

RoHS

COMPLIANT

Power MOSFET

PRODUCT SUMMARY					
V _{DS} (V)	- 50	0			
$R_{DS(on)}\left(\Omega\right)$	V _{GS} = - 10 V	0.28			
Q _g (Max.) (nC)	14				
Q _{gs} (nC)	6.5	5			
Q _{gd} (nC)	6.5	6.5			
Configuration	Sing	Single			

FEATURES

- Surface Mountable (Order As IRFR9020, SiHFR9020)
- Straight Lead Option (Order As IRFU9020, SiHFU9020)
- · Repetitive Avalanche Ratings
- Dynamic dV/dt Rating
- Simple Drive Requirements
- Ease of Paralleling
- · Lead (Pb)-free Available

DESCRIPTION

The Power MOSFET technology is the key to Vishay's advanced line of Power MOSFET transistors. The efficient geometry and unique processing of this latest "State of the Art" design achieves: very low on-state resistance combined with high transconductance; superior reverse energy and diode recovery dV/dt.

The Power MOSFET transistors also feature all of the well established advantages of MOSFET'S such as voltage control, very fast switching, ease of paralleling and temperature stability of the electrical parameters.

Surface mount packages enhance circuit performance by reducing stray inductances and capacitance. The TO-252 surface mount package brings the advantages of Power MOSFET's to high volume applications where PC Board surface mounting is desirable. The surface mount option IRFR9020, SiHFR9020 is provided on 16mm tape. The straight lead option IRFU9020, SiHFU9020 of the device is called the IPAK (TO-251).

They are well suited for applications where limited heat dissipation is required such as, computers and peripherals, telecommunication equipment, DC/DC converters, and a wide range of consumer products.

ORDERING INFORMATION							
Package	DPAK (TO-252)	DPAK (TO-252)	DPAK (TO-252)	IPAK (TO-251)			
Lead (Pb)-free	IRFR9020PbF	IRFR9020TRPbFa	IRFR9020TRLPbFa	IRFU9020PbF			
	SiHFR9020-E3	SiHFR9020T-E3a	SiHFR9020TL-E3a	SiHFU9020-E3			
SnPb	IRFR9020	IRFR9020TRa	IRFR9020TRLa	IRFU9020			
SHED	SiHFR9020	SiHFR9020T ^a	SiHFR9020TL ^a	SiHFU9020			

Note

a. See device orientation.

ABSOLUTE MAXIMUM RAT	TINGS $T_C = 25 ^{\circ}C$, ur	nless otherw	ise noted		
PARAMETER		SYMBOL	LIMIT	UNIT	
Drain-Source Voltage			V_{DS}	- 50	V
Gate-Source Voltage	sate-Source Voltage			± 20	v
Continuous Drain Current	V at 10 V	T _C = 25 °C		- 9.9	
	V _{GS} at - 10 V	T _C = 100 °C	I _D	- 6.3	A
Pulsed Drain Current ^a			I _{DM}	- 40	
Linear Derating Factor				0.33	W/°C
Single Pulse Avalanche Energy ^b			E _{AS}	440	mJ
Repetitive Avalanche Current ^a			I _{AR}	- 9.9	A
Repetitive Avalanche Energy ^a			E _{AR}	4.2	mJ

^{*} Pb containing terminations are not RoHS compliant, exemptions may apply

Document Number: 90350 S09-0074-Rev. A, 02-Feb-09

IRFR9020, IRFU9020, SiHFR9020, SiHFU9020

Vishay Siliconix

ABSOLUTE MAXIMUM RATINGS T _C = 25 °C, unless otherwise noted							
PARAMETER	SYMBOL	LIMIT	UNIT				
Maximum Power Dissipation $T_C = 25$ °C		P _D	42	W			
Peak Diode Recovery dV/dtc	dV/dt	5.8	V/ns				
Operating Junction and Storage Temperature Range		T _J , T _{stg}	- 55 to + 150	°C			
Soldering Recommendations (Peak Temperature) for 10 s			300 ^d	C			

Notes

- a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 14). b. $V_{DD}=$ 25 V, Starting $T_J=25$ °C, L=5.1 mH, $R_G=25$ Ω , Peak $I_L=$ 9.9 A c. $I_{SD}\leq$ 9.9 A, $dI/dt\leq$ -120 A/ μ s, $V_{DD}\leq$ 40 V, $T_J\leq$ 150 °C. d. 0.063" (1.6 mm) from case. e. When mounted on 1" square PCB (FR-4 or G-10 material).

THERMAL RESISTANCE RATINGS						
PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT	
Maximum Junction-to-Ambient	R_{thJA}	-	-	110		
Case-to-Sink	R _{thCS}	-	1.7	-	°C/W	
Maximum Junction-to-Case (Drain)	R _{thJC}	-	-	3.0		

SPECIFICATIONS T _J = 25 °C, unless otherwise noted									
PARAMETER	SYMBOL	Т	MIN.	TYP.	MAX.	UNIT			
Static		•				•			
Drain-Source Breakdown Voltage	V _{DS}	V _G	_S = 0 V, I _D = - 250 μA	- 50	-	-	V		
Gate-Source Threshold Voltage	V _{GS(th)}	V _{DS}	_S = V _{GS} , I _D = - 250 μA	- 2.0	-	- 4.0	V		
Gate-Source Leakage	I _{GSS}		V _{GS} = ± 20 V	-	-	± 500	nA		
Zava Cata Valtaga Dvain Cuwant	1	V _{DS} =	max. rating, V _{GS} = 0 V	-	-	250			
Zero Gate Voltage Drain Current	I _{DSS}	$V_{DS} = 0.8 \text{ x m}$	ax. rating, V _{GS} = 0 V, T _J = 125 °C	-	-	1000	μΑ		
Drain-Source On-State Resistance	R _{DS(on)}	V _{GS} = - 10 V	$V_{GS} = -10 \text{ V}$ $I_D = 5.7 \text{ A}^b$		0.20	0.28	Ω		
Forward Transconductance	9 _{fs}	V _{DS}	V _{DS} ≤ - 50 V, I _{DS} = - 5.7 A			-	S		
Dynamic									
Input Capacitance	C _{iss}		V _{GS} = 0 V, V _{DS} = - 25 V,		490	-	pF		
Output Capacitance	C _{oss}				320	-			
Reverse Transfer Capacitance	C _{rss}	f = 1.0 MHz, see fig. 9		-	70	-			
Total Gate Charge	Qg		$I_D = -9.7 \text{ A}, V_{DS} = 0.8 \text{ x max}.$	-	9.4	14			
Gate-Source Charge	Q _{gs}	V _{GS} = -10 V	rating, see fig. 16 (Independent operating	-	4.3	6.5	nC		
Gate-Drain Charge	Q_{gd}		temperature)	-	4.3	6.5			
Turn-On Delay Time	t _{d(on)}			-	8.2	12			
Rise Time	t _r		$V_{DD} = -25 \text{ V}, I_{D} = -9.7 \text{ A},$		57	66			
Turn-Off Delay Time	t _{d(off)}	$R_G = 18 \Omega$, $R_D = 2.4 \Omega$, see fig. 15 (Independent operating temperature)		-	12	18	ns		
Fall Time	t _f		, , , , , , , , , , , , , , , , , , , ,			38			
Internal Drain Inductance	L _D	Between le 6 mm (0.25	=	4.5	-	nH			
Internal Source Inductance	L _S		package and center of die contact.			-	nH		

SPECIFICATIONS T _J = 25 °C, unless otherwise noted								
PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNIT		
Drain-Source Body Diode Characteristics								
Continuous Source-Drain Diode Current	Is	MOSFET symbol showing the	-	-	- 9.9	Α		
Pulsed Diode Forward Current ^a	I _{SM}	integral reverse p - n junction diode	-	-	- 40	A		
Body Diode Voltage	V_{SD}	$T_J = 25 ^{\circ}\text{C}, I_S = -9.9 \text{A}, V_{GS} = 0 \text{V}^{\text{b}}$	-	-	- 6.3	V		
Body Diode Reverse Recovery Time	t _{rr}	T _J = 25 °C, I _F = - 9,7 A, dl/dt = 100 A/μs ^b	56	110	280	ns		
Body Diode Reverse Recovery Charge	Q _{rr}	$1 = 25 \text{ G}, \text{ if } = -9.7 \text{ A, di/dt} = 100 \text{ A/} \mu \text{s}^{\circ}$	0.17	0.34	0.85	nC		
Forward Turn-On Time	t _{on}	Intrinsic turn-on time is negligible (turn-on is dominated by L_{S} and L_{D})						

Notes

- a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 14).
- b. Pulse width \leq 300 μ s; duty cycle \leq 2 %.

TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted

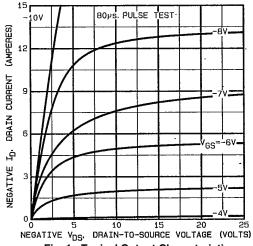
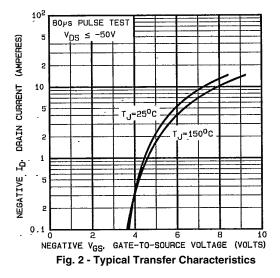



Fig. 1 - Typical Output Characteristics

(AMPERES) DRAIN CURRENT Ė NEGATIVE NEGATIVE VDS, DRAIN-TO-SOURCE VOLTAGE (VOLTS)

Fig. 3 - Typical Saturation Characteristics

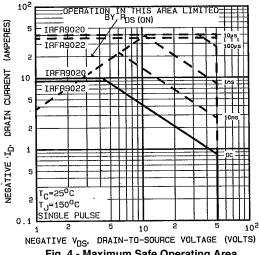


Fig. 4 - Maximum Safe Operating Area

IRFR9020, IRFU9020, SiHFR9020, SiHFU9020

Vishay Siliconix

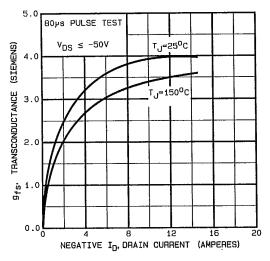


Fig. 5 - Typical Transconductance vs. Drain Current

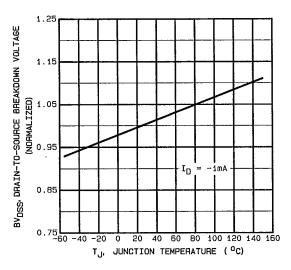


Fig. 7 - Breakdown Voltage vs. Temperature

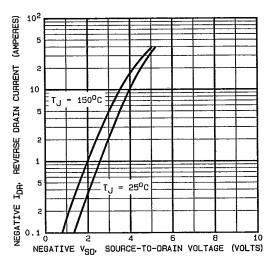


Fig. 6 - Typical Source-Drain Diode Forward Voltage

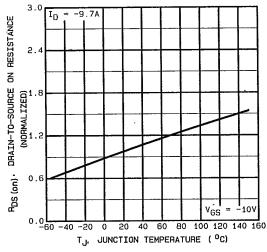


Fig. 8 - Normalized On-Resistance vs. Temperature

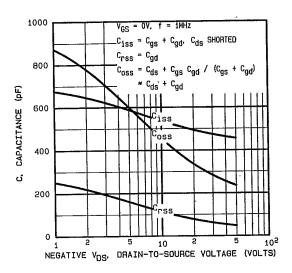


Fig. 9 - Typical Capacitance vs. Drain-to-Source Voltage

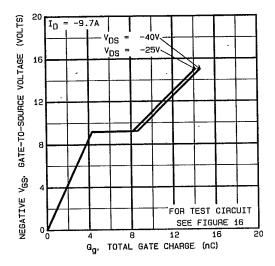


Fig. 10 - Typical Gate Charge vs. Gate-to-Source Voltage

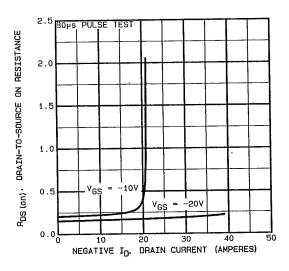


Fig. 11 - Typical On-Resistance vs. Drain Current

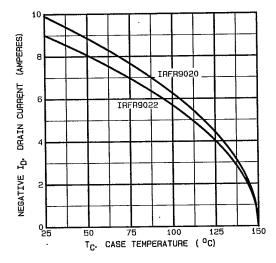


Fig. 12 - Maximum Drain Current vs. Case Temperature

IRFR9020, IRFU9020, SiHFR9020, SiHFU9020

Vishay Siliconix

Fig. 13a - Maximum Avalanche vs. Starting Junction Temperature

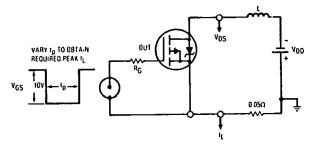


Fig. 13b - Unclamped Inductive Test Circuit

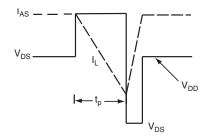


Fig. 13c - Unclamped Inductive Waveforms

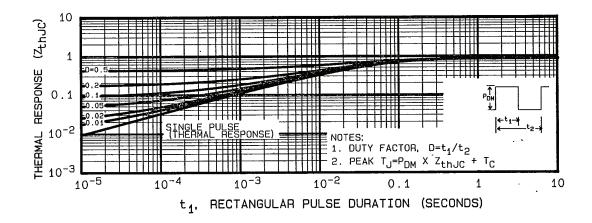


Fig. 14 - Maximum Effective Transient Thermal Impedance, Junction-to-Case vs. Pulse Duration

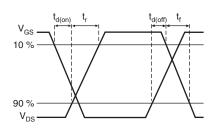


Fig. 15a - Switching Time Waveforms

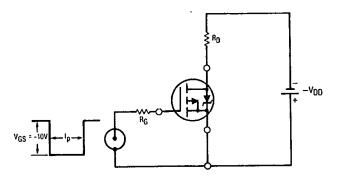


Fig. 15b - Switching Time Test Circuit

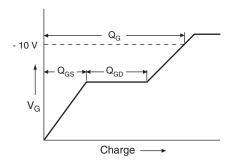
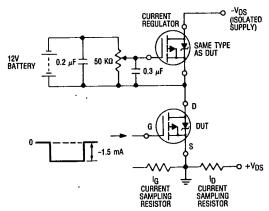
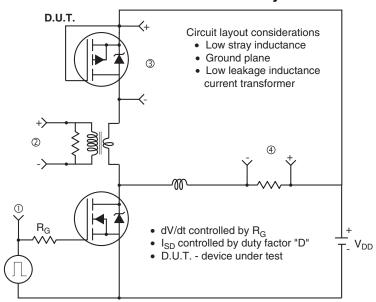
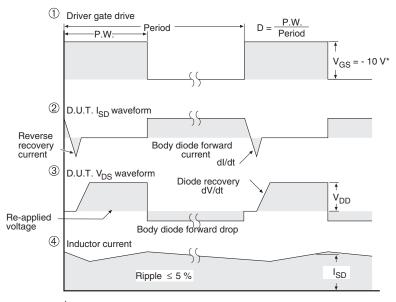


Fig. 16a - Basic Gate Charge Waveform


Fig. 16b - Gate Charge Test Circuit

Peak Diode Recovery dV/dt Test Circuit

• Compliment N-Channel of D.U.T. for driver

* V_{GS} = - 5 V for logic level and - 3 V drive devices

Fig. 17 - For P-Channel

Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see www.vishay.com/ppg?90350.

Vishay

Disclaimer

All product specifications and data are subject to change without notice.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product.

Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

Product names and markings noted herein may be trademarks of their respective owners.

Revision: 18-Jul-08

Document Number: 91000 www.vishay.com