Not for New Designs. See Vishay 298D Series for New Design and/or Replacements

Vishay Sprague

Solid Tantalum Chip Capacitors, TANTAMOUNT[®], Leadframeless Molded

292D

Image is not to scale

Not for New Designs - please refer to: www.vishay.com/doc?40065

PERFORMANCE CHARACTERISTICS

Operating Temperature: - 55 °C to + 85 °C (To + 125 °C with voltage derating) Note

Capacitance Range: 1.0 μ F to 47 μ F Capacitance Tolerance: ± 10 %, ± 20 % standard Voltage Rating: 3 WVDC to 20 WVDC

• Refer to Doc. 40088

ORDI	ERING INFORM	ATION				
292D	106	X0	010	Р	2	Т
TYPE	CAPACITANCE	CAPACITANCE TOLERANCE	DC VOLTAGE RATING AT + 85 °C	CASE CODE	TERMINATION	REEL SIZE AND PACKAGING
	This is expressed in picofarads. The first two digits are the significant figures. The third is the number of zeros to follow.	X0 = ± 20 % X9 = ± 10 %	This is expressed in volts. To complete the three-digit block, zeros precede the voltage rating. A decimal point is indicated by an "R" (6R3 = 6.3 V).	See ratings and case codes table	2 = 100 % Tin 4 = Gold plated 8 = Solder plated (60/40) Special order	T = Tape and reel* 7" [178 mm] reel W = 13" [330 mm] reel *Cathode nearest sprocket hole

Note • Preferred tolerance and reel sizes are in bold

DIMENSIONS in inches [millimeters]						
			Tantalum Wire Identifies Anod Terminal			
CASE	EIA	L	W	Н	Р	
R	0805 [2012]	$\begin{array}{c} 0.079 \pm 0.008 \\ [2.0 \pm 0.2] \end{array}$	$\begin{array}{c} 0.051 \pm 0.008 \\ [1.3 \pm 0.2] \end{array}$	0.047 (Max.) [1.2 Max.]	$\begin{array}{c} 0.020 \pm 0.012 \\ [0.5 \pm 0.3] \end{array}$	
Р	0805 [2012]	$\begin{array}{c} 0.079 \pm 0.010 \\ [2.0 \pm 0.25] \end{array}$	$\begin{array}{c} 0.053 \pm 0.008 \\ [1.35 \pm 0.2] \end{array}$	$\begin{array}{c} 0.053 \pm 0.008 \\ [1.35 \pm 0.2] \end{array}$	$\begin{array}{c} 0.020 \pm 0.012 \\ [0.5 \pm 0.3] \end{array}$	

RATINGS AND CASE CODES							
μF	3 V	4 V	6.3 V	10 V	16 V	20 V	
1.0				R	R	R	
2.2		R	R	R	R	R	
3.3		R		P/R	R		
4.7		R	R	P/R	R		
6.8		R	R	P/R			
10		R	P/R	P/R	Р		
15		R	R	Р			
22		P/R	P/R				
33		P/R	Р				
47	Р						

* Pb containing terminations are not RoHS compliant, exemptions may apply

Document Number: 40042 Revision: 16-Sep-09

Vishay Sprague

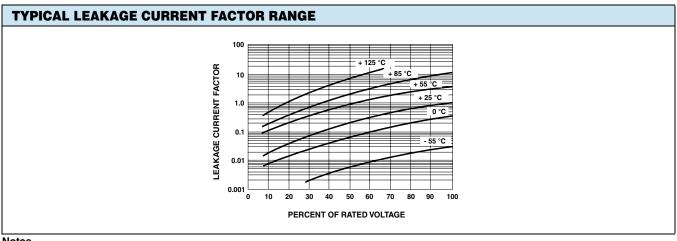
Solid Tantalum Chip Capacitors, TANTAMOUNT[®] Leadframeless Molded

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$								
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	RIPPLE Hz I _{rms} A)							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $								
2.2 R 292D225X_004R2T 0.5 6 7.6 0.1 3.3 R 292D33X_004R2T 0.5 6 7.6 0.1 4.7 R 292D475X_004R2T 0.5 6 6.3 0.0 6.8 R 292D16X_004R2T 0.5 6 5.5 0.1 10 R 292D16X_004R2T 0.5 6 5.1 0.0 15 R 292D15X_004R2T 0.9 8 3.5 0.0 22 P 292D36X_004P2T 0.9 8 3.5 0.0 33 P 292D36X_004P2T 1.3 10 3.5 0.0 33 P 292D36X_004P2T 1.3 10 1.1 0. 33 P 292D36X_004P2T 0.5 10 7.6 0.0 4.7 R 292D36X_04P2T 0.5 10 7.6 0.0 4.7 R 292D36X_04P2T 1.3 10 7.6	21							
3.3 R 292D335X_004R2T 0.5 6 7.6 0.0 4.7 R 292D475X_004R2T 0.5 6 6.3 0.0 6.8 R 292D665X_004R2T 0.5 6 5.5 0.0 10 R 292D166X_004R2T 0.5 6 5.1 0.0 15 R 292D266X_004P2T 0.9 8 3.5 0.0 22 P 292D226X_004P2T 0.9 10 3.5 0.0 33 P 292D336X_004P2T 1.3 10 3.5 0.0 33 R 292D336X_004P2T 1.3 12 3.5 0.0 4.7 R 292D336X_004P2T 1.3 12 3.5 0.0 4.7 R 292D336X_004P2T 0.5 10 7.6 0.0 4.7 R 292D475X_6R3R2T 0.5 6 2.0 0.0 4.7 R 292D475X_6R3R2T 0.6 6								
4.7 R 292D475X_004R2T 0.5 6 6.3 0.0 6.8 R 292D685X_004R2T 0.5 6 5.5 0.0 10 R 292D166X_004R2T 0.5 6 5.1 0.0 15 R 292D156X_004R2T 0.8 8 3.5 0.0 22 P 292D236X_004P2T 0.9 8 3.5 0.0 33 P 292D336X_004P2T 1.3 10 3.5 0.0 33 P 292D336X_004P2T 1.3 10 1.1 0.7 33 R 292D225X_6R3R2T 0.5 10 7.6 0.0 4.7 R 292D25X_6R3R2T 0.5 10 7.6 0.0 4.7 R 292D475X_6R3R2T_035 0.6 6 3.4 0.0 6.8 R 292D685X_6R3R2T_035 0.5 6 2.0 0.0 10 P 292D16X_6R3R2T_035 0.9 10 3.5 0.0 10 R 292D16X_6R3R2T_035 0.9 <t< td=""><td></td></t<>								
6.8 R 292D685X_004R2T 0.5 6 5.5 0.0 10 R 292D166X_004R2T 0.5 6 5.1 0.0 15 R 292D126X_004R2T 0.9 8 3.5 0.0 22 P 292D226X_004P2T 0.9 8 3.5 0.0 33 P 292D336X_004P2T 1.3 10 3.5 0.0 33 P 292D336X_004P2T 1.3 10 1.1 0. 33 R 292D336X_004P2T 1.3 10 1.1 0. 33 R 292D336X_004P2T 1.3 10 1.1 0. 33 R 292D336X_004P2T 0.5 10 7.6 0.0 4.7 R 292D25X_6R382T 0.5 10 7.6 0.0 4.7 R 292D475X_6R382T 0.5 6 5.0 0.0 6.8 R 292D685X_6R382T 0.6 6 1								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
15 R 292D156X_004R27 0.8 8 3.5 0.0 22 P 292D226X_004R2T 0.9 8 3.5 0.0 33 P 292D236X_004P2T 0.9 10 3.5 0.0 33 P 292D336X_004P2T 1.3 10 1.1 0.7 33 R 292D336X_004P2T 1.3 10 1.1 0.7 33 R 292D336X_004P2T 1.3 10 1.1 0.7 33 R 292D352X_GR3R2T 0.5 10 7.6 0.0 4.7 R 292D475X_GR3R2T 0.5 6 2.0 0.0 4.7 R 292D685X_GR3R2T 0.5 6 2.0 0.0 6.8 R 292D685X_GR3R2T 0.5 6 2.0 0.0 10 P 292D166X_GR3R2T 0.6 6 3.5 0.0 10 R 292D166X_GR3R2T_035 0.9 10								
22 P 292D226X_004P2T 0.9 8 3.5 0.1 22 R 292D36X_004P2T 0.9 10 3.5 0.1 33 P 292D336X_004P2T 1.3 10 3.1 0 33 P 292D336X_004P2T_035 1.3 10 1.1 0 33 R 292D336X_004P2T 1.3 12 3.5 0.1 6.3 WVDC AT + 85 °C, 4 WVDC AT + 125 °C								
22 R 292D226X_004R2T 0.9 10 3.5 0.0 33 P 292D336X_004P2T 1.3 10 3.5 0.0 33 P 292D336X_004P2T 1.3 10 1.1 0.0 33 R 292D336X_004P2T 1.3 12 3.5 0.0 33 R 292D325X_6R3R2T 0.5 10 7.6 0.0 4.7 R 292D475X_6R3R2T 0.6 6 2.0 0.0 4.7 R 292D475X_6R3R2T 0.5 6 5.0 0.0 6.8 R 292D685X_6R3R2T 0.6 6 3.4 0.0 6.8 R 292D106X_6R3R2T 0.5 6 2.0 0.0 10 P 292D106X_6R3R2T 0.6 6 1.2 0.0 15 R 292D106X_6R3R2T 0.6 6 1.2 0.0 15 R 292D105X_6R3R2T 1.6 6 <t< td=""><td></td></t<>								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
33 P 292D336X_004P2T_035 1.3 10 1.1 0. 33 R 292D336X_004P2T 1.3 12 3.5 0.0 6.3 WVDC AT + 85 °C, 4 WVDC AT + 125 °C 2.2 R 292D25X_6R3R2T 0.5 10 7.6 0.0 4.7 R 292D475X_6R3R2T 0.6 6 2.0 0.0 4.7 R 292D475X_6R3R2T 0.5 6 2.0 0.0 4.7 R 292D665X_6R3R2T 0.5 6 2.0 0.0 6.8 R 292D166X_6R3R2T 0.6 6 3.5 0.0 10 P 292D106X_6R3R2T 0.6 6 1.2 0.1 15 R 292D156X_6R3R2T_035 0.9 10 1.8 0.2 22 P 292D266X_6R3R2T_035 0.9 10 1.1 0.7 22 P 292D26X_6R3R2T 1.3 10 3.5 0.0 <th< td=""><td>85</td></th<>	85							
33 R 292D336X_004R2T 1.3 12 3.5 0.0 6.3 WVDC AT + 85 °C, 4 WVDC AT + 125 °C 2.2 R 292D225X_6R3R2T 0.5 10 7.6 0.0 4.7 R 292D475X_6R3R2T 0.6 6 2.0 0.0 4.7 R 292D475X_6R3R2T 0.6 6 3.4 0.0 6.8 R 292D685X_6R3R2T 0.5 6 5.0 0.0 6.8 R 292D685X_6R3R2T 0.6 6 3.5 0.0 10 P 292D106X_6R3R2T 0.6 6 1.2 0.0 15 R 292D156X_6R3R2T 0.6 6 1.2 0.0 15 R 292D156X_6R3R2T 0.6 6 1.2 0.0 15 R 292D156X_6R3R2T 0.6 1.8 0.7 22 P 292D262X_6R3R2T 1.3 10 3.5 0.0 22 P 292D								
6.3 WVDC AT + 85 °C, 4 WVDC AT + 125 °C 2.2 R 292D225X_6R3R2T 0.5 10 7.6 0.0 4.7 R 292D475X_6R3R2T 0.6 6 2.0 0.0 4.7 R 292D475X_6R3R2T 0.6 6 3.4 0.0 6.8 R 292D685X_6R3R2T 0.5 6 5.0 0.0 6.8 R 292D106X_6R3R2T 0.6 6 3.5 0.0 10 P 292D106X_6R3R2T 0.6 6 1.2 0.1 10 R 292D16X_6R3R2T 0.6 6 1.2 0.1 15 R 292D15X_6R3R2T_035 0.9 10 3.5 0.0 15 R 292D15X_6R3R2T_035 0.9 10 1.8 0.1 22 P 292D26X_6R3R2T 1.3 10 3.5 0.0 22 P 292D26X_6R3R2T 1.4 10 3.5 0.0 33 <t< td=""><td></td></t<>								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$)85							
4.7R292D475X_6R3R2T_0350.662.00.04.7R292D475X_6R3R2T0.663.40.06.8R292D685X_6R3R2T0.565.00.06.8R292D685X_6R3R2T_0350.562.00.010P292D106X_6R3P2T0.663.50.010R292D106X_6R3R2T_0350.9103.50.015R292D15X_6R3R2T_0350.9103.50.015R292D15X_6R3R2_0350.9101.80.722P292D26X_6R3P2_1350.9101.10.722P292D26X_6R3P2_1350.9101.10.722R292D26X_6R3P2_1350.9101.10.722R292D26X_6R3P2_121.4103.50.033P292D36X_6R3P2T2.1123.50.01.0R292D15X_010R20.549.60.02.2R292D25X_010R2T0.582.00.73.3R292D35X_010R20.581.00.73.3R292D35X_010R2_0350.582.00.73.3P292D35X_010P2T0.585.00.04.7P292D475X_010R2T0.585.00.04.7R292D475X_010R2T0.585.00.0 <td></td>								
4.7R $292D475X_6R3R2T$ 0.663.40.06.8R $292D685X_6R3R2T$ 0.565.00.06.8R $292D685X_6R3R2T_035$ 0.562.00.010P $292D106X_6R3R2T$ 0.663.50.010R $292D106X_6R3R2T$ 0.661.20.715R $292D156X_6R3R2T_035$ 0.9103.50.015R $292D15X_6R3R2_035$ 0.9101.80.722P $292D226X_6R3P2T$ 1.3103.50.722P $292D226X_6R3P2T$ 1.4103.50.033P $292D236X_6R3P2T$ 2.1123.50.0In WVDC AT + 85 °C, 7 WVDC AT + 125 °C1.0R $292D335X_010R2$ 0.582.00.73.3R $292D335X_010R2$ 0.582.00.73.3P $292D335X_010R2$ 0.582.00.73.3P $292D35X_010P2T$ 0.582.00.73.3P $292D475X_010R2T$ 0.585.00.04.7R $292D475X_010R2T$ 0.585.00.04.7R $292D475X_010R2T_035$ 0.582.00.7)57							
6.8 R $292D685X_6R3R2T$ 0.5 6 5.0 0.0 6.8 R $292D685X_6R3R2T_035$ 0.5 6 2.0 0.0 10 P $292D106X_6R3P2T$ 0.6 6 3.5 0.0 10 R $292D106X_6R3P2T$ 0.6 6 1.2 0.7 15 R $292D156X_6R3R2T_035$ 0.9 10 3.5 0.0 15 R $292D15X_6R3R2_035$ 0.9 10 1.8 0.7 22 P $292D226X_6R3P2T$ 1.3 10 3.5 0.7 22 P $292D226X_6R3P2T$ 1.3 10 3.5 0.6 22 P $292D226X_6R3P2T$ 1.3 10 3.5 0.6 22 P $292D226X_6R3P2T$ 1.4 10 3.5 0.6 22 P $292D226X_6R3P2T$ 2.1 12 3.5 0.6 33 P $292D235X_010R2T$ 0.5 4 9.6 0.6 2.2 R $292D235X_010R2T$ 0.5 8 2.0 0.7 3.3 R $292D335X_010R2T$ 0.5 8 1.0 0.7 3.3 P $292D335X_010P2T$ 0.5 8 2.0 0.7 4.7 P $292D475X_010P2T$ 0.5 8 5.0 0.6 4.7 R $292D475X_010R2T$ 0.5 8 2.0 0.7 4.7 R $292D475X_010R2T$ 0.5 8 2.0 0.7 <)86							
6.8R292D685X_6R3R2T_0350.562.00.010P292D106X_6R3P2T0.663.50.010R292D106X_6R3R2T0.661.20.715R292D156X_6R3R2T_0350.9103.50.015R292D15X_6R3R2_0350.9101.80.722P292D226X_6R3P2_0350.9101.10.722P292D226X_6R3P2_0350.9101.10.722R292D226X_6R3P2_0350.9101.10.722R292D236X_6R3P2_0350.9101.10.722R292D26X_6R3R2T1.4103.50.033P292D36X_6R3P2T2.1123.50.033P292D105X_010R20.549.60.02.2R292D225X_010R2T0.582.00.73.3R292D335X_010R2T0.582.00.73.3R292D335X_010R2T0.581.00.73.3P292D335X_010R2T0.582.00.73.3P292D475X_010R2T0.585.00.04.7R292D475X_010R2T0.585.00.04.7R292D475X_010R2T0.582.00.74.7R292D475X_010R2T0.582.00.7<	86							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$)71							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	67							
15 R 292D156X_6R3R2T_035 0.9 10 3.5 0.0 15 R 292D15X_6R3R2_035 0.9 10 1.8 0.7 22 P 292D226X_6R3P2T 1.3 10 3.5 0.7 22 P 292D226X_6R3P2_035 0.9 10 1.1 0.7 22 P 292D226X_6R3P2_035 0.9 10 1.1 0.7 22 R 292D226X_6R3P2T 1.4 10 3.5 0.0 33 P 292D236X_6R3P2T 2.1 12 3.5 0.0 33 P 292D105X_010R2 0.5 4 9.6 0.0 2.2 R 292D105X_010R2 0.5 8 2.0 0.7 3.3 R 292D135X_010R2 0.5 8 2.0 0.7 3.3 R 292D335X_010R2 0.5 8 1.0 0.7 3.3 P 292D335X_010P2T 0.5 8	85							
15 R 292D15X_6R3R2_035 0.9 10 1.8 0.7 22 P 292D226X_6R3P2T 1.3 10 3.5 0.7 22 P 292D226X_6R3P2_035 0.9 10 1.1 0.7 22 P 292D226X_6R3P2_035 0.9 10 1.1 0.7 22 R 292D226X_6R3R2T 1.4 10 3.5 0.0 33 P 292D36X_6R3P2T 2.1 12 3.5 0.0 10 WVDC AT + 85 °C, 7 WVDC AT + 125 °C 1.0 R 292D105X_010R2 0.5 4 9.6 0.0 2.2 R 292D225X_010R2T 0.5 8 2.0 0.7 3.3 R 292D335X_010R2T 0.5 8 2.0 0.7 3.3 R 292D335X_010R2T 0.5 8 2.0 0.7 3.3 P 292D335X_010P2T 0.5 8 2.0 0.7 4.7	44							
22 P 292D226X_6R3P2T 1.3 10 3.5 0.7 22 P 292D226X_6R3P2_035 0.9 10 1.1 0.7 22 R 292D226X_6R3P2T 1.4 10 3.5 0.0 33 P 292D36X_6R3P2T 2.1 12 3.5 0.0 10 WVDC AT+ 85 °C, 7 WVDC AT + 125 °C 10 WVDC AT+ 85 °C, 7 WVDC AT + 125 °C 10 WVDC AT+ 85 °C, 7 WVDC AT + 125 °C 10 WVDC AT+ 85 °C, 7 WVDC AT + 125 °C 1.0 R 292D105X_010R2 0.5 4 9.6 0.0 2.2 R 292D225X_010R2T 0.5 8 2.0 0.7 3.3 R 292D335X_010R2T 0.5 8 2.0 0.7 3.3 R 292D335X_010P2T 0.5 8 2.0 0.7 3.3 P 292D335X_010P2T 0.5 8 5.0 0.0 4.7 P 292D475X_010P2T 0.5 8	85							
22 P 292D226X_6R3P2_035 0.9 10 1.1 0.7 22 R 292D226X_6R3R2T 1.4 10 3.5 0.0 33 P 292D336X_6R3P2T 2.1 12 3.5 0.0 IO WVDC AT+ 85 °C, 7 WVDC AT + 125 °C 1.0 R 292D105X_010R2 0.5 4 9.6 0.0 2.2 R 292D225X_010R2T 0.5 6 6.3 0.0 2.2 R 292D335X_010R2T 0.5 8 2.0 0.7 3.3 R 292D335X_010R2T 0.5 8 2.0 0.7 3.3 R 292D335X_010P2T 0.5 8 2.0 0.7 3.3 P 292D335X_010P2T 0.5 8 2.0 0.7 3.3 P 292D335X_010P2T 0.5 8 2.0 0.7 4.7 P 292D475X_010P2T 0.5 8 5.0 0.0 4.7	18							
22 R 292D226X_6R3R2T 1.4 10 3.5 0.0 33 P 292D336X_6R3R2T 2.1 12 3.5 0.0 10 WVDC AT+ 85 °C, 7 WVDC AT + 125 °C 1.0 R 292D105X_010R2 0.5 4 9.6 0.0 2.2 R 292D225X_010R2T 0.5 6 6.3 0.0 3.3 R 292D335X_010R2T 0.5 8 2.0 0.7 3.3 P 292D335X_010P2T 0.5 8 2.0 0.7 3.3 P 292D335X_010P2T 0.5 8 5.0 0.0 4.7 P 292D475X_010P2T 0.5 8 5.0 0.0 4.7 R </td <td>18</td>	18							
33 P 292D336X_6R3P2T 2.1 12 3.5 0.0 10 WVDC AT+ 85 °C, 7 WVDC AT + 125 °C 1.0 R 292D105X_010R2 0.5 4 9.6 0.0 2.2 R 292D225X_010R2T 0.5 6 6.3 0.0 3.3 R 292D335X_010R2T 0.5 8 2.0 0.7 3.3 R 292D335X_010R2_035 0.5 8 1.0 0.7 3.3 P 292D335X_010P2T 0.5 8 2.0 0.7 3.3 P 292D335X_010P2T 0.5 8 2.0 0.7 3.3 P 292D335X_010P2T 0.5 8 2.0 0.7 4.7 P 292D475X_010P2T 0.5 8 5.0 0.0 4.7 R 292D475X_010R2T 0.5 8 5.0 0.0 4.7 R 292D475X_010R2T_035 0.5 8 2.0 0.7	51							
10 WDC AT+ 85 °C, 7 WVDC AT + 125 °C 0.0 1.0 R 292D105X_010R2 0.5 4 9.6 0.0 2.2 R 292D225X_010R2T 0.5 6 6.3 0.0 3.3 R 292D335X_010R2T 0.5 8 2.0 0.7 3.3 R 292D335X_010R2T 0.5 8 1.0 0.7 3.3 R 292D335X_010R2_035 0.5 8 1.0 0.7 3.3 P 292D335X_010P2T 0.5 8 2.0 0.7 3.3 P 292D335X_010P2T 0.5 8 2.0 0.7 4.7 P 292D475X_010P2T 0.5 8 5.0 0.0 4.7 R 292D475X_010R2T 0.5 8 5.0 0.0 4.7 R 292D475X_010R2T_035 0.5 8 2.0 0.7	85							
1.0 R 292D105X_010R2 0.5 4 9.6 0.0 2.2 R 292D225X_010R2T 0.5 6 6.3 0.0 3.3 R 292D335X_010R2T 0.5 8 2.0 0.7 3.3 R 292D335X_010R2T 0.5 8 1.0 0.7 3.3 R 292D335X_010R2_035 0.5 8 1.0 0.7 3.3 P 292D335X_010P2T 0.5 8 2.0 0.7 4.7 P 292D475X_010P2T 0.5 8 5.0 0.0 4.7 R 292D475X_010R2T 0.5 8 5.0 0.0 4.7 R 292D475X_010R2T 0.5 8 2.0 0.7	85							
2.2 R 292D225X_010R2T 0.5 6 6.3 0.0 3.3 R 292D335X_010R2T 0.5 8 2.0 0.7 3.3 R 292D335X_010R2_035 0.5 8 1.0 0.7 3.3 R 292D335X_010P2T 0.5 8 2.0 0.7 3.3 P 292D335X_010P2T 0.5 8 2.0 0.7 4.7 P 292D475X_010P2T 0.5 8 5.0 0.0 4.7 R 292D475X_010R2T 0.5 8 5.0 0.0 4.7 R 292D475X_010R2T 0.5 8 2.0 0.7								
3.3 R 292D335X_010R2T 0.5 8 2.0 0.7 3.3 R 292D335X_010R2_035 0.5 8 1.0 0.7 3.3 P 292D335X_010P2T 0.5 8 2.0 0.7 3.3 P 292D335X_010P2T 0.5 8 2.0 0.7 4.7 P 292D475X_010P2T 0.5 8 5.0 0.0 4.7 R 292D475X_010R2T 0.5 8 5.0 0.0 4.7 R 292D475X_010R2T 0.5 8 2.0 0.7)51							
3.3 R 292D335X_010R2_035 0.5 8 1.0 0.7 3.3 P 292D335X_010P2T 0.5 8 2.0 0.7 4.7 P 292D475X_010P2T 0.5 8 5.0 0.0 4.7 R 292D475X_010R2T 0.5 8 5.0 0.0 4.7 R 292D475X_010R2T 0.5 8 5.0 0.0 4.7 R 292D475X_010R2T 0.5 8 2.0 0.7	63							
3.3 P 292D335X_010P2T 0.5 8 2.0 0.7 4.7 P 292D475X_010P2T 0.5 8 5.0 0.0 4.7 R 292D475X_010P2T 0.5 8 5.0 0.0 4.7 R 292D475X_010R2T 0.5 8 5.0 0.0 4.7 R 292D475X_010R2T_035 0.5 8 2.0 0.7	12							
4.7P292D475X_010P2T0.585.00.04.7R292D475X_010R2T0.585.00.04.7R292D475X_010R2T_0350.582.00.7	58							
4.7R292D475X_010R2T0.585.00.04.7R292D475X_010R2T_0350.582.00.1	12							
4.7 R 292D475X_010R2T_035 0.5 8 2.0 0.1)71							
)71							
6.8 P 292D685X 010P2T 0.7 8 20 0.1	12							
	12							
	12							
	12							
	12							
	85							
	51							
16 WVDC AT + 85 °C, 10 WVDC AT + 125 °C								
)52							
	65							
	65							
	91							
	65							
	065							
20 WVDC AT + 85 °C, 13 WVDC AT + 125 °C								
)71							
	40							

www.vishay.com 36 For technical questions, contact: <u>tantalum@vishay.com</u>

Document Number: 40042 Revision: 16-Sep-09

Not for New Designs. See Vishay 298D Series for New Design and/or Replacements


Solid Tantalum Chip Capacitors, TANTAMOUNT[®] Leadframeless Molded

Vishay Sprague

292D

CAPACITORS PERFORMANCE CHARACTERISTICS

ELECTRICAL PERFO	RMANCE CHARAC	TERISTICS				
ITEM	PERFORMANCE CHARACTERISTICS					
Category Temperature Range	- 55 °C to + 85 °C (to + 12	5 °C with voltage derating)				
Capacitance Tolerance	± 20 %, ± 10 % (at 120 Hz) 2 V _{rms} at + 25 °C using a	capacitance bridge			
Dissipation Factor (at 120 Hz)	Limits per Standard Rating	s Table. Tested via bridge r	nethod, at 25 °C, 120 Hz.			
ESR (100 kHz)	Limits per Standard Rating	s Table. Tested via bridge r	nethod, at 25 °C, 100 kHz.			
			for 5 minutes using a stead	v source of power with		
Leakage Current		0 11 1	akage current at 25 °C is not	, I		
Lounago ourioni		opropriate adjustment factor	C .			
Reverse Voltage	3 1	, , ,	in the reverse direction equ	al to: 10 % of the DC		
neverse voltage		•••••••	in the reverse direction equ			
	5 % of the DC rating at + 8					
	Vishay does not recommended intentional or repetitive application of reverse voltage					
Temperature Derating	If capacitors are to be used at temperatures above + 25 °C, the permissible rms ripple current or voltage					
	1.0 at + 25 °C					
	0.9 at + 85 °C					
	0.4 at + 125 °C					
Maximum Permissible Power Dissipation at 25 °C (W) in free air	P- + R-case: 0.025					
Operating Temperature	+ 85 °C	RATING	+ 125 °C	RATING		
	WORKING VOLTAGE	SURGE VOLTAGE	WORKING VOLTAGE	SURGE VOLTAGE		
	4	5.2	2.7	3.4		
	6.3	8	4	5		
	10	13	7	8		
	16	20	10	12		
	20	26	13	16		
	25	32	17	20		
	35	46	23	28		
	50	65	33	40		

Notes

• At + 25 °C, the leakage current shall not exceed the value listed in the Standard Ratings Table

• At + 85 °C, the leakage current shall not exceed 10 times the value listed in the Standard Ratings Table

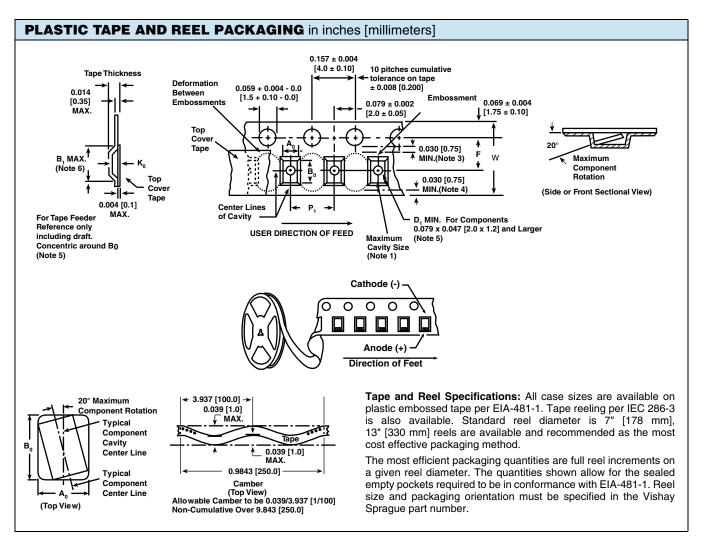
• At + 125 °C, the leakage current shall not exceed 12 times the value listed in the Standard Ratings Table

Vishay Sprague

Solid Tantalum Chip Capacitors, TANTAMOUNT[®] Leadframeless Molded

ENVIRONMENTAL PERFORMANCE CHARACTERISTICS						
ITEM	CONDITION	POST TEST PERFOR	POST TEST PERFORMANCE			
Life Test at + 85 °C	1000 h application of rated voltage at 85 °C with a 3 Ω series resistance, MIL-STD 202G Method 108A	Capacitance Change Dissipation Factor Leakage Current	Refer to Standard Ratings Table Not to exceed 150 % of initial Not to exceed 200 % of initial			
Humidity Tests	At 40 °C/90 % RH 500 h, no voltage applied. MIL-STD 202G Method 103B	Capacitance Change Dissipation Factor Leakage Current	Refer to Standard Ratings Table Not to exceed 150 % of initial Not to exceed 200 % of initial			
Thermal Shock	At - 55 °C/+ 125 °C, 30 min. each, for 5 cycles. MIL-STD 202G Method 107G	Capacitance Change Dissipation Factor Leakage Current	Refer to Standard Ratings Table Not to exceed 150 % of initial Not to exceed 200 % of initial			

TEST CONDITION	CONDITION	POST TEST PERFORM	MANCE	
Terminal Strength	Apply a pressure load of 5 N for 10 ± 1 s horizontally to the center of capacitor side body. AECQ-200 rev. C Method 006	Capacitance Change Dissipation Factor Leakage Current	Refer to Standard Ratings Table Initial specified value or less Initial specified value or less	
		There shall be no mech post-conditioning.	nanical or visual damage to capacitors	
Substrate Bending (Board flex)	With parts soldered onto substrate test board, apply force to the test board for a deflection of 1 mm. AECQ-200 rev. C Method 005	Capacitance Change Dissipation Factor Leakage Current	Refer to Standard Ratings Table Initial specified value or less Initial specified value or less	
Vibration	MIL-STD-202G, Method 204D, 10 Hz to 2000 Hz, 20 G Peak	Capacitance Change Dissipation Factor Leakage Current	Refer to Standard Ratings Table Initial specified value or less Initial specified value or less	
		There shall be no mech post-conditioning.	nanical or visual damage to capacitors	
Shock	Mil-Std-202G, Method 213B, Condition I, 100G Peak	Capacitance Change Dissipation Factor Leakage Current	Refer to Standard Ratings Table Initial specified value or less Initial specified value or less	
		There shall be no mech post-conditioning.	nanical or visual damage to capacitors	
Resistance to Solder Heat	At 260 °C, for 10 s, reflow	Capacitance Change Dissipation Factor Leakage Current	Refer to Standard Ratings Table Not to exceed 150 % of initial Not to exceed 200 % of initial	
		There shall be no mech post-conditioning.	nanical or visual damage to capacitors	
Solderability MIL-STD-202G, Method 208H, ANSI/J-Std-002, Test B. Applies only to Solder and tin plated terminations. Does not apply to gold terminations.		There shall be no mechanical or visual damage to capacitors post-conditioning.		
Resistance to Solvents	MIL-STD-202, Method 215D	There shall be no mech post-conditioning.	nanical or visual damage to capacitors	
Flammability	Encapsulation materials meet UL94 VO with an oxygen index of 32 %.			



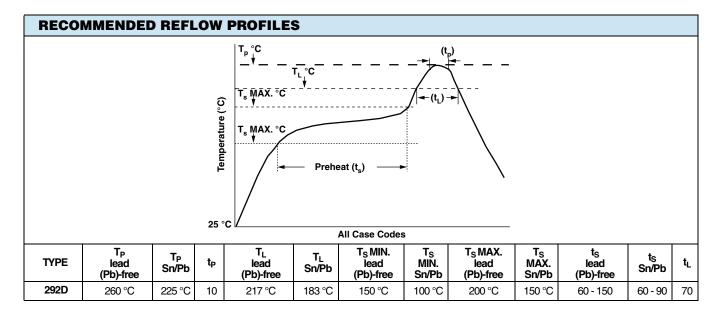
Solid Tantalum Chip Capacitors, TANTAMOUNT[®] Leadframeless Molded

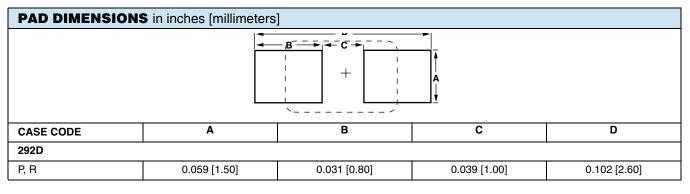
Vishay Sprague

292D

CASE CODE	TAPE SIZE	В ₁ (МАХ.)	D ₁ (MIN.)	F	К ₀ (МАХ.)	P ₁	w
292D							
P R	8 mm	0.092 ± 0.0039 [2.34 ± 0.100]	0.0394 + 0.0098 [1.5 + 0.100]	0.1378 ± 0.0098 [3.5 ± 0.05]	0.053 ± 0.0039 [1.35 ± 0.100]	0.157 ± 0.0039 [4.0 ± 0.2]	0.315 + 0.0118/- 0.0039 [8.0 + 0.30/- 0.10]

Note: Metric dimensions will govern. Dimensions in inches are rounded and for reference only


STANDARD PACKAGING QUANTITY						
SERIES	CASE CODE	QTY (PC	S/REEL)			
JENIES	CASE CODE	7" REEL	13" REEL			
292D	P, R	2500	10 000			


Vishay Sprague

Solid Tantalum Chip Capacitors, TANTAMOUNT[®] Leadframeless Molded

Osnasitas Valtana Dating	Oneveting Veltege
Capacitor Voltage Rating	Operating Voltage
4.0	2.5
6.3	3.6
10	6.0
16	10
20	12
25	15
35	24
50	28
SEVERE CONDITIONS: FOR EXAMPLE: INPUT FILTERS	
Capacitor Voltage Rating	Operating Voltage
4.0	2.5
6.3	3.3
10	5.0
16	8.0
20	10
25	12
35	15
50	24

www.vishay.com 40 For technical questions, contact: tantalum@vishay.com

Document Number: 40042 Revision: 16-Sep-09 Not for New Designs. See Vishay 298D Series for New Design and/or Replacements

Solid Tantalum Chip Capacitors, TANTAMOUNT[®] Leadframeless Molded

GUIDE TO APPLICATION

1. **A-C Ripple Current:** The maximum allowable ripple current shall be determined from the formula:

$$I_{\rm rms} = \sqrt{\frac{P}{R_{\rm ESR}}}$$

where,

P = Power Dissipation in Watts at + 25 °C as given in the table in Paragraph Number 5 (Power Dissipation).

R_{ESR} = The capacitor Equivalent Series Resistance at the specified frequency.

2. **A-C Ripple Voltage:** The maximum allowable ripple voltage shall be determined from the formula:

$$V_{\rm rms} = Z_{\rm v} \frac{P}{R_{\rm ESR}}$$

or, from the formula:

$$V_{rms} = I_{rms} \times Z$$

where,

P = Power Dissipation in Watts at + 25 °C as given in the table in Paragraph Number 5 (Power Dissipation).

R_{ESR} = The capacitor Equivalent Series Resistance at the specified frequency.

Z = The capacitor impedance at the specified frequency.

- 2.1 The sum of the peak AC voltage plus the applied DC voltage shall not exceed the DC voltage rating of the capacitor.
- 2.2 The sum of the negative peak AC voltage plus the applied DC voltage shall not allow a voltage reversal exceeding 10 % of the DC working voltage at + 25 °C.
- Reverse Voltage: These capacitors are capable of withstanding peak voltages in the reverse direction equal to 10 % of the DC rating at + 25 °C, 5 % of the DC rating at + 85 °C and 1 % of the DC rating at + 125 °C.
- 4. **Temperature Derating:** If these capacitors are to be operated at temperatures above + 25 °C, the permissible rms ripple current or voltage shall be calculated using the derating factors as shown:

TEMPERATURE	DERATING FACTOR
+ 25 °C	1.0
+ 85 °C	0.9
+ 125 °C	0.4

5. **Power Dissipation:** Power dissipation will be affected by the heat sinking capability of the mounting surface. Non-sinusoidal ripple current may produce heating effects which differ from those shown. It is important that the equivalent I_{rms} value be established when calculating permissible operating levels. (Power Dissipation calculated using + 25 °C temperature rise.)

6. **Printed Circuit Board Materials:** Molded capacitors are compatible with commonly used printed circuit board materials (alumina substrates, FR4, FR5, G10, PTFE-fluorocarbon and porcelanized steel).

7. Attachment:

- 7.1 **Solder Paste:** The recommended thickness of the solder paste after application is $0.007" \pm 0.001"$ [0.178 mm ± 0.025 mm]. Care should be exercised in selecting the solder paste. The metal purity should be as high as practical. The flux (in the paste) must be active enough to remove the oxides formed on the metallization prior to the exposure to soldering heat. In practice this can be aided by extending the solder preheat time at temperatures below the liquidous state of the solder.
- 7.2 **Soldering:** Capacitors can be attached by conventional soldering techniques; vapor phase, convection reflow, infrared reflow, wave soldering and hot plate methods. The Soldering Profile charts show recommended time/temperature conditions for soldering. Preheating is recommended. The recommended maximum ramp rate is 2 °C per second. Attachment with a soldering iron is not recommended due to the difficulty of controlling temperature and time at temperature. The soldering iron must never come in contact with the capacitor.
- 7.2.1 **Backward and Forward Compatibility:** Capacitors with SnPb or 100 % tin termination finishes can be soldered using SnPb or lead (Pb)-free soldering processes.
- 8. **Cleaning (Flux Removal) After Soldering:** Molded capacitors are compatible with all commonly used solvents such as TES, TMS, Prelete, Chlorethane, Terpene and aqueous cleaning media. However, CFC/ODS products are not used in the production of these devices and are not recommended. Solvents containing methylene chloride or other epoxy solvents should be avoided since these will attack the epoxy encapsulation material.
- 8.1 When using ultrasonic cleaning, the board may resonate if the output power is too high. This vibration can cause cracking or a decrease in the adherence of the termination. DO NOT EXCEED 9W/l at 40 kHz for 2 minutes.
- 9. Recommended Mounting Pad Geometries: Proper mounting pad geometries are essential for successful solder connections. These dimensions are highly process sensitive and should be designed to minimize component rework due to unacceptable solder joints. The dimensional configurations shown are the recommended pad geometries for both wave and reflow soldering techniques. These dimensions are intended to be a starting point for circuit board designers and may be fine tuned if necessary based upon the peculiarities of the soldering process and/or circuit board design.

Document Number: 40042 Revision: 16-Sep-09 292D

Vishay Sprague

Vishay

Disclaimer

All product specifications and data are subject to change without notice.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product.

Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

Product names and markings noted herein may be trademarks of their respective owners.