RED MV50640 YELLOW MV5364X HIGH EFFICIENCY GREEN MV5464X/HLMP-15X3 HIGH EFFICIENCY RED MV5764X/HLMP-130X ### **PACKAGE DIMENSIONS** ### NOTES: - ALL DIMENSIONS ARE IN MM. LEAD SPACING IS MEASURED WHERE THE LEADS EMERGE - FROM THE PACKAGE. 3. PROTRUDED RESIN UNDER THE FLANGE IS 1.5 mm (0.059") ## DESCRIPTION These solid state indicators offer a variety of color selection. The High Efficiency Red and Yellow devices are made with gallium arsenide phosphide on gallium phosphide. The High Efficiency Green utilizes an improved gallium phosphide light emitting diode. All are encapsulated in epoxy packages with diffused lenses. Their small size, wide viewing angle, and small square leads contribute to their versatility as all-purpose indicators. ### **FEATURES** - Replacement for the HLMP-1300 and -1500 product series - 100 mil lead spacing T-1 - High efficiency GaP light - Versatile mounting on PC board or panel - Wide viewing angle - Diffused tinted lens | ТҮРЕ | SOURCE
COLOR | LENS
EFFECT | LUMINOUS
INTENSITY
at 25°C (mcd)
MIN. TYP. | | TEST
CONDITIONS | | |------------------------|-----------------------|-----------------|---|--------|-----------------------|--| | MV50640 | Standard Red | Red Diffused | 0.5 | 1.5 | I ₌ =20 mA | | | MV53640 | Yellow | Yellow Diffused | 1.0 | 2.0 1 | $I_{\rm F}$ =10 mA | | | MV53641 | | | 1.5 | 3.0 | • | | | MV53642 | | | 2.5 | 4.5 | | | | MV54643 | High Efficiency Green | Green Diffused | | • | | | | (HLMP-1503)
MV54644 | | | 2.0 | 5.0 | $I_F=20 \text{ mA}$ | | | (HLMP-1523) | | | 6.0 | 10.0 ∫ | | | | MV57640 | High Efficiency Red | Red Diffused | | | | | | (HLMP-1300) | | | 1.0 | 2.0 | | | | MV57641
(HLMP-1301) | | | 2.0 | 2.5 | I₌=10 mA | | | MV57642 | | | | | ., 1011111 | | | (HLMP-1302) | | | 3.0 | 4.0 | | | # DIFFUSED T-100 SOLID STATE LAMPS | PARAMETER | | SYMBOL | TEST COND. | UNITS | MV50640*
RED | MV5364X
YELLOW | MV5464X
HI. EFF.
GREEN | MV5764X
HI. EFF.
RED | |--------------------------|--------------|-----------------|------------------------|---------|-----------------|-------------------|------------------------------|----------------------------| | Forward voltage | typ.
max. | V_{F} | I _F =10 mA | V | 1.6
2.0 | 2.1
3.0 | 2.2*
3.0* | 2.0
3.0 | | Peak wavelength | | λ | I _F =10 mA | nm | 660 | 585 | 562 | 635 | | Spectral line half width | | | I _F =10 mA | nm | 20 | 35 | 30 | 45 | | Capacitance | typ. | С | V=0, f=1 MHz | pF | 23 | 45 | 20 | 45 | | Reverse voltage | min. | V _{BR} | Ι _R =100 μΑ | V | 5.0 | 5.0 | 5.0 | 5.0 | | Viewing angle
(total) | typ. | 201/2 | See Fig. 3 | degrees | 90 | 90 | 90 | 90 | ^{*}I_F=20 mA | | YLW. | STD. RED | HER/HEG | |--|-----------------|-----------------|----------------| | Power dissipation at 25°C ambient | 85 | 120 mW | 120 mW | | Perate linearly from 50°C | 1.6 mW/°C | 1.6 mW/°C | 1.6 mW/°C | | torage and operating temperatures | -55°C to +100°C | -55°C to +100°C | -55°C to +100° | | ead soldering time at 260°C (1/16 inch from body) | 5 sec. | 5 sec. | 5 sec. | | continuous forward current at 25°C | 20 mA | 30 mA | 30 mA | | Peak forward current (1 µsec pulse, 0.3% duty cycle) | 60 mA | 1.0 A | 90 mA | | Reverse voltage | 5.0 V | 5.0 V | 5.0 V | ## DIFFUSED T-100 SOLID STATE LAMPS ### **DISCLAIMER** FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. #### LIFE SUPPORT POLICY FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein: - Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user. - A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. www.fairchildsemi.com © 2000 Fairchild Semiconductor Corporation