C4D10120E-Silicon Carbide Schottky Diode Z-REC ${ }^{\text {Tm }}$ Rectifier

$$
\begin{aligned}
& \mathbf{V}_{\mathbf{R R M}}=1200 \mathrm{~V} \\
& \mathbf{I}_{\mathrm{F}(\mathrm{AVG})}=10 \mathrm{~A} \\
& \mathbf{Q}_{\mathbf{c}}=66 \mathrm{nC}
\end{aligned}
$$

Features

- 1200-Volt Schottky Rectifier
- Zero Reverse Recovery Current
- High-Frequency Operation
- Temperature-Independent Switching Behavior
- Positive Temperature Coefficient on V_{F}

Benefits

- Replace Bipolar with Unipolar Rectifiers
- Essentially No Switching Losses
- Higher Efficiency
- Reduction of Heat Sink Requirements
- Parallel Devices Without Thermal Runaway

Applications

- Solar Inverters
- Power Factor Correction

Package

TO-252-2

Part Number	Package	Marking
C4D10120E	TO-252-2	C4D10120

Maximum Ratings

Symbol	Parameter	Value	Unit	Test Conditions	Note
$\mathrm{V}_{\text {RRM }}$	Repetitive Peak Reverse Voltage	1200	V		
$V_{\text {RSM }}$	Surge Peak Reverse Voltage	1300	V		
$V_{\text {DC }}$	DC Blocking Voltage	1200	V		
$\mathrm{I}_{\text {(AVG) }}$	Average Forward Current	16.1	A	$\mathrm{T}_{\mathrm{C}}=135^{\circ} \mathrm{C}$; No AC component	
$\mathrm{I}_{\text {FRM }}$	Repetitive Peak Forward Surge Current	$\begin{gathered} 47 \\ 31.5 \end{gathered}$	A	$T_{C}=25^{\circ} \mathrm{C}, \mathrm{t}_{\mathrm{p}}=10 \mathrm{~ms}$, Half Sine pulse $\mathrm{T}_{\mathrm{C}}=110^{\circ} \mathrm{C}, \mathrm{t}_{\mathrm{p}}=10 \mathrm{~ms}$, Half Sine pulse	
$\mathrm{I}_{\text {FSM }}$	Non-Repetitive Peak Forward Surge Current	$\begin{gathered} 71 \\ 59.5 \end{gathered}$	A	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}, \mathrm{t}_{\mathrm{p}}=10 \mathrm{~ms}$, Half Sine pulse $\mathrm{T}_{\mathrm{C}}=110^{\circ} \mathrm{C}, \mathrm{t}_{\mathrm{p}}=10 \mathrm{~ms}$, Half Sine pulse	
$\mathrm{P}_{\text {tot }}$	Power Dissipation	$\begin{gathered} 170.5 \\ 73.9 \end{gathered}$	W	$\begin{aligned} & \mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{C}}=110^{\circ} \mathrm{C} \end{aligned}$	
T ${ }_{\text {c }}$	Maximum Case Temperature	135	${ }^{\circ} \mathrm{C}$		
T ${ }_{\text {J }}$	Operating Junction Range	$\begin{aligned} & -55 \text { to } \\ & +175 \end{aligned}$	${ }^{\circ} \mathrm{C}$		
$\mathrm{T}_{\text {stg }}$	Storage Temperature Range	$\begin{aligned} & -55 \text { to } \\ & +135 \end{aligned}$	${ }^{\circ} \mathrm{C}$		

Electrical Characteristics

Symbol	Parameter	Typ.	Max.	Unit	Test Conditions	Note
V_{F}	Forward Voltage	$\begin{aligned} & 1.5 \\ & 2.2 \end{aligned}$	$\begin{gathered} 1.8 \\ 3 \end{gathered}$	V	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=10 \mathrm{~A} \quad \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C} \\ & \mathrm{I}_{\mathrm{F}}=10 \mathrm{~A} \quad \mathrm{~T}_{\mathrm{J}}=175^{\circ} \mathrm{C} \\ & \hline \end{aligned}$	
I_{R}	Reverse Current	$\begin{aligned} & \hline 30 \\ & 55 \end{aligned}$	$\begin{aligned} & 250 \\ & 350 \end{aligned}$	$\mu \mathrm{A}$	$\begin{aligned} & \hline V_{R}=1200 \vee \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{R}}=1200 \vee \mathrm{~T}_{\mathrm{J}}=175^{\circ} \mathrm{C} \\ & \hline \end{aligned}$	
Q_{C}	Total Capacitive Charge	66		nC	$\begin{aligned} & \mathrm{V}_{\mathrm{R}}=1200 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=10 \mathrm{~A} \\ & \mathrm{~d} i / \mathrm{d} t=200 \mathrm{~A} / \mu \mathrm{S} \\ & \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C} \end{aligned}$	
C	Total Capacitance	$\begin{gathered} 754 \\ 45 \\ 38 \\ \hline \end{gathered}$		pF	$\begin{aligned} & \mathrm{V}_{\mathrm{R}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz} \\ & \mathrm{~V}_{\mathrm{R}}=400{\mathrm{~V}, \mathrm{~T}_{\mathrm{J}}=25^{\circ}{ }^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}}_{\mathrm{V}_{\mathrm{R}}=800 \mathrm{~V}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}} \end{aligned}$	

Note:

1. This is a majority carrier diode, so there is no reverse recovery charge.

Thermal Characteristics

Symbol	Parameter	Typ.	Unit
$\mathrm{R}_{\text {өл }}$	TO-252 Package Thermal Resistance from Junction to Case	0.88	${ }^{\circ} \mathrm{C} / \mathrm{W}$

Typical Performance

Figure 1. Forward Characteristics

Figure 2. Reverse Characteristics

Typical Performance

Figure 3. Current Derating

Figure 5. Recovery Charge vs. Reverse Voltage

Figure 4. Power Derating

Figure 6. Capacitance vs. Reverse Voltage

Typical Performance

Figure 7. Transient Thermal Impedance

Diode Model

$$
\begin{gathered}
\mathrm{V}_{\mathrm{fT}}=\mathrm{V}_{\mathrm{T}}+\mathrm{If} * \mathrm{R}_{\mathrm{T}} \\
\mathrm{~V}_{\mathrm{T}}=0.98+\left(\mathrm{T}_{3} *-1.71 * 10^{-3}\right) \\
\mathrm{R}_{\mathrm{T}}=0.040+\left(\mathrm{T}_{3} * 5.32 * 10^{-4}\right)
\end{gathered}
$$

Note: $\mathbf{T}_{\mathbf{j}}=$ Diode Junction Temperature In Degrees Celsius

Part Number	Package	Marking
C4D10120E	TO-252-2	C4D10120

TO-252-2

Package Dimensions

Package TO-252-2

POS	Inches		Millimeters	
	Min	Max	Min	Max
A	. 250	. 289	6.350	7.341
B	. 197	. 215	5.004	5.461
C	. 027	. 050	. 686	1.270
D*	. 270	. 322	6.858	8.179
E	. 178	. 182	4.521	4.623
F	. 025	. 045	. 635	1.143
G	44°	46°	44°	46°
H	. 380	. 410	9.652	10.414
J	. 090 TYP		2.286 TYP	
K	6°	8°	6°	8°
L	. 086	. 094	2.184	2.388
M	. 018	. 034	. 457	. 864
N	. 035	. 050	. 889	1.270
P	. 231	. 246	5.867	6.248
Q	0.00	. 005	0.00	. 127
R	R0.010 TYP		R0.254 TYP	
S	. 017	. 023	. 432	. 584
T	. 038	. 045	. 965	1.143
U	. 021	. 029	. 533	. 737

Note:

* Tab "D" may not be present

 2002/95/EC on the restriction of the use of certain hazardous substances in electrical and electronic equipment (RoHS), as amended through April $21,2006$.

