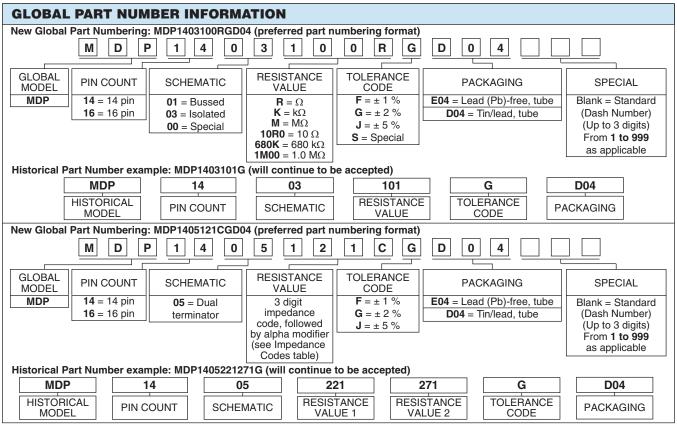


Thick Film Resistor Networks, Dual-In-Line, Molded DIP

FEATURES

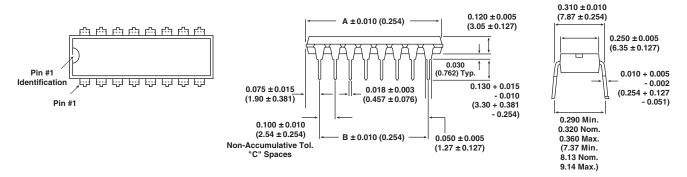
- Isolated, bussed and dual terminator schematics available
- 0.160" (4.06 mm) maximum seated height and rugged, molded case construction
- Thick film resistive elements
- Low temperature coefficient (- 55 °C to + 125 °C)
 ± 100 ppm/°C
- Reduces total assembly costs
- Compatible with automatic inserting equipment
- Wide resistance range (10 Ω to 2.2 M Ω)
- Uniform performance characteristics
- Available in tube pack
- Compliant to RoHS directive 2002/95/EC


(PQ)
Available
(e1)

STANDARD ELECTRICAL SPECIFICATIONS							
GLOBAL MODEL/ NO. OF PINS	SCHEMATIC	POWER RATING ELEMENT (1) P _{70°C} W	RESISTANCE RANGE Ω	TOLERANCE (3) ± %	TEMPERATURE COEFFICIENT (- 55 °C to + 125 °C) ± ppm/°C	TCR TRACKING ⁽²⁾ (- 55 °C to + 125 °C) ± ppm/°C	WEIGHT g
MDP 14	01 03 05	0.125 0.250 0.125	10 to 2.2M 10 to 2.2M Consult factory	1, 2, 5	100	50 50 100	1.3
MDP 16	01 03 05	0.125 0.250 0.125	10 to 2.2M 10 to 2.2M Consult factory	1, 2, 5	100	50 50 100	1.5

Notes

- (1) For resistor power ratings at + 25 °C see derating curves
- (2) Tighter tracking available
- $^{(3)}$ ± 2 % standard, ± 1 % and ± 5 % available


Pb containing terminations are not RoHS compliant, exemptions may apply

Vishay Dale

Thick Film Resistor Networks, Dual-In-Line, Molded DIP

DIMENSIONS in inches (millimeters)

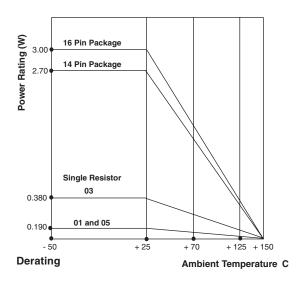
GLOBAL MODEL	A	В	С
MDP 14	0.750 (19.05)	0.600 (15.24)	6
MDP 16	0.850 (21.59)	0.700 (17.78)	7

TECHNICAL SPECIFICATIONS					
PARAMETER	UNIT	MDP14	MDP16		
Package Power Rating (Maximum at + 70 °C)	W	1.73 1.92			
Voltage Coefficient of Resistance	V _{eff}	< 50 ppm typical			
Dielectric Strength	V _{AC}	200			
Insulation Resistance	Ω	> 10 000M minimum			
Operating Temperature Range	°C	- 55 to + 125			
Storage Temperature Range	°C	- 55 to + 150			

MECHANICAL SPECIFICATIONS				
Marking Resistance to Solvents	Permanency testing per MIL-STD-202, method 215			
Solderability	Per MIL-STD-202, method 208E			
Body	Molded epoxy			
Terminals	Solder plated leads			
Weight	14 pin = 1.3 g; 16 pin = 1.5 g			

IMPEDANCE CODES					
CODE	R1 (Ω)	R2 (Ω)	CODE	R1 (Ω)	R2 (Ω)
500B	82	130	141A	270	270
750B	120	200	181A	330	390
800C	130	210	191A	330	470
990A	160	260	221B	330	680
101C	180	240	281B	560	560
111C	180	270	381B	560	1.2K
121B	180	390	501C	620	2.7K
121C	220	270	102A	1.5K	3.3K
131A	220	330	202B	ЗК	6.2K

www.vishay.com


For technical questions, contact: ff2aresistors@vishay.com

Document Number: 31511 Revision: 07-Jun-10

Downloaded from Elcodis.com electronic components distributor

Thick Film Resistor Networks, Dual-In-Line, Molded DIP

CIRCUIT APPLICATIONS	
01 SCHEMATIC	
	13 and 15 resistors with one pin common
Pin #1 MDP1401 >> MDP1601 ->	The MDPXX01 circuit provides a choice of 13 and 15 nominally equal resistors, each connected between a common pin (14 and 16) and a discrete PC board pin. Commonly used in the following applications: • MOS/ROM Pull-up/Pull-down • Open Collector Pull-up • "Wired OR" Pull-up • Power Driven Pull-up • High Speed Parallel Pull-up
03 SCHEMATIC	
	7 and 8 isolated resistors
MDP1403 → MDP1603 →	The MDPXX03 provides a choice of 7 and 8 nominally equal resistors, each resistor isolated from all others and wired directly across. Commonly used in the following applications: • "Wired OR" Pull-up • Power Driven Pull-up • Powergate Pull-up • Line Termination • TTL Input Pull-down
05 SCHEMATIC	
R2 R	TTL dual-line terminator; pulse squaring The MDPXX05 circuit contains 12 and 14 series pair of resistors. Each series pair is connected between ground and a common line. The junction of these resistor pairs is connected to the input terminals. The 05 circuits are designed for TTL dual-line termination and pulse squaring.

Note

 \bullet Standard E24 resistance values stocked. Consult factory.

Document Number: 31511 Revision: 07-Jun-10

Vishay Dale

Thick Film Resistor Networks, Dual-In-Line, Molded DIP

PERFORMANCE					
TEST CONDITIONS		MAX. ∆ <i>R</i> (TYPICAL TEST LOTS)			
Power Conditioning	1.5 rated power, applied 1.5 h "ON" and 0.5 h "OFF" for 100 h \pm 4 h at + 25 °C ambient temperature	± 0.50 % ΔR			
Thermal Shock	5 cycles between - 65 °C and + 125 °C	± 0.50 % ΔR			
Short Time Overload	2.5 x rated working voltage 5 s	± 0.25 % ΔR			
Low Temperature Operation	45 min at full rated working voltage at - 65 °C	± 0.25 % ΔR			
Moisture Resistance	240 h with humidity ranging from 80 % RH to 98 % RH	± 0.50 % ΔR			
Resistance to Soldering Heat	Leads immersed in + 350 °C solder to within 1/16" of device body for 3 s	± 0.25 % ΔR			
Shock	Total of 18 shocks at 100 g's	± 0.25 % ΔR			
Vibration	12 h at maximum of 20 g's between 10 Hz and 2000 Hz	± 0.25 % ΔR			
Load Life	1000 h at + 70 °C, rated power applied 1.5 h "ON, 0.5 h "OFF" for full 1000 h period. Derated according to the curve.	± 1.00 % ΔR			
Terminal Strength	4.5 pound pull for 30 s	± 0.25 % ΔR			
Insulation Resistance	10 000 MΩ (minimum)	-			
Dielectric Withstanding Voltage	No evidence of arcing or damage (200 V _{RMS} for 1 min)	-			

www.vishay.com

For technical questions, contact: ff2aresistors@vishay.com

Document Number: 31511 Revision: 07-Jun-10

Vishay

Disclaimer

All product specifications and data are subject to change without notice.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product.

Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

Product names and markings noted herein may be trademarks of their respective owners.

Revision: 18-Jul-08

Document Number: 91000 www.vishay.com