Product data sheet
 Characteristics

SR2D101FU

compact smart relay Zelio Logic - 10 I O100..240 V AC - no clock - no display

Main	
Range of product	Zelio Logic
Product or component type	Compact smart relay

Complementary

Local display	Without
Number or control scheme lines	<= 200 with FBD programming 120 with ladder programming
Cycle time	6... 90 ms
Backup time	10 years at $25^{\circ} \mathrm{C}$
Clock drift	$12 \mathrm{~min} / \mathrm{ye}$ ar at $0 . . .55^{\circ} \mathrm{C}$ $6 \mathrm{~s} /$ month at $25^{\circ} \mathrm{C}$
Checks	Program memory on each power up
[Us] rated supply voltage	100... 240 V
Supply voltage limits	85... 264 V
Supply frequency	$50 / 60 \mathrm{~Hz}$
Supply current	30 mA at 240 V (without extension) 80 mA at 100 V (without extension)
Power consumption in VA	7 VA without extension
Isolation voltage	1780 V
Protection type	Against inversion of terminals (control instructions not executed)
Discrete input number	6
Discrete input voltage	100... 240 V AC
Discrete input current	0.6 mA
Discrete input frequency	$\begin{aligned} & 47 \ldots 53 \mathrm{~Hz} \\ & 57 \ldots 63 \mathrm{~Hz} \end{aligned}$
Voltage state1 guaranteed	>= 79 V for discrete input
Voltage state 0 guaranteed	<= 40 V for discrete input
Current state 1 guaranteed	$>0.17 \mathrm{~mA}$ for discrete input
Current state 0 guaranteed	$<0.5 \mathrm{~mA}$ for discrete input
Input impedance	350 kOhm (discrete input)
Number of outputs	4 relay output(s)
Output voltage limits	24... 250 V AC 5... 30 V DC (relay output)
Contacts type and composition	NO for relay output
Output thermal current	8 A for all 4 outputs (relay output)

Electrical durability	500000 cycles AC-12 at 230 V , 1.5 A for relay output conforming to EN/IEC 60947-5-1 500000 cycles AC-15 at $230 \mathrm{~V}, 0.9$ A for relay output conforming to EN/IEC 60947-5-1 500000 cycles DC-12 at $24 \mathrm{~V}, 1.5 \mathrm{~A}$ for relay output conforming to EN/IEC 60947-5-1 500000 cycles DC-13 at $24 \mathrm{~V}, 0.6 \mathrm{~A}$ for relay output conforming to EN/IEC 60947-5-1
Switching capacity in mA	>= 10 mA at 12 V (relay output)
Operating rate in Hz	0.1 Hz (at le) for relay output 10 Hz (no load) for relay output
Mechanical durability	10000000 cycles (relay output)
[Uimp] rated impulse withstand voltage	4 kV conforming to EN/IEC 60947-1 and EN/IEC 60664-1
Clock	Without
Response time	10 ms (from state 0 to state 1) for relay output 5 ms (from state 1 to state 0) for relay output 50 ms with ladder programming (from state 0 to state 1) for discrete input 50 ms with ladder programming (from state 1 to state 0) for discrete input $50 \ldots 255 \mathrm{~ms}$ with FBD programming (from state 0 to state 1) for discrete input $50 \ldots 255 \mathrm{~ms}$ with FBD programming (from state 1 to state 0) for discrete input
Connections - terminals	Screw terminals, clamping capacity: $1 \times 0.2 \ldots 1 \times 2.5 \mathrm{~mm}^{2}$ AWG $25 \ldots 14$ semi-solid Screw terminals, clamping capacity: $1 \times 0.2 \ldots 1 \times 2.5 \mathrm{~mm}^{2}$ AWG $25 \ldots 14$ solid Screw terminals, clamping capacity: $1 \times 0.25 \ldots 1 \times 2.5 \mathrm{~mm}^{2}$ AWG $24 \ldots 14$ flexible with cable end Screw terminals, clamping capacity: $2 \times 0.2 \ldots 2 \times 1.5 \mathrm{~mm}^{2}$ AWG $24 \ldots 16$ solid Screw terminals, clamping capacity: $2 \times 0.25 \ldots 2 \times 0.75 \mathrm{~mm}^{2}$ AWG $24 \ldots 18$ flexible with cable end
Tightening torque	0.5 N.m
Overvoltage category	III conforming to EN/IEC 60664-1
Product weight	0.22 kg
Environment	
Immunity to microbreaks	<= 10 ms
Product certifications	CSA C-Tick GL GOST UL
Standards	EN/IEC 60068-2-27 Ea EN/IEC 60068-2-6 Fc EN/IEC 61000-4-11 EN/IEC 61000-4-12 EN/IEC 61000-4-2 level 3 EN/IEC 61000-4-3 EN/IEC 61000-4-4 level 3 EN/IEC 61000-4-5 EN/IEC 61000-4-6 level 3
IP degree of protection	IP20 (terminal block) conforming to IEC 60529 IP40 (front panel) conforming to IEC 60529
Environmental characteristic	EMC directive conforming to EN/IEC 61000-6-2 EMC directive conforming to EN/IEC 61000-6-3 EMC directive conforming to EN/IEC 61000-6-4 EMC directive conforming to EN/IEC 61131-2 zone B Low voltage directive conforming to EN/IEC 61131-2
Disturbance radiated/conducted	Class B conforming to EN 55022-11 group 1
Pollution degree	2 conforming to EN/IEC 61131-2
Ambient air temperature for operation	$-20 \ldots 40^{\circ} \mathrm{C}$ in non-ventilated enclosure conforming to IEC 60068-2-1 and IEC 60068-2-2 $-20 \ldots 55^{\circ} \mathrm{C}$ conforming to IEC 60068-2-1 and IEC 60068-2-2
Ambient air temperature for storage	$-40 . . .70^{\circ} \mathrm{C}$
Operating altitude	2000 m
Altitude transport	<= 3048 m
Relative humidity	95% without condensation or dripping water

Mounting on $35 \mathrm{~mm} / 1.38 \mathrm{in}$. DIN Rail

$\frac{\mathrm{mm}}{\mathrm{m}}$

(1) With SR2USB01 or SR2BTC01

Screw Fixing (Retractable Lugs)
$\frac{\mathrm{mm}}{\mathrm{in} .}$

(1) With SR2USB01 or SR2BTC01

Position of Display

Connection of Smart Relays on AC Supply
SR…1B, SR…1FU

(1) 1 A quick-blow fuse or circuit-breaker.
(2) Fuse or circuit-breaker.
(3) Inductive load.
(4) Q9 and QA: 5 A (max. current in terminal C: 10 A).

With Discrete I/O Extension Module SR3B \cdots B + SR3XT \cdots B, SR3B $\cdots F U+$ SR3XT $\cdots F U$

(1) 1 A quick-blow fuse or circuit-breaker.

QF and QG: 5 A for SR3XT141•••

Electrical Durability of Relay Outputs

(in millions of operating cycles, conforming to IEC/EN 60947-5-1)
AC-12 (1)

X : \quad Current (A)
Y: Millions of operating cycles
(1) AC-12: switching resistive loads and opto-coupler isolated solid-state loads, cos ≥ 0.9.

AC-14 (1)

X: Current (A)
Y: Millions of operating cycles
(1) AC-14: switching small electromagnetic loads $\leq 72 \mathrm{VA}$, make: $\cos =0.3$, break: $\cos =0.3$.

AC-15 (1)

X: Current (A)
Y: Millions of operating cycles
(1) AC-15: switching electromagnetic loads $\geq 72 \mathrm{VA}$, make: $\cos =0.7$, break: $\cos =0.4$.

