DUAL LOW POWER OPERATIONAL AMPLIFIER

GENERAL DESCRIPTION

The NJM022B is a dual low-power operational amplifier. Like the NJM022, the NJM022B is the wide operating voltage range, high input inpedance, low operating current, low input noise voltage, internally frequency compensated, latch-up free, high slew rate amplifier with the short circuit protection. The NJM022B is twice the slew rate and half the input noise voltage comparing to the NJM022 with increased operating current.

■ PACKAGE OUTLINE

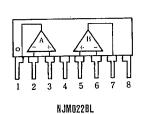
NJM022BM

FEATURES

- Operating Voltage
- $(\pm 2V \sim \pm 18V)$
- Low Operating Current
- $(250 \mu A typ)$

Slew Rate

- (1V/ μs typ)
- Short-Circuit Protection
- Package Outline
- DIP8, DMP8, SIP8, (SSOP8)
- Bipolar Technology


NJM022BV

NJM022BL

PIN CONFIGURATION

PIN FUNCTION

- 1. A OUTPUT
- 2. A-INPUT
- 3. A+INPUT 4. V-
- 5. B+INPUT 6. B-INPUT
- 7. B OUTPUT

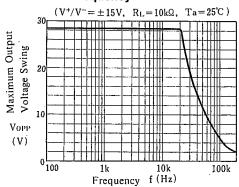
■ EQUIVALENT CIRCUIT (1/2 Shown)

■ ABSOLUTE MAXIMUM RATINGS

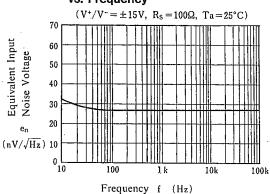
(Ta=25°C)

PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage	V+/V-	±18	V
Input Voltage	V _{IC}	±15	V
Differential Input Voltage	V _{ID}	±30	V
Power Dissipation	Po	(DIP8) 500	mW
		(DMP8) 300	mW
		(SSOP8) 250	mW
	:	(SIP8) 800	mw
Operating Temperature Range	Topr	-40∼+85	°C
Storage Temperature Range	Tstg	-40~+125	$^{\circ}$

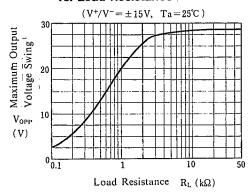
(note) For supply voltage less than ± 15 V, the absolute maximum input voltage is equal to the supply voltage.

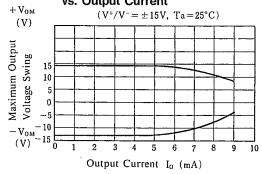

■ ELECTRICAL CHARACTERISTICS

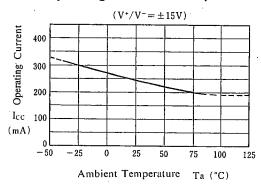
 $(Ta = +25^{\circ}C, V^{+}/V^{-} = \pm 15V)$

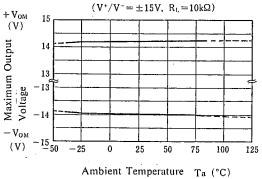

PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Input Offset Voltage	V _{IO}	R _s ≤10kΩ		1	5	mV
Input Offset Current	I _{IO}	,		1 .	80	nA
Input Bias Current	IB		_	20	250	пA
Large Signal Voltage Gain	A_{V}	$R_L \ge 10 k\Omega$, $V_O = \pm 10 V$	60	88	1 —	dB
Common Mode Rejection Ratio	CMR	R _S ≦10kΩ	60	92		dB
Response Time (Rise Time)	t _R	$V_{IN}=20$ mV, $R_L=10$ k Ω , $C_L=100$ pF	_	0.18	_	μs
Slew Rate	SR	$V_{IN} = 10V$, $R_L = 10k\Omega$, $C_L = 100pF$	_	1	_	V/μs
Input Common Mode Voltage Range	V _{ICM}	•	±12	±13		v
Supply Voltage Rejection Ratio	SVR	R _S ≦10kΩ	74	110		dB
Equivalent Input Noise Voltage	VNI	$A_V=20$ dB, $f=1$ kHz	_	25	_	·nV/√H
Short-circuit Output Current	Ios		_	±8	l —	mA
Operating Current	lcc		-	250	500	μΑ
Maximum Peak-to-Peak Output Voltage	Vом	$R_L = 10k\Omega$	±10	±14		v

■ TYPICAL CHARACTERISTICS

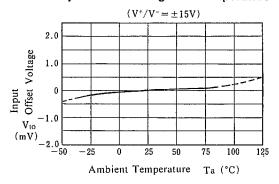

Muximum Output Voltage Swing vs. Frequency

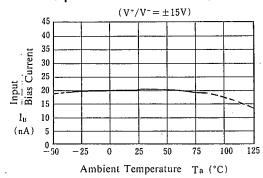

Equivalent Input Noise Voltage vs. Frequency


Maximum Output Voltage Swing vs. Load Resistance

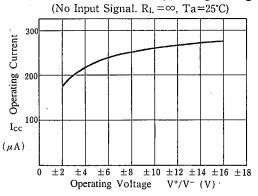

Maximum Output Voltage Swing vs. Output Current

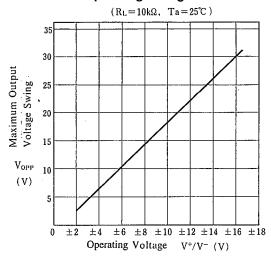
Operating Current vs. Temperature

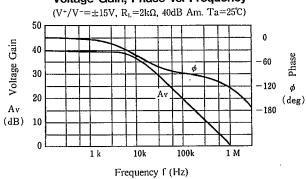

Maximum Output Voltage vs. Temperature


4

TYPICAL CHARACTERISTICS


Input Offset Voltage vs. Temperature


Input Bias Current vs. Temperature


Operating Current vs. Operating Voltage

Maximum Output Voltage Swing vs. Operating Voltage

Voltage Gain, Phase vs. Frequency

N.	JN	10	22	B
----	----	----	-----------	---

MEMO

[CAUTION]
The specifications on this databook are only given for information , without any guarantee as regards either mistakes or omissions. The application circuits in this databook are described only to show representative usages of the product and not intended for the guarantee or permission of any right including the industrial rights.