

Film Capacitors

Metallized Polyester Film Capacitors (MKT)

 Series/Type:
 B32572, B32573

 Date:
 August 2004

© EPCOS AG 2004. Reproduction, publication and dissemination of this data sheet, enclosures hereto and the information contained therein without EPCOS' prior express consent is prohibited.

Purchase orders are subject to the General Conditions for the Supply of Products and Services of the Electrical and Electronics Industry recommended by the ZVEI (German Electrical and Electronic Manufacturers' Association), unless otherwise agreed.

Metallized polyester film capacitors (MKT)

B32572, B32573

Ignition (stacked) SilverCap™

Typical applications

- Ignition for .
 - gas, engines, generators
- Energy storage

Climatic

- Max. operating temperature: 125 °C
- Climatic category (IEC 60068-1): 55/125/56

Features

- Special dimensions available on request
- High pulse strength

Construction

- Dielectric: polyethylene terephthalate (polyester, PET)
- Stacked-film technology
- Uncoated

Terminals

Parallel wire leads, lead-free tinned

Marking

Rated capacitance (coded), rated DC voltage

Delivery mode

Bulk (untaped)

Notes on mounting

When mounting these capacitors, take into account creepage distances and clearances to adjacent live parts. The insulating strength of the cut surfaces to other live parts of the circuit is 1.5 times the capacitors rated DC voltage, but is always at least 300 VDC.

Dimensional drawing

Dimensions in mm

Lead spacing	Lead diameter	Туре
<i>e</i> _±0.4	d ₁	
15.0	0.8	B32572
22.5	0.8	B32573

MKT

Ignition (stacked) SilverCap™

B32572, B32573

Overview of available types

Lead spacing	15.0 mm	22.5 mm
Туре	B32572	B32573
Page	4	5
V _R (VDC)	250	250
V _{rms} (VAC)	160	160
C _R (μF)		
0.68		
1.0		
1.5		
2.2		

Ignition (stacked) SilverCap™

Ordering codes and packing units (lead spacing 15 mm)

V _R	V _{rms}	C _R	Max. dimensions	Ordering code	Untaped
	f ≤60 Hz		$w \times h \times I$	(composition see	
VDC	VAC	μF	mm	below)	pcs./unit
250	160	0.68	7.0 imes11.0 imes16.5	B32572A3684+000	450
		1.0	9.1 imes11.7 imes16.5	B32572A3105+000	300
		1.5	11.5 imes 13.5 imes 16.5	B32572A3155+000	200
		2.2	$11.5\times19.8\times16.5$	B32572A3225+000	150

Further E series and intermediate capacitance values on request.

Special dimensions available on request.

B32572

For corresponding design rules, refer to chapter "General technical information".

Composition of ordering code

- + = Capacitance tolerance code:
 - $\begin{array}{l} \mathsf{M}=\pm 20\%\\ \mathsf{K}=\pm 10\% \end{array}$
 - $J = \pm 5\%$

МКТ

Ignition (stacked) SilverCap™

B32573

22.5

Ordering codes and packing units (lead spacing 22.5 mm)

V _R	V _{rms}	C _R	Max. dimensions	Ordering code	Untaped
	f ≤60 Hz		$w \times h \times I$	(composition see	
VDC	VAC	μF	mm	below)	pcs./unit
250	160	0.68	$5.6 \times 9.2 \times 24.0$	B32573A3684+000	1180
		1.0	$6.4 \times 11.8 \times 24.0$	B32573A3105+000	1050
		1.5	$7.6 \times 14.3 \times 24.0$	B32573A3155+000	930
		2.2	$8.9 \times 17.4 \times 24.0$	B32573A3225+000	560

Further E series and intermediate capacitance values on request.

Special dimensions available on request.

For corresponding design rules, refer to chapter "General technical information".

Composition of ordering code

+ = Capacitance tolerance code:

 $\begin{array}{l} \mathsf{M}=\pm 20\%\\ \mathsf{K}=\pm 10\% \end{array}$

 $J = \pm 5\%$

B32572, B32573

Ignition (stacked) SilverCap™

Technical data

Operating temperature range	Max. operating temperature T _{op,max}		+125 °C	
	Upper category temperature T _{max}		+125 °C	
	Lower category temperature T _{min}		−55 °C	
	Rated temperature T _R		+85 °C	
Dissipation factor tan δ (in 10 ⁻³)	at	C _R ≤1μF	C _R > 1 μF	
at 20 °C	1 kHz	8	10	
(upper limit values)	10 kHz	15	-	
Time constant $\tau = C_R \cdot R_{ins}$	2500 s		·	
at 20 °C, rel. humidity \leq 65%				
(minimum as-delivered values)				
DC test voltage	$1.6 \cdot V_R$, 2 s			
Category voltage V _c	T _A (°C)	DC voltage derating	AC voltage derating	
(continuous operation with V_{DC}	$T_A \le 85$	$V_{\rm C} = V_{\rm R}$	$V_{C,rms} = V_{rms}$	
or V_{AC} at f \leq 60 Hz)	85 <t<sub>A≤125</t<sub>	$V_{\rm C} = V_{\rm R} \cdot (165 - T_{\rm A})/80$	$V_{C,rms} = V_{rms} \cdot (165 - T_A)/80$	
Max. charging voltage C _{ch}	$1.2 \cdot V_{R}$ for ≤ 1 s			
Damp heat test	56 days1)/40	°C/93% relative humidity		
Limit values after damp	Capacitance	change ΔC/C	≤ 5%	
heat test	Dissipation factor change Δ tan δ		≤ 3 · 10 ⁻ 3 (at 1 kHz)	
			≤ 5 · 10 ⁻ 3 (at 10 kHz)	
	Time consta	nt $\tau = C_R \cdot R_{ins}$	\geq 50% of minimum	
			as-delivered values	
Reliability:				
Failure rate λ	2 fit (\leq 2 · 10 ⁻⁹ /h) at 0.5 · V _R , 40 °C			
Service life t _{SL}	200 000 h at 1.0 · V _R , 40 °C			
	For conversion to other operating conditions and temperatures,			
	refer to chapter "Quality assurance", page .			
Failure criteria:				
Total failure	Short circuit or open circuit			
Failure due to variation	Capacitance	change ∆C/C	> 10%	
of parameters	Dissipation fa	actor tan δ	> 2 \cdot upper limit value	
	Time consta	nt $\tau = C_B \cdot R_{ins}$	< 50 s	

1) Test criteria must be met after exposure to damp heat for 21 days

MKT

Ignition (stacked) SilverCap™

Pulse handling capability

The capacitors are especially manufactured and tested to suit their intended applications.

Typical permissible loads:

Lead spacing		15 and 22.5 mm
Max. rate of voltage rise V_{pp}/τ	(at $V_{pp} = 500 \text{ V}$)	200 V/µs
Pulse characteristic k ₀	(at $V_{pp} \le 500 \text{ V}$)	200 000 V²/µs
Max. charging voltage V _{ch}	(≤1 s)	300 VDC
Max. voltage change V _{pp}	(at f = 100 kHz)	500 V

Unlimited number of pulses permitted.

Impedance Z versus frequency f

(typical values)

Permissible AC voltage V_{rms} versus frequency f (for sinusoidal waveforms, $T_A \leq 55$ °C) For $T_A > 55$ °C, please refer to "General technical information", section 3.2.3.

Lead spacing 15 mm

250 VDV/160 VAC

Lead spacing 22.5 mm

