps, 19200 bps, 38.4 Kbps for Modbus on terminal 9600 bps, 19200 bps for Modbus on front face
Data format	8 bits, 1 stop, even parity for Modbus on front face 8 bits, odd even or no configurable parity for Modbus on terminal
Number of addresses	1... 127 for CANopen 1... 247 for Modbus
Method of access	Slave for CANopen
Marking	CE
Operating position	Vertical +/-10 degree
Depth	377 mm
Height	920 mm
Width	320 mm
Product weight	84 kg
Option card	CC-Link communication card Controller inside programmable card DeviceNet communication card Ethernet/IP communication card Fipio communication card I/O extension card Interbus-S communication card Interface card for encoder Modbus Plus communication card Modbus TCP communication card Modbus/Uni-Telway communication card Overhead crane card Profibus DP communication card Profibus DP V1 communication card

Dimensions with or without 1 Option Card (1)

Dimensions in mm

a	b	c	G	H	K	K1	K2	\varnothing
320	920	377	250	650	150	75	30	11.5

Dimensions in in.

a	b	c	G	H	K	K1	K2	\varnothing
12.60	36.22	14.84	9.84	25.59	5.90	2.95	1.18	0.45

(1) Option cards: I/O extension cards, communication cards or "Controller Inside" programmable card.

Dimensions with 2 Option Cards (1)

Dimensions in mm

a	c1	G	H	K	K1	K2	\varnothing
320	392	250	650	150	75	30	11.5

Dimensions in in.

a	C1	G	H	K	K1	K2	\varnothing
12.60	15.43	9.84	25.59	5.90	2.95	1.18	0.45

(1) Option cards: I/O extension cards, communication cards or "Controller Inside" programmable card.

Clearance

These drives can be mounted side by side, observing the following mounting recommendations:

Specific Recommendations for Mounting the Drive in an Enclosure

Ventilation

To ensure proper air circulation in the drive:

- Fit ventilation grilles.
- Ensure that there is sufficient ventilation. If there is not, install a forced ventilation unit with a filter. The openings and/or fans must provide a flow rate at least equal to that of the drive fans (refer to the product characteristics).

- Use special filters with IP 54 protection.
- Remove the blanking cover from the top of the drive.

Dust and Damp Proof Metal Enclosure (IP 54)

The drive must be mounted in a dust and damp proof enclosure in certain environmental conditions: dust, corrosive gases, high humidity with risk of condensation and dripping water, splashing liquid, etc.
This enables the drive to be used in an enclosure where the maximum internal temperature reaches $50^{\circ} \mathrm{C}$.

Three-Phase Power Supply with Upstream Breaking via Contactor

A1 ATV71 drive
KM1 Contactor
L1 DC choke
Q1 Circuit-breaker
Q2 GV2 L rated at twice the nominal primary current of T1
Q3 GB2CB05
S1, XB4 B or XB5 A pushbuttons
S2
T1 100 VA transformer 220 V secondary
(1) Line choke (three-phase); mandatory for ATV71HC11Y...HC63Y drives (except when a special transformer is used (12-pulse)).
(2) For ATV71HC40N4 drives combined with a 400 kW motor, ATV71HC50N4 and ATV71HC40Y... HC63Y, refer to the power terminal connections diagram.
(3) Fault relay contacts. Used for remote signalling of the drive status.
(4) Connection of the common for the logic inputs depends on the positioning of the SW1 switch. The above diagram shows the internal power supply switched to the "source" position (for other connection types, refer to the user guide).
(5) There is no PO terminal on ATV71HC11Y...HC63Y drives.
(6) Optional DC choke for ATV71H•••M3, ATV71HD11M3X...HD45M3X, ATV71•075N4...D75N4 and ATV71P•••N4Z drives. Connected in place of the strap between the PO and PA/+ terminals. For ATV71HD55M3X, HD75M3X, ATV71HD90N4...HC50N4 drives, the choke is supplied with the drive; the customer is responsible for connecting it.
(7) Software-configurable current ($0 \ldots 20 \mathrm{~mA}$) or voltage ($0 \ldots 10 \mathrm{~V}$) analog input.
(8) Reference potentiometer.

All terminals are located at the bottom of the drive. Fit interference suppressors on all inductive circuits near the drive or connected on the same circuit, such as relays, contactors, solenoid valves, fluorescent lighting, etc.

Wiring Diagram Conforming to Standards EN 954-1 Category 1, IEC/EN 61508 Capacity SIL1, in Stopping Category 0 According to IEC/EN 60204-1

Three-Phase Power Supply with Downstream Breaking via Switch Disconnector

A1 ATV71 drive
L1 DC choke
Q1 Circuit-breaker
Q2 Switch disconnector (Vario)
(1) Line choke (three-phase), mandatory for ATV71HC11Y...HC63Y drives (except when a special transformer is used (12-pulse)).
(2) For ATV71HC40N4 drives combined with a 400 kW motor, ATV71HC50N4 and ATV71HC40Y...HC63Y, refer to the power terminal connections diagram.
(3) Fault relay contacts. Used for remote signalling of the drive status.
(4) Connection of the common for the logic inputs depends on the positioning of the SW1 switch. The above diagram shows the internal power supply switched to the "source" position (for other connection types, refer to the user guide).
(5) There is no PO terminal on ATV71HC11Y...HC63Y drives.
(6) Optional DC choke for ATV71H•••M3, ATV71HD11M3X...HD45M3X, ATV71•075N4...•D75N4 and ATV71P...N4Z drives. Connected in place of the strap between the PO and PA/+ terminals. For ATV71HD55M3X, HD75M3X, ATV71HD90N4...HC50N4 drives, the choke is supplied with the drive; the customer is responsible for connecting it.
(7) Software-configurable current ($0 . . .20 \mathrm{~mA}$) or voltage ($0 . . .10 \mathrm{~V}$) analog input.
(8) Reference potentiometer.

All terminals are located at the bottom of the drive. Fit interference suppressors on all inductive circuits near the drive or connected on the same circuit, such as relays, contactors, solenoid valves, fluorescent lighting, etc.

Wiring Diagram Conforming to Standards EN 954-1 Category 3, IEC/EN 61508 Capacity SIL2, in Stopping Category 0 According to IEC/EN 60204-1

A1 ATV71 drive
A2 Preventa XPS AC safety module for monitoring emergency stops and switches. One safety module can manage the "Power Removal" function for several drives on the same machine. In this case, each drive must connect its PWR terminal to its +24 V via the safety contacts on the XPS AC module. These contacts are independent for each drive.
F1 Fuse
L1 DC choke
Q1 Circuit-breaker
S1 Emergency stop button with 2 contacts
S2 XB4 B or XB5 A pushbutton
(1) Power supply: 24 Vdc or Vac, $48 \mathrm{Vac}, 115 \mathrm{Vac}, 230 \mathrm{Vac}$.
(2) S2: resets XPS AC module on power-up or after an emergency stop. ESC can be used to set external starting conditions.
(3) Requests freewheel stopping of the movement and activates the "Power Removal" safety function.
(4) Line choke (three-phase), mandatory for and ATV71HC11Y...HC63Y drives (except when a special transformer is used (12-pulse)).
(5) The logic output can be used to signal that the machine is in a safe stop state.
(6) For ATV71HC40N4 drives combined with a 400 kW motor, ATV71HC50N4 and ATV71HC40Y...HC63Y, refer to the power terminal connections diagram.
(7) Fault relay contacts. Used for remote signalling of the drive status.
(8) Connection of the common for the logic inputs depends on the positioning of the SW1 switch. The above diagram shows the internal power supply switched to the "source" position (for other connection types, refer to the user guide).
(9) Standardized coaxial cable, type RG174/U according to MIL-C17 or KX3B according to NF C 93-550, external diameter $2.54 \mathrm{~mm} / 0.09 \mathrm{in}$., maximum length $15 \mathrm{~m} / 49.21 \mathrm{ft}$. The cable shielding must be earthed.
(10) There is no PO terminal on ATV71HC11Y...HC63Y drives.
(11) Optional DC choke for ATV71H•••M3, ATV71HD11M3X...HD45M3X, ATV71•075N4...•D75N4 and ATV71P..•N4Z drives. Connected in place of the strap between the PO and PA/+ terminals. For ATV71HD55M3X, HD75M3X, ATV71HD90N4...HC50N4 drives, the choke is supplied with the drive; the customer is responsible for connecting it.
(12) Software-configurable current ($0 . . .20 \mathrm{~mA}$) or voltage ($0 . . .10 \mathrm{~V}$) analog input.
(13) Reference potentiometer.

All terminals are located at the bottom of the drive. Fit interference suppressors on all inductive circuits near the drive or connected on the same circuit, such as relays, contactors, solenoid valves, fluorescent lighting, etc.

Wiring Diagram Conforming to Standards EN 954-1 Category 3, IEC/EN 61508 Capacity SIL2, in Stopping Category 1 According to IEC/EN 60204-1

Three-Phase Power Supply, High Inertia Machine

A1 ATV71 drive
A2 Preventa XPS ATE safety module for monitoring emergency stops and switches. One safety module can manage the "Power Removal"
(5) safety function for several drives on the same machine. In this case the time delay must be adjusted on the drive controlling the motor that requires the longest stopping time. In addition, each drive must connect its PWR terminal to its +24 V via the safety contacts on the XPS ATE module. These contacts are independent for each drive.
F1 Fuse
L1 DC choke
Q1 Circuit-breaker
S1 Emergency stop button with 2 N/C contacts
S2 Run button
(1) Power supply: 24 Vdc or Vac, $115 \mathrm{Vac}, 230 \mathrm{Vac}$.
(2) Requests controlled stopping of the movement and activates the "Power Removal" safety function.
(3) Line choke (three-phase), mandatory for ATV71HC11Y...HC63Y drives (except when a special transformer is used (12-pulse)).
(4) S2: resets XPS ATE module on power-up or after an emergency stop. ESC can be used to set external starting conditions.
(5) For stopping times requiring more than 30 seconds in category 1, use a Preventa XPS AV safety module which can provide a maximum time delay of 300 seconds.
(6) The logic output can be used to signal that the machine is in a safe state.
(7) For ATV71HC40N4 drives combined with a 400 kW motor, ATV71HC50N4 and ATV71HC40Y...HC63Y, refer to the power terminal connections diagram.
(8) Fault relay contacts. Used for remote signalling of the drive status.
(9) Connection of the common for the logic inputs depends on the positioning of the SW1 switch. The above diagram shows the internal power supply switched to the "source" position (for other connection types, refer to the user guide).
(10) Standardized coaxial cable, type RG174/U according to MIL-C17 or KX3B according to NF C 93-550, external diameter $2.54 \mathrm{~mm} / 0.09$ in., maximum length $15 \mathrm{~m} / 49.21 \mathrm{ft}$. The cable shielding must be earthed.
(11) Logic inputs LI1 and LI2 must be assigned to the direction of rotation: LI1 in the forward direction and LI2 in the reverse direction.
(12) There is no PO terminal on ATV71HC11Y...HC63Y drives.
(13) Optional DC choke for ATV71H•••M3, ATV71HD11M3X...HD45M3X, ATV71•075N4...•D75N4 and ATV71P•••N4Z drives. Connected in place of the strap between the PO and PA/+ terminals. For ATV71HD55M3X, HD75M3X, ATV71HD90N4...HC50N4 drives, the choke is supplied with the drive; the customer is responsible for connecting it.
(14) Software-configurable current ($0 \ldots 20 \mathrm{~mA}$) or voltage ($0 \ldots 10 \mathrm{~V}$) analog input.
(15) Reference potentiometer.

All terminals are located at the bottom of the drive. Fit interference suppressors on all inductive circuits near the drive or connected on the same circuit, such as relays, contactors, solenoid valves, fluorescent lighting, etc.

Derating Curves

The derating curves for the drive nominal current (In) depend on the temperature and the switching frequency. For intermediate temperatures (e.g. $55^{\circ} \mathrm{C}$), interpolate between 2 curves.

X Switching frequency

