The Best Relaytion

D2n Relay

2 pole telecom relay, non-polarized,
Through Hole Type (THT)
Relay types: non-latching with 1 coil

Features

- Standard DIL relay
- Dimensions $20.3 \times 10.1 \times 10.43 \mathrm{~mm}, 0.800 \times 0.400 \times 0.450$ inch
- Switching and continous current 3 A
- 2 changeover contacts (2 form C / DPDT)
- Single contacts
- Immersion cleanable
- Four different coil sensitivities
(150, 200, 400, > 500 mW)
- Surge voltage resistance meets FCC Part 68 requirement: $1.5 \mathrm{kV}(10 / 160 \mu \mathrm{sec})$ between coil and contacts

Typical applications

- Communications equipment
- Office equipment
- Measurement and control equipment
- Entertainment electronics
- Medical Equipment
- Consumer electronics

UL 508

European Directive conformance:
D2n relay product conformance according to:

- Directive 2000/53/EC: ELV (End of Life of Vehicles)
- Directive 2002/95/EC: ROHS (Restrictions of the use of certain hazardous substances in electrical and electronic equipment)
Compliance is evidenced by written declaration from all raw material suppliers.
Tyco Electronics AXICOM only has responsibility for the proper processing of these materials.
Confirmation is valid for date codes ≥ 0418

THT Version

Mounting hole layout
View onto the component side of the PCB (top view)

Basic grid 2.54 mm

Terminal assignment
Relay-top view

Dimensions

	THT V23105-A5xxx-A201 mm	
L	20.2 ± 0.1	0.795 ± 0.004
W	1.0 ± 0.1	0.394 ± 0.004
H	11.43 ± 0.2	$0.450-0.008$
T	3.5 ± 0.3	0.138 ± 0.012
Tw	$0.72-0.2$	$0.028-0.008$
S	0.3 ± 0.1	0.012 ± 0.004

Coil Data (values at 23 ${ }^{\circ} \mathrm{C}$)

Nominal voltage Unom
Vdc

Minimum
voltage $U_{\text {min }}$
Vdc

| Maximum |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| voltage $U_{\text {max }}$ |
| Vdc |

200 mW nominal power consumption

3	2.1	6.1	0.15	200	45	V23105A5308A201	$0-1393793-5$
5	3.5	10.1	0.25	200	125	V23105A5301A201	$9-1393792-3$
6	4.2	12.2	0.30	200	180	V23105A5302A201	$9-1393792-5$
9	6.3	18.2	0.45	200	405	V23105A5306A201	$0-1393793-2$
12	8.4	24.3	0.60	200	720	V23105A5303A201	$9-1393792-7$
24	16.8	48.6	1.20	200	2880	V23105A5305A201	$9-1393792-9$
48	33.6	97.2	2.40	200	11520	V23105A5307A201	$0-1393793-3$

400 mW nominal power consumption

5	3.5	7.2	0.25	400	62	V23105A5401A201	$0-1393793-6$
6	4.2	8.6	0.30	400	90	V23105A5402A201	$0-1393793-7$
9	6.3	12.9	0.45	400	203	V23105A5406A201	$1-1393793-0$
12	8.4	17.2	0.60	400	360	V23105A5403A201	$0-1393793-8$
24	16.8	34.3	1.20	400	1440	V23105A5405A201	$0-1393793-9$
48	33.6	68.6	2.40	400	5760	V23105A5407A201	$1-1393793-1$

$>500 \mathrm{~mW}$ nominal power consumption

5	3.5	6.1	0.25	695	36	V23105A5501A201	$1-1393793-6$
6	4.2	7.3	0.30	515	70	V23105A5502A201	$1-1393793-8$
9	6.3	10.9	0.45	580	140	V23105A5506A201	$2-1393793-3$
12	8.4	14.5	0.60	515	280	V23105A5503A201	$1-1393793-9$
24	16.8	29.1	1.20	550	1050	V23105A5505A201	$2-1393793-1$
48	33.6	58.1	2.40	575	4000	V23105A5507A201	$2-1393793-4$

Coil versions, BT 47 type / specification T4563 C (current tested)

Nominal voltage	Operating current	Nominal power consumption	Resistance	British Telecom Code	Relay code	
Vdc						

Coil operating range

$U_{\text {nom }}=$	Nominal coil voltage
$U_{\text {max. }}=\quad$Upper limit of the operative range of the coil voltage (limiting voltage) when coils are continously energized	
$U_{\text {op. min. }}=$Lower limit of the operative range of the coil voltage (reliable operate voltage)	
$U_{\text {rel. min. }}=$Lower limit of the operative range of the coil voltage (reliable release voltage)	

Ordering Code

*) Coils with $400 / 500 \mathrm{~mW}$ nominal power consumption on request

Ordering example: V23105-A5301-A201
D2 Relay, coil 5 V nominal voltage, 200 mW nominal power consumption,
Contact material silver nickel, gold-plated, against silver nickel, gold plated

Contact Data

Number of contacts and type	2 changeover contacts
Contact assembly	single contacts
Contact material	Silver-nickel, gold-covered
Limiting continuous current at max. ambient temperature	3 A
Maximum switching current	3 A
Maximum swichting voltage	220 Vdc
	250 Vac
Maximum switching capacity	$60 \mathrm{~W}, 125 \mathrm{VA}$
Thermoelectric potential	$>10 \mu \mathrm{~V}$
Minimum switching voltage	$100 \mu \mathrm{~V}$
Initial contact resistance / measuring condition: $10 \mathrm{~mA} / 20 \mathrm{mV}$	$<100 \mathrm{~m} \Omega$
Electrical endurance at $230 \mathrm{Vac} / 0.5 \mathrm{~A}$	typ. 3.0×10^{5} operations
at $6 \mathrm{Vdc} / 0.1 \mathrm{~A}$	typ. 2.0×10^{6} operations
at $30 \mathrm{Vdc} / 1 \mathrm{~A}$	typ. 5.0×10^{5} operations
at $30 \mathrm{Vdc} / 2 \mathrm{~A}$	typ. 1.0×10^{5} operations
Mechanical endurance	typ. 15.0×10^{6} operations
UL contact ratings	$30 \mathrm{Vdc} / 1.0 \mathrm{~A}$
	$100 \mathrm{Vdc} / 0.3 \mathrm{~A}$
	$125 \mathrm{Vac} / 0.5 \mathrm{~A}$ for 150 mW and 200 mW coil
	$125 \mathrm{Vac} / 1.0 \mathrm{~A}$ for 400 mW and 500 mW coil

Max. DC load breaking capacity

Insulation			
$\begin{array}{l}\text { Insulation resistance at } 500 \mathrm{Vdc}\end{array}$			
$\begin{array}{l}\text { Dielectric test voltage (1 min) } \\ \text { between coil and contacts } \\ \text { between adjacent contact sets } \\ \text { between open contacts }\end{array}$	1000 Vrms		
Surge voltage resistance	750 Vrms		
	750 Vrms	$]$	according to FCC $68(10 / 160 \mu \mathrm{~s})$
:---			
between coil and contacts			
between adjacent contact sets			
between open contacts			

High Frequency Data

\(\left.$$
\begin{array}{l|c}\hline \begin{array}{l}\text { Capacitance } \\
\text { between coil and contacts } \\
\text { between adjacent contact sets } \\
\text { between open contacts }\end{array}
$$ \& \max .2 \mathrm{pF}

max. 1.5 \mathrm{pF}

max. 1 \mathrm{pF}\end{array}\right]\)| RF Characteristics |
| :--- |
| Isolation at $100 / 900 \mathrm{MHz}$ |
| Insertion loss at $100 / 900 \mathrm{MHz}$ |
| V.S.W.R. at $100 / 900 \mathrm{MHz}$ |

General data

Operate time at $U_{\text {nom }}$ typ. / max.	$5 \mathrm{~ms} / 7 \mathrm{~ms}$
Release time without diode in parallel, typ. / max.	$4 \mathrm{~ms} / 6 \mathrm{~ms}$
Release time with diode in parallel, typ. / max.	$7 \mathrm{~ms} / 10 \mathrm{~ms}$
Bounce time at closing contact, typ. / max.	$3 \mathrm{~ms} / 5 \mathrm{~ms}$
Maximum switching rate without load	20 operations s
Ambient temperature	$-25^{\circ} \mathrm{C} \ldots+85^{\circ} \mathrm{C}$
150 and 200 mW coil	$-25^{\circ} \mathrm{C} \ldots+75^{\circ} \mathrm{C}$
400 mW coil	$-25^{\circ} \mathrm{C} \ldots+60^{\circ} \mathrm{C}$
500 mW coil	$<100 \mathrm{~K} / \mathrm{W}$
Thermal resistance	$105^{\circ} \mathrm{C}$
Maximum permissible coil temperature	10 g
Vibration resistance (function)	10 to 55 Hz
Shock resistance, half sinus, 11 ms	10 g (function)
Degree of protection / Environmental protection	40 g (damage)
Needle flame test	immersion cleanable, IP $67 / \mathrm{RT}$ III
Mounting position	application time 20 s, burning time $<15 \mathrm{~s}$
Processing information	any
Weight (mass)	Ultrasonic cleaning is not recommended
Terminal coating	max. 2.5 g
Resistance to soldering heat	SnCu 0,7

All data refers to $23^{\circ} \mathrm{C}$ unless otherwise specified.

Packing Dimensions in mm

Tube for THT version - 25 relays per tube, 1000 relays per box

IM Relays

$4^{\text {th }}$ generation slim line - low profile polarized $2 \mathrm{c} /$ o telecom relay with bifurcated contacts, available as non latching or latching relay with 1 coil. Nominal voltage range from 1.5... 24 V , coil power consumption of $140 \ldots 200 \mathrm{~mW}$, latching relays with 1 coil 100 mW . The IM relay is available as through hole and surface mount type (J-Legs and Gull Wings) and capable to switch loads up to $60 \mathrm{~W} / 62,5 \mathrm{VA}$. Dielectric strength fulfills the Bellcore requirements according GR 1089 ($2,5 \mathrm{kV}$ $-2 / 10 \mu \mathrm{~s})$ and FCC part $68(1,5 \mathrm{kV}-10 / 160 \mu \mathrm{~s})$. The IM relay is CECC/IECQ approved and certified in accordance with IEC/EN 60950 and UL1950. Dimensions approx. $10 \times 6 \mathrm{~mm}$ board space and 5.65 mm height.

P2 Relays

$3^{\text {rd }}$ generation polarized $2 \mathrm{c} / \mathrm{o}$ telecom relay with bifurcated contacts, available as non latching or latching relay with 1 or 2 coils. Nominal voltage range from $3 \ldots 24 \mathrm{~V}$, coil power consumption 140 mW , latching relays with 1 coil 70 mW . The P2 Relay is available as through hole or surface mount type and capable to switch currents up to 5 A. Dielectric strength fulfills the Bellcore requirements according GR $1089(2,5 \mathrm{kV}-2 / 10 \mu \mathrm{~s})$ and FCC part $68(1,5 \mathrm{kV}-10 / 160 \mu \mathrm{~s})$. Dimensions approx. $15 \times 7,5 \mathrm{~mm}$ board space and 10 mm height.

FX Relays

$3^{\text {rd }}$ generation polarized 2 c/o telecom relay with bifurcated contacts, available as non latching or latching relay with 1 coil. Nominal voltage range from 3 ... 48 V , coil power consumption of 80 ... 260 mW for the high sensitive version, 140... 300 mW for the standard version, latching relays with 1 coil 100 mW . The FX2 relay is available as through hole type and capable to switch loads up to $60 \mathrm{~W} / 62,5 \mathrm{VA}$. Dielectric strength fulfills the Bellcore requirements according GR 1089 ($2,5 \mathrm{kV}$ $-2 / 10 \mu \mathrm{~s})$ and FCC part $68(1,5 \mathrm{kV}-10 / 160 \mu \mathrm{~s})$. The FX2 is CECC/ IECQ approved and certified in accordance with IEC/EN 60950 and UL1950. Dimensions approx. $15 \times 7,5 \mathrm{~mm}$ board space and $10,7 \mathrm{~mm}$ height.

FT2 / FU2 Relays

$3^{\text {rd }}$ generation non polarized, non latching 2 c/o telecom relay with bifurcated contacts. Nominal voltage range from 3 ... 48 V , coil power consumption 200 ... 300 mW . Most sensitive 48 V relay. Available as through hole and surface mount type. Dielectric strength fulfills the Bellcore requirements according GR $1089(2,5 \mathrm{kV}-2 / 10 \mu \mathrm{~s})$ and FCC part $68(1,5 \mathrm{kV}-10 / 160 \mu \mathrm{~s})$. The FT2/FU2 is CECC/IECO approved and certified in accordance with IEC/EN 60950 and UL1950. Dimensions approx. $15 \times 7,5 \mathrm{~mm}$ board space and 10 mm height.

FP1 Relays

$3^{\text {rd }}$ generation polarized $2 \mathrm{c} / \mathrm{o}$ telecom relay with bifurcated contacts, available as non latching or latching relay with 1 or 2 coils. Nominal voltage range from 3 ... 48 V , coil power consumption of 80 ... 260 mW for the high sensitive version, 140... 300 mW for the standard version, latching relays with 1 coil 100 mW .. The FP1 Relay is available as through hole type and capable to switch loads up to 30 W/62,5 VA. Dielectric strength fulfills FCC part 68 (1,5 kV - 10 / $160 \mu \mathrm{~s})$. The FP2 is CECC/IECQ approved. Dimensions approx. $14 \times 9 \mathrm{~mm}$ board space and 5 mm height.

MT2 / MT4

$2^{\text {nd }}$ generation non polarized, non latching $2 \mathrm{c} / \mathrm{o}$ and $4 \mathrm{c} / \mathrm{o}$ telecom and signal relay with bifurcated contacts. Nominal voltage range from 4.5 ... 48 V , coil power consumption 150/200/300/400 and
550 mW , and 300 mW (MT4). Dielectric strength fulfills the requirements according FCC part $68(1,5 \mathrm{kV}-10 / 160 \mu \mathrm{~s})$ for both and the Bellcore requirements according GR 1089 ($2,5 \mathrm{kV}-2 / 10 \mu \mathrm{~s}$) the MT4 only.
Dimensions MT2 approx. $20 \times 10 \mathrm{~mm}$ board space and 11 mm height, MT4 approx. $20 \times 15 \mathrm{~mm}$ board space and 11 mm height.

D2n Relays

$2^{\text {nd }}$ generation non polarized $2 \mathrm{c} / \mathrm{o}$ relay for telecom and various other applications. Nominal voltage range from 3 ... 48 V , coil power consumption from $150 \ldots 500 \mathrm{~mW}$. The D 2 n relay is capable to switch currents up to 3 A . Dielectric strength fulfills the requirements according FCC part $68(1,5 \mathrm{kV}-10 / 160 \mu \mathrm{~s})$. Dimensions approx. $20 \times 10 \mathrm{~mm}$ board space and $11,5 \mathrm{~mm}$ height.

P1 Relays

Extremely sensitive, polarized $1 \mathrm{c} / \mathrm{o}$ relay with bifurcated contacts for a wide range of applications, available as non latching or latching relay with 1 or 2 coils. Nominal voltage range from 3 ... 24 V , coil power consumption 65 mW , latching relays with 1 coil 30 mW . The P 1 relay is available as through hole or surface mount type and capable to switch currents up to 1 A . Dielectric strength fulfills the requirements according FCC part $68(1,5 \mathrm{kV}-10 / 160 \mu \mathrm{~s})$. Dimensions approx. $13 \times 7,6 \mathrm{~mm}$ board space and 7 mm height for THT or 8 mm height for SMT version.

W1 1 Relays

Low cost, non polarized $1 \mathrm{c} /$ o relay for various applications. Nominal voltage range from $3 \ldots 24 \mathrm{~V}$, coil power consumption 450 mW , sensitive versions 200 mW . The W11 relay is capable to switch currents up to 3 A. Dielectric strength 1000 Vrms. Dimensions approx. $15,6 \times 10,6 \mathrm{~mm}$ board space and $11,5 \mathrm{~mm}$ height.

Reed Relays

High sensitive, non polarized relay for telecom and various other applications, available with $1 \mathrm{n} / \mathrm{o}, 2 \mathrm{n} / \mathrm{o}$ or 1c/o contacts. Nominal voltage range from 5 ... 24 V , coil power consumption $50 . . .280 \mathrm{~mW}$ for $1 \mathrm{n} / \mathrm{o}$ and $125 \ldots 280 \mathrm{~mW}$ for 2 n /o or $1 \mathrm{c} / \mathrm{o}$ versions. Reedrelays are available in DIP or SIL housing and capable to switch currents up to 0,5 A. Integrated diode and/or electrostatic shield optional. Dielectric strength 1500 Vdc. Dimensions approx. 19,3 x 7 mm board space and 5 ... $7,5 \mathrm{~mm}$ height for DIP or $19,8 \times 5 \mathrm{~mm}$ board space and $7,8 \mathrm{~mm}$ height for SIL version.

Cradle Relays

Extremely reliable and mature relay family of $1^{\text {st }}$ generation for various signal switching applications. Available as non polarized, polarized / latching and relay with AC coil. The benefit is the possibility of combining various contact sets from 1 up to 6 poles, single and bifurcated contacts, different contact materials with a coil voltage range from $1,5 \mathrm{Vdc}$ to 220 Vac . Cradle relays are available as dust protected and hermetically sealed versions, with plug in or solder terminals and are capable to switch currents up to 5 A . Forcibly guided (linked) contact sets optional. Dielectric strength 500 Vrms. Dimensions from approx. 19×24 to $19 \times 35 \mathrm{~mm}$ board space and 30 mm height.

Other Relays

We offer a variety of different relay families for maintenance and replacement purposes. These relays are up to 60 years old now, such as Card Relay SN (V23030 / V23031 series), Small General Purpose Relay (V23006 series), Small Polarized Relay (V23063 ... V23067 and V23163 ... V23167 series). Accessories like sockets, hold down springs, etc. optional.

HF3 Relay

High performance low cost RF relay with excellent RF characteristics. Available with an impedance of 50 and 75 Ohm. Suitable for frequencies up to 3 GHz . Actually smallest RF relay available combining small size, excellent RF performance and SMD solderability. Available as non latching or latching relay with 1 or 2 coils and a nominal coil voltage range from $3 \ldots 24 \mathrm{~V}$, coil power consumption 140 mW , latching relays with 1 coil 70 mW . Dimensions $14.6 \times 7.3 \times 10 \mathrm{~mm}$.

AXICOM

Tyco Electronics AXICOM Ltd.
Seestrasse 295 -P.O. Box 220
CH-8804 Au-Wädenswil / Switzerland
Phone +41 17829111
Fax +41 17829080
E-mail: axicom@tycoelectronics.com

Tyco Electronics AMP GmbH
Paulsternstrasse 26
D-13629 Berlin / Germany
Phone +49 3038638260
Fax +49 3038638569
E-mail: axicom@tycoelectronics.com

Tyco Electronics EC Trutnov s.r.o.
Komenského 821
CZ-541 01 Trutnov / Czech Republic
E-mail: axicom@tycoelectronics.com

Tyco Electronics Corporation POB 3608,
Harrisburg, PA 17105, USA
Phone +1 800-522-6752

