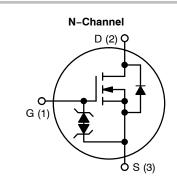
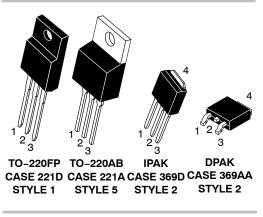
N-Channel Power MOSFET 500 V, 1.25 Ω

Features


- Low ON Resistance
- Low Gate Charge
- 100% Avalanche Tested
- These Devices are Pb-Free and are RoHS Compliant


ON

ON Semiconductor®

http://onsemi.com

V _{DSS}	R _{DS(on)} (TYP) @ 2.2 A
500 V	1.25 Ω

MARKING AND ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 7 of this data sheet.

ABSOLUTE MAXIMUM RATINGS (T_C = 25°C unless otherwise noted)

Rating	Symbol	NDF	NDP	NDD	Unit
Drain-to-Source Voltage	V _{DSS}		500		V
Continuous Drain Current $R_{\theta JC}$	۱ _D	5 (Note 1)	5	4.7	A
Continuous Drain Current $R_{\theta JC}$, $T_A = 100^{\circ}C$	۱ _D	3.2 (Note 1)	3.2	3	A
Pulsed Drain Current, V _{GS} @ 10 V	I _{DM}	20 (Note 1)	20	19	A
Power Dissipation $R_{\theta JC}$	PD	28	96	83	W
Gate-to-Source Voltage	V _{GS}	±30		V	
Single Pulse Avalanche Energy, $I_D = 5.0 \text{ A}$	E _{AS}	130		mJ	
ESD (HBM) (JESD22-A114)	V _{esd}	3000		V	
RMS Isolation Voltage (t = 0.3 sec., R.H. \leq 30%, T _A = 25°C) (Figure 17)	V _{ISO}	4500			V
Peak Diode Recovery	dv/dt	4.5	(Note 2)	V/ns
Continuous Source Current (Body Diode)	۱ _S	5		A	
Maximum Temperature for Soldering Leads, 0.063" (1.6 mm) from Case for 10 s Package Body for 10 s	T _L T _{PKG}	300 260		°C	
Operating Junction and Storage Temperature Range	T _J , T _{stg}	-58	5 to 150)	°C

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

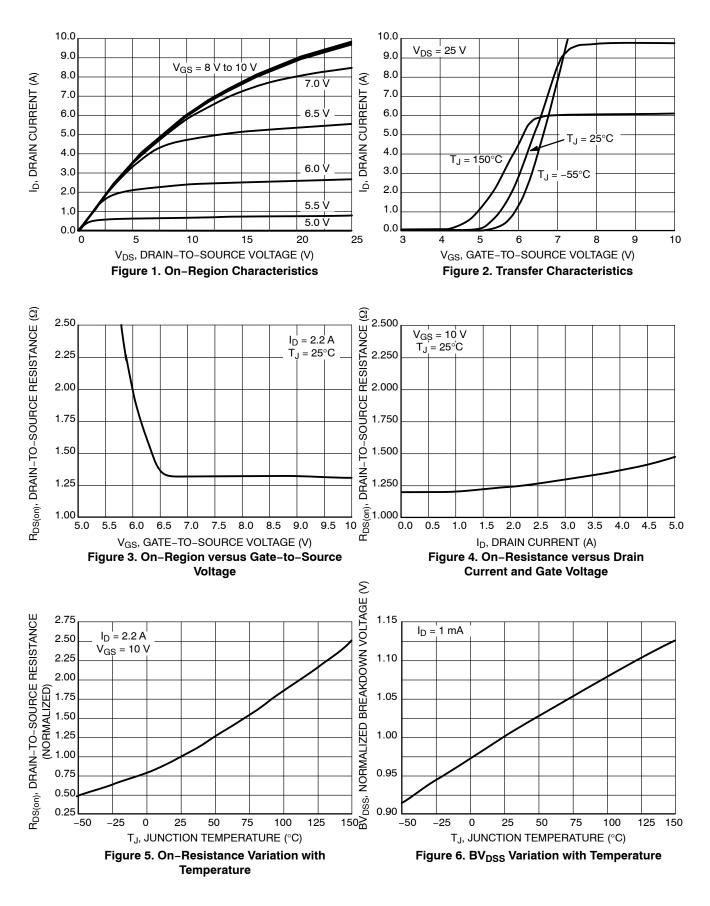
1. Limited by maximum junction temperature

2. I_S = 4.4 Å, di/dt \leq 100 Å/ $\mu s,$ V_DD \leq BV_DSS, T_J = +150°C

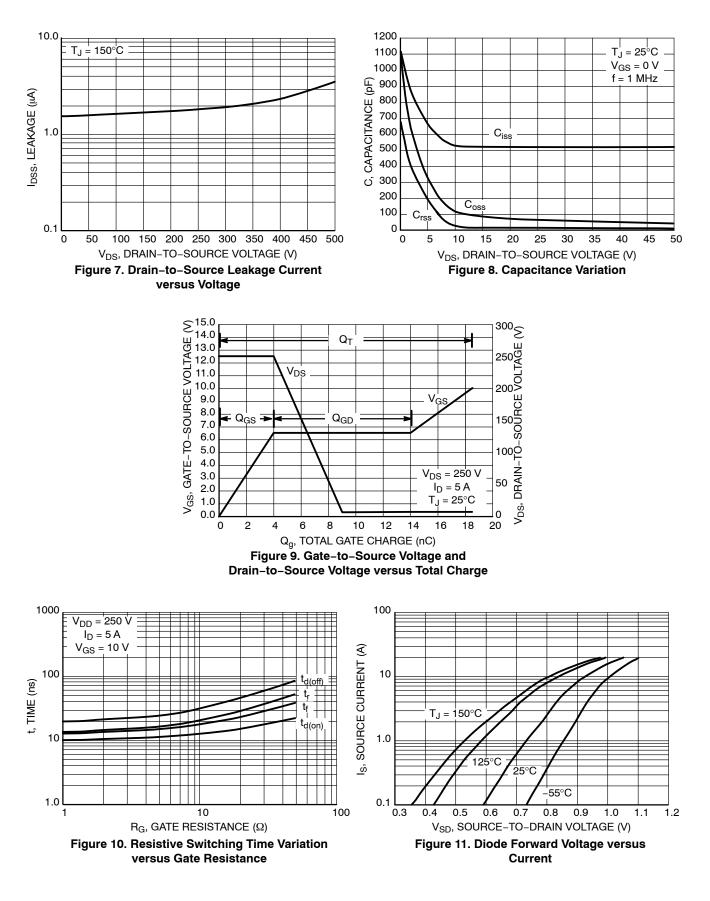
THERMAL RESISTANCE

Parameter		Symbol	Value	Unit
Junction-to-Case (Drain)	NDP05N50Z NDF05N50Z NDD05N50Z	$R_{ extsf{ heta}JC}$	1.3 4.4 1.5	°C/W
Junction-to-Ambient Steady State	(Note 3) NDP05N50Z (Note 3) NDF05N50Z (Note 4) NDD05N50Z (Note 3) NDD05N50Z-1	R _{θJA}	50 50 38 80	

3. Insertion mounted


4. Surface mounted on FR4 board using 1" sq. pad size, (Cu area = 1.127 in sq [2 oz] including traces).

ELECTRICAL CHARACTERISTICS (T_J = $25^{\circ}C$ unless otherwise noted)


Characteristic	Symbol	Test Conditions		Min	Тур	Max	Unit
OFF CHARACTERISTICS					-	-	-
Drain-to-Source Breakdown Voltage	BV _{DSS}	V_{GS} = 0 V, I_D = 1 mA		500			V
Breakdown Voltage Temperature Coefficient	$\Delta BV_{DSS}/ \Delta T_J$	Reference to 25° C, I _D = 1 mA			0.6		V/∘C
Drain-to-Source Leakage Current	I _{DSS}		25°C			1	μA
		V_{DS} = 500 V, V_{GS} = 0 V	V _{DS} = 500 V, V _{GS} = 0 V 150°C			50	1
Gate-to-Source Forward Leakage	I _{GSS}	V_{GS} = ±20 V				±10	μA
ON CHARACTERISTICS (Note 5)							-
Static Drain-to-Source On-Resistance	R _{DS(on)}	V_{GS} = 10 V, I _D = 2.2 A	N N		1.25	1.5	Ω
Gate Threshold Voltage	V _{GS(th)}	$V_{DS} = V_{GS}, I_D = 50 \ \mu A$	λ	3.0		4.5	V
Forward Transconductance	9 _{FS}	V _{DS} = 15 V, I _D = 2.5 A	\		3.5		S
DYNAMIC CHARACTERISTICS							-
Input Capacitance	C _{iss}	V _{DS} = 25 V, V _{GS} = 0 V, f = 1.0 MHz			530		pF
Output Capacitance	C _{oss}				68		
Reverse Transfer Capacitance	C _{rss}				15		
Total Gate Charge	Qg	V _{DD} = 250 V, I _D = 5 A,			18.5		nC
Gate-to-Source Charge	Q _{gs}				4		1
Gate-to-Drain ("Miller") Charge	Q _{gd}	V _{GS} = 10 V			10		1
Plateau Voltage	V _{GP}				6.5		V
Gate Resistance	R _g				4.5		Ω
RESISTIVE SWITCHING CHARACTER	ISTICS				-		
Turn-On Delay Time	t _{d(on)}				11		ns
Rise Time	t _r	V _{DD} = 250 V, I _D = 5 A	,		15		
Turn-Off Delay Time	t _{d(off)}	$V_{GS} = 10 \text{ V}, \text{ R}_{G} = 5 \Omega$			24		
Fall Time	t _f				14		
SOURCE-DRAIN DIODE CHARACTER	ISTICS (T _C =	25°C unless otherwise noted)					
Diode Forward Voltage	V _{SD}	$I_{S} = 5 \text{ A}, V_{GS} = 0 \text{ V}$				1.6	V
Reverse Recovery Time	t _{rr}	V _{GS} = 0 V, V _{DD} = 30 \	/		255		ns
Reverse Recovery Charge	Q _{rr}	I _S = 5 A, di/dt = 100 A/µ			1.25		μC

5. Pulse Width \leq 380 $\mu s,$ Duty Cycle \leq 2%.

TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS

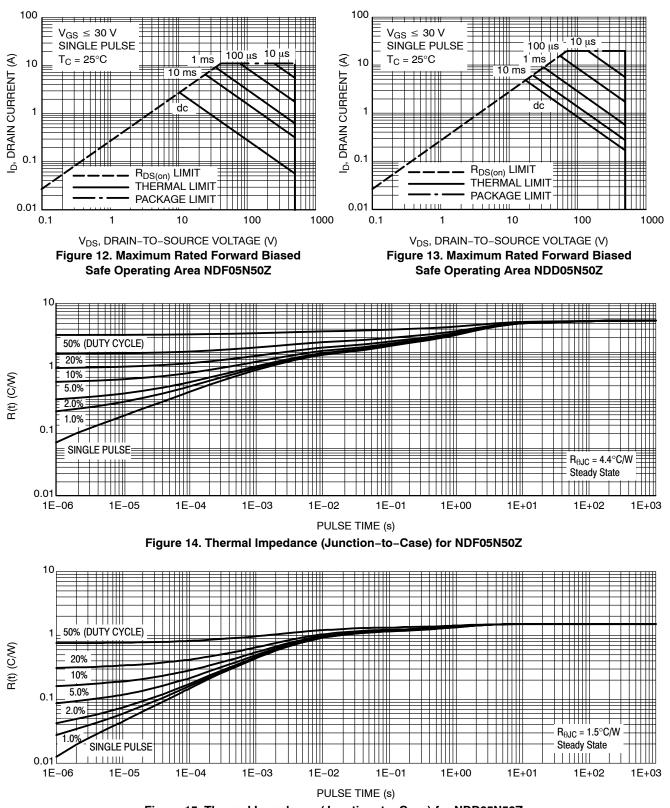
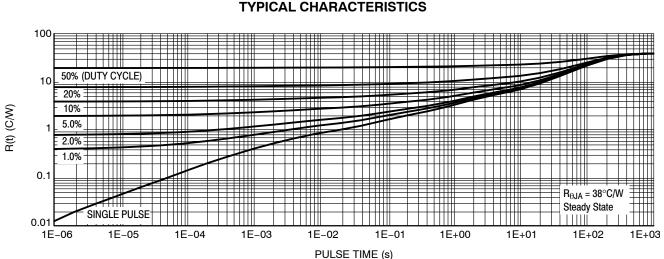
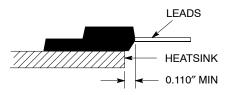


Figure 15. Thermal Impedance (Junction-to-Case) for NDD05N50Z

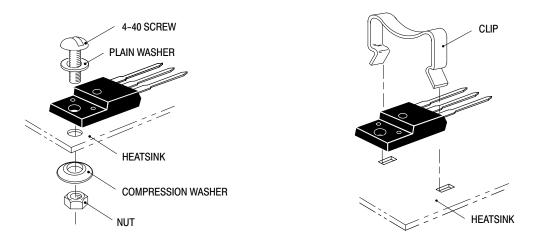

Figure 16. Thermal Impedance (Junction-to-Ambient) for NDD05N50Z

Figure 17. Isolation Test Diagram

Measurement made between leads and heatsink with all leads shorted together.

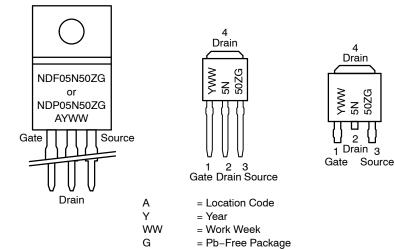
MOUNTING INFORMATION

Figure 18. Typical Mounting Techniques*

Laboratory tests on a limited number of samples indicate, when using the screw and compression washer mounting technique, a screw torque of 6 to 8 in · lbs is sufficient to provide maximum power dissipation capability. The compression washer helps to maintain a constant pressure on the package over time and during large temperature excursions.

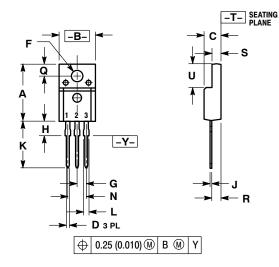
Destructive laboratory tests show that using a hex head 4–40 screw, without washers, and applying a torque in excess of 20 in · lbs will cause the plastic to crack around the mounting hole, resulting in a loss of isolation capability.

Additional tests on slotted 4–40 screws indicate that the screw slot fails between 15 to 20 in \cdot lbs without adversely affecting the package. However, in order to positively ensure the package integrity of the fully isolated device, ON Semiconductor does not recommend exceeding 10 in \cdot lbs of mounting torque under any mounting conditions.


** For more information about mounting power semiconductors see Application Note AN1040.

ORDERING INFORMATION

Order Number	Package	Shipping [†]
NDF05N50ZG	TO-220FP (Pb-Free)	50 Units / Rail
NDP05N50ZG	TO-220AB (Pb-Free)	50 Units / Rail (In Development)
NDD05N50Z-1G	IPAK (Pb-Free)	75 Units / Rail
NDD05N50ZT4G	DPAK (Pb-Free)	2500 / Tape & Reel


†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

MARKING DIAGRAMS

PACKAGE DIMENSIONS

TO-220 FULLPAK CASE 221D-03 **ISSUE K**

NOTES: VOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH
3. 2210-01 THRU 2210-02 OBSOLETE, NEW STANDARD 221D-03.

	INCHES		MILLIN	IETERS
DIM	MIN	MAX	MIN	MAX
Α	0.617	0.635	15.67	16.12
В	0.392	0.419	9.96	10.63
С	0.177	0.193	4.50	4.90
D	0.024	0.039	0.60	1.00
F	0.116	0.129	2.95	3.28
G	0.100	BSC	2.54 BSC	
Η	0.118	0.135	3.00	3.43
J	0.018	0.025	0.45	0.63
Κ	0.503	0.541	12.78	13.73
L	0.048	0.058	1.23	1.47
Ν	0.200	BSC	5.08	BSC
Q	0.122	0.138	3.10	3.50
R	0.099	0.117	2.51	2.96
S	0.092	0.113	2.34	2.87
C	0.239	0.271	6.06	6.88

STYLE 1: PIN 1. GATE 2. DRAIN

3. SOURCE

CASE 221A-09

TO-220

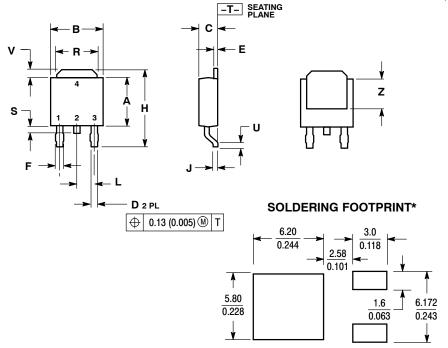
ISSUE AF

-T- SEATING PLANE

в С F т s 4 Q 1 2 3 Uÿ H A κ z R L v J G

Ν

NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. 3. DIMENSION Z DEFINES A ZONE WHERE ALL BODY AND LEAD IRREGULARITIES ARE ALLOWED.


	INC	HES	MILLIMETER		
DIM	MIN	MAX	MIN	MAX	
Α	0.570	0.620	14.48	15.75	
В	0.380	0.405	9.66	10.28	
С	0.160	0.190	4.07	4.82	
D	0.025	0.035	0.64	0.88	
F	0.142	0.161	3.61	4.09	
G	0.095	0.105	2.42	2.66	
Н	0.110	0.155	2.80	3.93	
J	0.014	0.025	0.36	0.64	
K	0.500	0.562	12.70	14.27	
L	0.045	0.060	1.15	1.52	
Ν	0.190	0.210	4.83	5.33	
Q	0.100	0.120	2.54	3.04	
R	0.080	0.110	2.04	2.79	
S	0.045	0.055	1.15	1.39	
Т	0.235	0.255	5.97	6.47	
U	0.000	0.050	0.00	1.27	
۷	0.045		1.15		
Ζ		0.080		2.04	

PIN 1. GATE 2. DRAIN 3. SOURC SOURCE

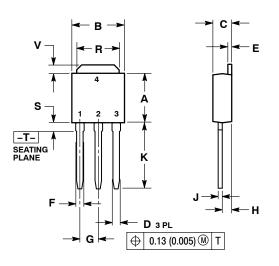
4. DRAIN

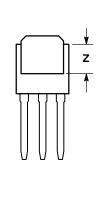
PACKAGE DIMENSIONS

DPAK CASE 369AA-01 **ISSUE A**

NOTES:

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH.


	INCHES		MILLIM	IETERS
DIM	MIN	MAX	MIN	MAX
Α	0.235	0.245	5.97	6.22
В	0.250	0.265	6.35	6.73
С	0.086	0.094	2.19	2.38
D	0.025	0.035	0.63	0.89
Е	0.018	0.024	0.46	0.61
F	0.030	0.045	0.77	1.14
Н	0.386	0.410	9.80	10.40
J	0.018	0.023	0.46	0.58
L	0.090 BSC		2.29	BSC
R	0.180	0.215	4.57	5.45
S	0.024	0.040	0.60	1.01
U	0.020		0.51	
v	0.035	0.050	0.89	1.27
Z	0.155		3.93	


STYLE 2: PIN 1. GATE 2. DRAIN 3. SOURCE

4. DRAIN

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

> **IPAK** CASE 369D-01 **ISSUE B**

NOTES:

 $\left(\frac{mm}{inches}\right)$

SCALE 3:1

DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 CONTROLLING DIMENSION: INCH.

	INCHES		MILLIM	ETERS
DIM	MIN	MAX	MIN	MAX
Α	0.235	0.245	5.97	6.35
В	0.250	0.265	6.35	6.73
С	0.086	0.094	2.19	2.38
D	0.027	0.035	0.69	0.88
Е	0.018	0.023	0.46	0.58
F	0.037	0.045	0.94	1.14
G	0.090 BSC		2.29	BSC
Н	0.034	0.040	0.87	1.01
J	0.018	0.023	0.46	0.58
К	0.350	0.380	8.89	9.65
R	0.180	0.215	4.45	5.45
S	0.025	0.040	0.63	1.01
v	0.035	0.050	0.89	1.27
Ζ	0.155		3.93	

STYLE 2: PIN 1. GATE

2. DRAIN

SOURCE
 DRAIN

http://onsemi.com

9

ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other application in which the failure of the SCILLC product create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death applicatio us engliced with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5773-3850 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative